簡易檢索 / 詳目顯示

研究生: 鐘仁駿
Zhong, Ren-Jun
論文名稱: 空氣穩定鈣鈦礦電觸媒應用於染料敏化太陽能電池對電極
Air-Stable Perovskite as Electro-catalyst for the Counter Electrode in Dye-Sensitized Solar Cells
指導教授: 李君婷
Li, Chun-Ting
口試委員: 林建村
Lin, Jiann-T'suen
李權倍
Lee, Chuan-Pei
口試日期: 2021/07/15
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 74
中文關鍵詞: 空氣穩定鈣鈦礦對電極染料敏化太陽能電池電催化劑非白金
英文關鍵詞: Air-stable perovskite, Counter electrodes, Dye-sensitized solar cells, Electro-catalyst, Pt-free
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100813
論文種類: 學術論文
相關次數: 點閱:46下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究論文旨在通過使用易於製造的染料敏化太陽能電池作為合適的量測平台來評估空 氣穩定的電化學耐用鈣鈦礦材料。在第三章通過使用於透明層的商用 Ti-Nanooxide 塗料並且 優化光散色層的二氧化鈦塗料,來建立一個穩定、可靠、低成本且易於製造的染料敏化太陽 能電池。在不使用高溫高壓設備合成二氧化鈦奈米和微米顆粒的情況下,通過添加重量比為 50 %的二氧化鈦固體製備均勻可靠的光散射二氧化鈦塗料,該塗料由 Ti-Nanoxide/ST-41(重 量比為 2/1)和聚乙二醇(PEG,相對於 ST-41 的重量比為 25%)溶於第三丁醇/去離子水(體 積比為 9/1)的混合溶劑中。獲得高達 8.47%的電池性能並具有良好的重現性和可靠性,可用 於進一步研究鈣鈦礦電極的電催化性能。 在第四章中通過使用 100%的甲脒作為 A 位分子,摻雜 10%的碘化鍺(II)於B 位元素穩定劑並添加四烷基鹵化銨作為表面鈍化劑,成功製造出結構為發泡鎳基板/二氧化鈦/甲脒碘 化鉛鍺(NF/TiO2/FA(Pb1-xGex)I3)的空氣穩定和電化學耐用的鈣鈦礦電極。所有被不同四烷基鹵 化銨鈍化的 FA(Pb1-xGex)I3 鈣鈦礦薄膜均表現出良好的 α-FAPbI3 結晶並保持良好的熱力學穩 定性,在空氣中至少四個月沒有任何晶體分解或衰變。當表面鈍化劑的四烷基銨陽離子中烷 基取代基的長度從乙基(C2)逐漸延長至十二烷基(C12)時,我們發現四正己基銨(THA)碘化物 可提供最佳的電池性能。在 FA(Pb1-xGex)I3表面添加溴化物(THA-Br)可形成少量 FAPbBr3作為 額外的活性位點來增益 I–/I3–的氧化還原反應,然而當表面添加氯化物(THA-Cl)時,THA-Cl 的團聚使得表面鈍化效果低下以及覆蓋了電活性位點,導致 FA(Pb1-xGex)I3的電催化能力下降。 最佳的 NF/TiO2/FA(Pb1-xGex)I3/THA-Br0.5I0.5 電極對多種氧化還原介質(I–/I3–, CoII/III-phen 和CuI/II-dmp)均表現出良好的電化學耐用性和電催化能力。優化後的NF/TiO2/FA(Pb1-xGex)I3/ THA-Br0.5I0.5對電極可使其染料敏化太陽能電池在 I–/I3–系統中達到 8.50% (1 個太陽光),而在1 klux (飛利浦 T5 燈)下可達到 22%,且均具有良好的重現性,相較於傳統的白金對電極 (9.78%),可達其效能的 87%,顯示出空氣穩定之鈣鈦礦電極在各種電化學系統中具有無限的 應用潛力。

    In this thesis, we aimed to synthesize air-stable the electrochemically durable perovskite material via using the easily fabricated dye-sensitized solar cells as an appropriate evaluation platform. In Chapter 3, a steady, reliable, low-cost, and easily conducted fabrication platform for dye-sensitized solar cells was estabilished by using the commercial Ti-Nanoxide paste for transparent layer and the optimal TiO2 paste for light-scattering layer. Without synthesizing TiO2 nanoparticles and microparticles via using high temperature and pressure equipments, the uniform and reliable lightscattering TiO2 paste was prepared by adding 50 wt% of TiO2 solid, which was composted of TiNanoxide/ST–41 (2/1 by weight), and poly(ethylene glycol) (PEG, 25 wt% with respect to the weight of ST–41) in a mixing solvent of tert-butyl alcohol/de-ionic water (9/1 by volume). Decent cell efficiency up to 8.47% was achieved, and the perovskite electrode exhibited good reproducibility and reliability for further studies of electro-catalytic properties. In Chapter 4, air-stable and electrochemical durable perovskite electrode of NF/TiO2/ FA(Pb1xGex)I3 were successfully obtained by using 100% of formamidinium as the A-site molecule, doping 10% of germanium(II) iodide as the B-stie stabilizer, and adding tetra-alkyl-ammonium halides as the surface passivators. All the FA(Pb1-xGex)I3 perovskite films passivated by different tetraalkylammonium halides exhibted good α–FAPbI3 crystalline phase, and maintained good thermodynamic stability without any crystal decomposition or decay in air for at least 4 months. Among tetra-alkylammonium surface passivators of different alkyl chain length (from ethyl (C2) to docyl (C12)), the tetra-n-hexylammonium (THA) iodide was found to provide the optimal cell performance. The bromide passivated on the FA(Pb1-xGex)I3 surface resulted in the formation of minor FAPbBr3 as extra electro-active sites for triggering I–/I3– redox reaction, while the chloride passivated on the FA(Pb1-xGex)I3 surface caused the decrease in electro-catalytic ability of FA(Pb1xGex)I3 due to the self-aggregation of THA-Cl, inefficient surface passivation, and the blockade of the electro-active sites. The optimal NF/TiO2/FA(Pb1-xGex)I3/ THA-Br0.5I0.5 electrode exhibited good electrochemical durability and electro-catalytic ability toward multiple redox mediators (I–/I3–, CoII/III-phen, and CuI/II-dmp). The DSSC with the optimal NF/TiO2/ FA(Pb1-xGex)I3 /THA-Br0.5I0.5 counter electrode reached 8.50% at 1 sun and 22% at 1 klux (Philips T5 lamp) in I–/I3– with good reproducibility; this cell effiency was 87% to that of the Pt-based DSSC (9.78%), showing a promising potential for the applications in various electrochmical systems.

    致謝 i 中文摘要 iii Abstract iv Table of Contents v List of Tables vii List of Figures ix Nonmenclatures xii Chapter 1 Introduction 1 1-1 Sustainable Solar Energy 1 1-2 Solar cells 1 1-3 Perovskite Matereial 9 1-4 Motivation 16 Chapter 2 Experimental Section 18 2-1 Materials 18 2-2 TiO2 photoanode 19 2-3 Perovskite counter electrode 21 2-4 DSSC assembly 23 2-5 Instruments and Analyses 24 Chapter 3 Result and Discussion Part A : Low-cost light-scattering TiO2 paste 25 3-1 The ratio of TiO2 nanoparticle to microparticle 25 3-2 Mixing solvent 25 3-3 Solid content 28 Chapter 4 Result and Discussion Part B : Air-stable perovskite counter electrode 30 4-1 A-site molecule 30 4-2 B-stie stabilizer and substrate 31 4-3 Surface passivation 38 4-4 Mix halide of THA-X 40 4-5 Tafel polarization plot and electrochemical impedance spectra 45 4-6 Crystal structure and Morphology 50 Chapter 5 Conclusions 63 References 65 Appendix A Curriculum vitae 73

    1. Braga, A. F. B.;Moreira, S. P.;Zampieri, P. R.;Bacchin, J. M. G.;Mei, P. R., New processes for the production of solar-grade polycrystalline silicon: A review. Solar Energy Materials and Solar Cells 2008, 92, 418-424.
    2. Luo, D.-w.;Liu, N.;Lu, Y.-p.;Zhang, G.-l.;Li, T.-j., Removal of boron from metallurgical grade silicon by electromagnetic induction slag melting. Transactions of Nonferrous Metals Society of China 2011, 21, 1178-1184.
    3. Yuge, N.;Abe, M.;Hanazawa, K.;Baba, H.;Nakamura, N.;Kato, Y.;Sakaguchi, Y.;Hiwasa, S.;Aratani, F., Purification of metallurgical-grade silicon up to solar grade. Progress in Photovoltaics: Research and Applications 2001, 9, 203-209.
    4. Zheng, S.-s.;Safarian, J.;Seok, S.;Kim, S.;Merete, T.;Luo, X.-t., Elimination of phosphorus vaporizing from molten silicon at finite reduced pressure. Transactions of Nonferrous Metals Society of China 2011, 21, 697-702.
    5. Khattak, C. P.;Schmid, F.;Joyce, D. B.;Smelik, E. A.;Wilkinson, M. A., Production of solar-grade silicon by refining of liquid metallurgical-grade silicon. Master thesis. National Renewable Energy Laboratory, America; 1999.
    6. Marques, F. C.;Cortes, A. D. S.;Mei, P. R., Solar cells fabricated in upgraded metallurgical silicon, obtained through vacuum degassing and czochralski growth. Silicon 2018, 11, 77-83.
    7. Luo, D.;Liu, N.;Lu, Y.;Zhang, G.;Li, T., Removal of impurities from metallurgical grade silicon by electron beam melting. Journal of Semiconductors 2011, 32.
    8. Chigondo, F., From metallurgical-grade to solar-grade silicon: An Overview. Silicon 2017, 10, 789-798.
    9. Khajavi, L. T.;Morita, K.;Yoshikawa, T.;Barati, M., Removal of boron from silicon by solvent refining using ferrosilicon alloys. Metallurgical and Materials Transactions B 2014, 46, 615-620.
    10. Arnberg, L.;Sabatino, M. D.;Øvrelid, E., Solidification of silicon for solar cells. Transactions of the Indian Institute of Metals 2012, 65, 509-513.
    11. Siffert, P.;Krimmel, E. F., Silicon. 2nd. 2004.
    12. Lee, A. H. I.;Chen, H. H.;Kang, H.-Y., A model to analyze strategic products for photovoltaic silicon thin-film solar cell power industry. Renewable and Sustainable Energy Reviews 2011, 15, 1271-1283.
    13. Li, Y.;Wu, J.;Ma, W.;Yang, B., Boron removal from metallurgical grade silicon using a refining technique of calcium silicate molten slag containing potassium carbonate. Silicon 2014, 7, 247-252.
    14. Johnston, M. D.;Barati, M., Distribution of impurity elements in slag–silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications. Solar Energy Materials and Solar Cells 2010, 94, 2085-2090.
    15. Pires, J. C. S.;Otubo, J.;Braga, A. F. B.;Mei, P. R., The purification of metallurgical grade silicon by electron beam melting. Journal of Materials Processing Technology 2005, 169, 16-20.
    16. Ebrahimfar, F.;Ahmadian, M., Purification of metallurgical-grade silicon by acid leaching. Silicon 2018, 11, 1979-1987.
    17. Søiland, A.-K., Silicon for solar cells. Master thesis. Norwegian University of Science and Technology, Norwegian; 2004.
    18. Hossain, M. J.;Gregory, G.;Schneller, E. J.;Gabor, A. M.;Blum, A. L.;Yang, Z.;Sulas, D.;Johnston, S.;Davis, K. O., A Comprehensive methodology to evaluate losses and process variations in silicon solar cell manufacturing. IEEE Journal of Photovoltaics 2019, 9, 1350-1359.
    19. Narayanan, S.;Wenham, S. R.;Green, M. A., Percent efficiency polycrystalline silicon solar cells. Institute of Electrical and Electronics Engineers 1990, 37, 382-384.
    20. Pearce, J.;Lau, A., Net energy analysis for sustainable energy production from silicon based solar cells. International Solar Energy Conference 2009, 1-8.
    21. Jaegermann, W.;Klein, A.;Mayer, T., Interface engineering of inorganic thin-film solar cells - materials-science challenges for advanced physical concepts. Advanced Materials 2009, 21, 4196-4206.
    22. Britt, J.;Ferekides, C., Thin‐film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters 1993, 62, 2851-2852.
    23. Tiwari, A. N.;Khrypunov, G.;Kurdzesau, F.;Bätzner, D. L.;Romeo, A.;Zogg, H., CdTe solar cell in a novel configuration. Progress in Photovoltaics: Research and Applications 2004, 12, 33-38.
    24. Bosio, A.;Romeo, A.;Menossi, D.;Mazzamuto, S.;Romeo, N., The second-generation of CdTe and CuInGaSe2 thin film PV modules. Crystal Research and Technology 2011, 46, 857-864.
    25. Konovalov, I., Material requirements for CIS solar cells. Thin Solid Films 2004, 451-452, 413-419.
    26. Ahn, S.;Kim, C.;Yun, J. H.;Gwak, J.;Jeong, S.;Ryu, B.-H.;Yoon, K., CuInSe2 (CIS) thin film solar cells by direct coating and selenization of solution precursors. The Journal of Physical Chemistry C 2010, 114, 8108-8113.
    27. Li, G.;Shrotriya, V.;Huang, J.;Yao, Y.;Moriarty, T.;Emery, K.;Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials 2005, 4, 864-868.
    28. Kim, J. Y.;Kim, S. H.;Lee, H. H.;Lee, K.;Ma, W.;Gong, X.;Heeger, A. J., New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Advanced Materials 2006, 18, 572-576.
    29. Kim, J. Y.;Lee, K.;Coates, N. E.;Moses, D.;Nguyen, T.-Q.;Dante, M.;Heeger, A. J. H., Efficient tandem polymer solar cells fabricated by all-solution processing. SCIENCE 2007, 317, 222-225.
    30. Gao, L.;Zhang, J.;He, C.;Shen, S.;Zhang, Y.;Liu, H.;Sun, Q.;Li, Y., Synthesis and photovoltaic properties of a star-shaped molecule based on a triphenylamine core and branched terthiophene end groups. Science China Chemistry 2013, 56, 997-1003.
    31. Listorti, A.;O’Regan, B.;Durrant, J. R., Electron transfer dynamics in dye-sensitized solar cells. Chemistry of Materials 2011, 23, 3381-3399.
    32. Brown, T. M.;De Rossi, F.;Di Giacomo, F.;Mincuzzi, G.;Zardetto, V.;Reale, A.;Di Carlo, A., Progress in flexible dye solar cell materials, processes and devices. Journal of Materials Chemistry A 2014, 2, 10788-10817.
    33. Tai, Q.;Zhao, X.-Z., Pt-free transparent counter electrodes for cost-effective bifacial dye-sensitized solar cells. Journal of Materials Chemistry A 2014, 2, 13207-13218.
    34. Ye, M.;Wen, X.;Wang, M.;Iocozzia, J.;Zhang, N.;Lin, C.;Lin, Z., Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today 2015, 18, 155-162.
    35. Lee, C.-P.;Lin, R. Y.-Y.;Lin, L.-Y.;Li, C.-T.;Chu, T.-C.;Sun, S.-S.;Lin, J. T.;Ho, K.-C., Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Advances 2015, 5, 23810-23825.
    36. Ahmad, S.;Guillén, E.;Kavan, L.;Grätzel, M.;Nazeeruddin, M. K., Metal free sensitizer and catalyst for dye sensitized solar cells. Energy & Environmental Science 2013, 6.
    37. Shi, E.;Gao, Y.;Finkenauer, B. P.;Akriti;Coffey, A. H.;Dou, L., Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews 2018, 47, 6046-6072.
    38. Yuan, Z.;Shu, Y.;Xin, Y.;Ma, B., Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Royal Society of Chemistry 2016, 52, 3887-3890.
    39. Huang, P.;Kazim, S.;Wang, M.;Ahmad, S., Toward phase stability: Dion–Jacobson layered perovskite for solar cells. ACS Energy Letters 2019, 4, 2960-2974.
    40. Kojima, A.;Teshima, K.;Shirai, Y.;Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. American Chemical Society 2009, 131, 6050-6051.
    41. Etgar, L.;Gao, P.;Xue, Z.;Peng, Q.;Chandiran, A. K.;Liu, B.;Nazeeruddin, M. K.;Gratzel, M., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society 2012, 134, 17396-17399.
    42. Ball, J. M.;Lee, M. M.;Hey, A.;Snaith, H. J., Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 2013, 6.
    43. Niu, G.;Guo, X.;Wang, L., Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A 2015, 3, 8970-8980.
    44. Berhe, T. A.;Su, W.-N.;Chen, C.-H.;Pan, C.-J.;Cheng, J.-H.;Chen, H.-M.;Tsai, M.-C.;Chen, L.-Y.;Dubale, A. A.;Hwang, B.-J., Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science 2016, 9, 323-356.
    45. Noh, J. H.;Im, S. H.;Heo, J. H.;Mandal, T. N.;Seok, S. I., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters 2013, 13, 1764-1769.
    46. Tavakoli, M. M.;Simchi, A.;Fan, Z.;Aashuri, H., Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells. Royal Society of Chemistry 2016, 52, 323-326.
    47. Tayyebi, A.;Tavakoli, M. M.;Outokesh, M.;Shafiekhani, A.;Simchi, A., Supercritical synthesis and characterization of graphene–PbS quantum dots composite with enhanced photovoltaic properties. Industrial & Engineering Chemistry Research 2015, 54, 7382-7392.
    48. Wang, J. T.;Ball, J. M.;Barea, E. M.;Abate, A.;Alexander-Webber, J. A.;Huang, J.;Saliba, M.;Mora-Sero, I.;Bisquert, J.;Snaith, H. J.;Nicholas, R. J., Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Letters 2014, 14, 724-730.
    49. Zhou, Y.;Fuentes-Hernandez, C.;Shim, J.;Meyer, J.;Anthony J. Giordano;Li, H.;Winget, P.;Papadopoulos, T.;Papadopoulos, H. C.;Kim, J.;Fenoll, M.;Dindar, A.;Haske, W.;Najafabadi, E.;Talha M. Khan;Sojoudi, H.;Barlow, S.;Graham, S.;Brédas, J. L.;Marder, S. R.;Kahn, A.;Kippelen, B., A universal method to produce low–work function electrodes for organic electronics. Science 2012, 336, 327-332.
    50. Yadav, P.;Turren-Cruz, S.-H.;Prochowicz, D.;Tavakoli, M. M.;Pandey, K.;Zakeeruddin, S. M.;Grätzel, M.;Hagfeldt, A.;Saliba, M., Elucidation of charge recombination and accumulation mechanism in mixed perovskite solar cells. The Journal of Physical Chemistry C 2018, 122, 15149-15154.
    51. Tavakoli, M. M.;Giordano, F.;Zakeeruddin, S. M.;Gratzel, M., Mesoscopic oxide double layer as electron specific contact for highly efficient and UV stable perovskite photovoltaics. Nano Letters 2018, 18, 2428-2434.
    52. Zhou, H.;Chen, Q.;Li, G.;Luo, S.;Song, T.-b.;Duan, H.-S.;Hong, Z.;You, J.;Liu, Y.;Yang, Y., Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542-546.
    53. Saliba, M.;Matsui, T.;Seo, J. Y.;Domanski, K.;Correa-Baena, J. P.;Nazeeruddin, M. K.;Zakeeruddin, S. M.;Tress, W.;Abate, A.;Hagfeldt, A.;Gratzel, M., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environmental Science 2016, 9, 1989-1997.
    54. Xu, Z.;Yin, X.;Guo, Y.;Pu, Y.;He, M., Ru-doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance. Journal of Materials Chemistry C 2018, 6, 4746-4752.
    55. Wang, J.;Qin, M.;Tao, H.;Ke, W.;Chen, Z.;Wan, J.;Qin, P.;Xiong, L.;Lei, H.;Yu, H.;Fang, G., Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer. Applied Physics Letters 2015, 106.
    56. Correa-Baena, J.-P.;Abate, A.;Saliba, M.;Tress, W.;Jesper Jacobsson, T.;Grätzel, M.;Hagfeldt, A., The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science 2017, 10, 710-727.
    57. Gao, X. X.;Ge, Q. Q.;Xue, D. J.;Ding, J.;Ma, J. Y.;Chen, Y. X.;Zhang, B.;Feng, Y.;Wan, L. J.;Hu, J. S., Tuning the fermi-level of TiO2 mesoporous layer by lanthanum doping towards efficient perovskite solar cells. Nanoscale 2016, 8, 16881-16885.
    58. Ren, Z.;Wu, J.;Wang, N.;Li, X., An Er-doped TiO2 phase junction as an electron transport layer for efficient perovskite solar cells fabricated in air. Journal of Materials Chemistry A 2018, 6, 15348-15358.
    59. Di Girolamo, D.;Di Giacomo, F.;Matteocci, F.;Marrani, A. G.;Dini, D.;Abate, A., Progress, highlights and perspectives on NiO in perovskite photovoltaics. Chemical Science 2020, 11, 7746-7759.
    60. Cao, T.;Wang, Z.;Xia, Y.;Song, B.;Zhou, Y.;Chen, N.;Li, Y., Facilitating electron transportation in perovskite solar cells via water-soluble fullerenol interlayers. ACS Applied Materials & Interfaces 2016, 8, 18284-18291.
    61. Shen, Q.;Ogomi, Y.;Chang, J.;Toyoda, T.;Fujiwara, K.;Yoshino, K.;Sato, K.;Yamazaki, K.;Akimoto, M.;Kuga, Y.;Katayama, K.;Hayase, S., Optical absorption, charge separation and recombination dynamics in Sn/Pb cocktail perovskite solar cells and their relationships to photovoltaic performances. Material Chemistry A 2012, 00, 1-3.
    62. Zuo, L.;Chen, Q.;De Marco, N.;Hsieh, Y. T.;Chen, H.;Sun, P.;Chang, S. Y.;Zhao, H.;Dong, S.;Yang, Y., Tailoring the interfacial chemical interaction for high-efficiency perovskite solar cells. Nano Letters 2017, 17, 269-275.
    63. Liu, M.;Johnston, M. B.;Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-398.
    64. Jacobsson, T. J.;Correa-Baena, J. P.;Halvani Anaraki, E.;Philippe, B.;Stranks, S. D.;Bouduban, M. E.;Tress, W.;Schenk, K.;Teuscher, J.;Moser, J. E.;Rensmo, H.;Hagfeldt, A., Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. Journal of the American Chemical Society 2016, 138, 10331-10343.
    65. Chen, Q.;Zhou, H.;Song, T. B.;Luo, S.;Hong, Z.;Duan, H. S.;Dou, L.;Liu, Y.;Yang, Y., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Letters 2014, 14, 4158-4163.
    66. Shen, Q.;Ogomi, Y.;Park, B. W.;Inoue, T.;Pandey, S. S.;Miyamoto, A.;Fujita, S.;Katayama, K.;Toyoda, T.;Hayase, S., Multiple electron injection dynamics in linearly-linked two dye co-sensitized nanocrystalline metal oxide electrodes for dye-sensitized solar cells. Physical Chemistry Chemical Physics 2012, 14, 4605-4613.
    67. Cimaroli, A. J.;Yu, Y.;Wang, C.;Liao, W.;Guan, L.;Grice, C. R.;Zhao, D.;Yan, Y., Tracking the maximum power point of hysteretic perovskite solar cells using a predictive algorithm. Journal of Materials Chemistry C 2017, 5, 10152-10157.
    68. Tsai, C. M.;Mohanta, N.;Wang, C. Y.;Lin, Y. P.;Yang, Y. W.;Wang, C. L.;Hung, C. H.;Diau, E. W., Formation of stable tin perovskites Co-crystallized with three halides for carbon-based mesoscopic lead-free perovskite solar cells. Angewandte Chemie Internatioal Edition 2017, 56, 13819-13823.
    69. Prochowicz, D.;Tavakoli, M. M.;Kalam, A.;Chavan, R. D.;Trivedi, S.;Kumar, M.;Yadav, P., Influence of A-site cations on the open-circuit voltage of efficient perovskite solar cells: a case of rubidium and guanidinium additives. Journal of Materials Chemistry A 2019, 7, 8218-8225.
    70. Tian, Y.;Merdasa, A.;Unger, E.;Abdellah, M.;Zheng, K.;McKibbin, S.;Mikkelsen, A.;Pullerits, T.;Yartsev, A.;Sundstrom, V.;Scheblykin, I. G., Enhanced organo-metal halide perovskite photoluminescence from nanosized defect-free crystallites and emitting sites. The Journal Of PhysIcal Chemistry Letters 2015, 6, 4171-4177.
    71. Jiang, Q.;Rebollar, D.;Gong, J.;Piacentino, E. L.;Zheng, C.;Xu, T., Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films. Angewandte Chemie International Edition 2015, 54, 7617-7620.
    72. Chen, Y.;Li, B.;Huang, W.;Gao, D.;Liang, Z., Efficient and reproducible CH3NH3PbI(3-x)(SCN)x perovskite based planar solar cells. Chemical Communications 2015, 51, 11997-11999.
    73. Li, T.;Pan, Y.;Wang, Z.;Xia, Y.;Chen, Y.;Huang, W., Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives. Journal of Materials Chemistry A 2017, 5, 12602-12652.
    74. Li, Y.;Ji, L.;Liu, R.;Zhang, C.;Mak, C. H.;Zou, X.;Shen, H.-H.;Leu, S.-Y.;Hsu, H.-Y., A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. Journal of Materials Chemistry A 2018, 6, 12842-12875.
    75. Aristidou, N.;Eames, C.;Sanchez-Molina, I.;Bu, X.;Kosco, J.;Islam, M. S.;Haque, S. A., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications 2017, 8, 15218.
    76. Jeng, M.-J.;Wung, Y.-L.;Chang, L.-B.;Chow, L., Particle size effects of TiO2 layers on the solar efficiency of dye-sensitized solar cells. International Journal of Photoenergy 2013, 2013, 1-9.
    77. Wu, Y.;Xie, F.;Chen, H.;Yang, X.;Su, H.;Cai, M.;Zhou, Z.;Noda, T.;Han, L., Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Advanced Materials 2017, 29.
    78. Becker, P.;Márquez, J. A.;Just, J.;Al‐Ashouri, A.;Hages, C.;Hempel, H.;Jošt, M.;Albrecht, S.;Frahm, R.;Unold, T., Low temperature synthesis of stable γ‐CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation. Advanced Energy Materials 2019, 9.
    79. Ito, N.;Kamarudin, M. A.;Hirotani, D.;Zhang, Y.;Shen, Q.;Ogomi, Y.;Iikubo, S.;Minemoto, T.;Yoshino, K.;Hayase, S., Mixed Sn-Ge perovskite for enhanced perovskite solar cell performance in air. Physical Chemistry Letters 2018, 9, 1682-1688.
    80. Yang, F.;Hirotani, D.;Kapil, G.;Kamarudin, M. A.;Ng, C. H.;Zhang, Y.;Shen, Q.;Hayase, S., All-inorganic CsPb1-xGexI2Br perovskite with enhanced phase stability and photovoltaic performance. Angewandte Chemie International Edition 2018, 57, 12745-12749.
    81. Sun, H.;Deng, K.;Xiong, J.;Li, L., Graded Bandgap Perovskite with intrinsic n–p homojunction expands photon harvesting range and enables all transport layer‐free perovskite solar cells. Advanced Energy Materials 2020, 10.
    82. Kim, G. M.;Ishii, A.;Öz, S.;Miyasaka, T., MACl‐assisted Ge doping of Pb‐hybrid perovskite: A universal route to stabilize high performance perovskite solar cells. Advanced Energy Materials 2020, 10.
    83. Stoumpos, C. C.;Malliakas, C. D.;Kanatzidis, M. G., Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry 2013, 52, 9019-9038.
    84. Xie, L. Q.;Chen, L.;Nan, Z. A.;Lin, H. X.;Wang, T.;Zhan, D. P.;Yan, J. W.;Mao, B. W.;Tian, Z. Q., Understanding the cubic phase stabilization and crystallization kinetics in mixed cations and halides perovskite single crystals. Journal of American Chemical Society 2017, 139, 3320-3323.
    85. Zhang, Y.;Kim, S. G.;Lee, D.;Shin, H.;Park, N.-G., Bifacial stamping for high efficiency perovskite solar cells. Energy & Environmental Science 2019, 12, 308-321.
    86. Chung, H. J.;Chung, S. J.;Kim, J. H.;Woo, S. I., The effect of post-annealing on the electrical properties of (Pb, Sr)TiO3 thin films prepared by liquid source misted chemical deposition for ultra large-scale integration (ULSI) dynamic random access memory (DRAM) capacitor. Thin Solid Films 2001, 394, 212-217.
    87. Jiang, Q.;Zhao, Y.;Zhang, X.;Yang, X.;Chen, Y.;Chu, Z.;Ye, Q.;Li, X.;Yin, Z.;You, J., Surface passivation of perovskite film for efficient solar cells. Nature Photonics 2019, 13, 460-466.
    88. Abuhelaiqa, M.;Paek, S.;Lee, Y.;Cho, K. T.;Heo, S.;Oveisi, E.;Huckaba, A. J.;Kanda, H.;Kim, H.;Zhang, Y.;Humphry-Baker, R.;Kinge, S.;Asiri, A. M.;Nazeeruddin, M. K., Stable perovskite solar cells using tin acetylacetonate based electron transporting layers. Energy & Environmental Science 2019, 12, 1910-1917.
    89. Zhang, L.;Kang, C.;Zhang, G.;Pan, Z.;Huang, Z.;Xu, S.;Rao, H.;Liu, H.;Wu, S.;Wu, X.;Li, X.;Zhu, Z.;Zhong, X.;Jen, A. K. Y., All‐inorganic CsPbI3 quantum dot solar cells with efficiency over 16% by defect control. Advanced Functional Materials 2020, 31.
    90. Meng, X.;Chi, K.;Li, Q.;Cao, Y.;Song, G.;Liu, B.;Yang, H.;Fu, W., Interfacial modification of mesoporous TiO2 films with PbI2-ethanolamine-dimethyl sulfoxide solution for CsPbIBr2 perovskite solar cells. Nanomaterials 2020, 10, 1-10.

    下載圖示
    QR CODE