簡易檢索 / 詳目顯示

研究生: 何泰廷
He, Tai-Ting
論文名稱: 毫米波寬頻鏡像訊號抑制接收機設計
Design of a mmWave Broadband Image Rejection Receiver
指導教授: 蔡政翰
Tsai, Jeng-Han
口試委員: 楊弘源 李威璁 蔡政翰
口試日期: 2022/01/07
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 226
中文關鍵詞: 互補式金氧半導體製程可變增益放大器電流控制架構鏡像訊號抑制混頻器鏡像拒斥比電壓緩衝放大器共源級組態
英文關鍵詞: Complementary Metal-Oxide Semiconductor (CMOS), Variable Gain Amplifier (VGA), Current Steering, Image Rejection Mixer (IR Mixer), Image Rejection Ratio (IRR), Voltage Buffer, Common Source Mode (CS Mode)
研究方法: 實驗設計法紮根理論法主題分析
DOI URL: http://doi.org/10.6345/NTNU202200378
論文種類: 學術論文
相關次數: 點閱:75下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著毫米波頻段的發展,在相位陣列(Phase Array)架構的射頻接收機中,混頻器(Mixer)和可變增益放大器(Variable Gain Amplifier)為重要的元件。由於互補式金氧半導體製程(CMOS)的進步,使得CMOS具有低功率消耗、低成本及高整合度的優勢。本論文將使用標準65-nm 1P9M互補式金屬氧化物半導體製程(Standard 65-nm 1P9M CMOS process),實現28 GHz鏡像訊號抑制降頻器與2-6 GHz可變增益放大器,最後整合兩電路,實現寬頻鏡像訊號抑制接收機。
    第一個電路為28 GHz鏡像訊號抑制混頻器,為一種降頻器。將RF訊號和LO訊號混和成IF訊號,使用的技術為I/Q訊號調變(I/Q Modulator)。RF訊號使用威爾京生功率分配器(Wilkinson Power Divider)將訊號分配到I 路徑和Q 路徑降頻器,並且藉由給予兩顆混頻器LO正交訊號和RF訊號,將兩個訊號透過馬相巴倫轉成四相位訊號合成。輸出IF端使用多相位濾波器(Poly Phase Filter)將四相位輸出訊號合成差動訊號。當電晶體閘極偏壓為0.3 V,LO驅動功率為3 dBm時,頻帶為24 ~ 27 GHz,轉換增益(Conversion Gain)範圍為-24 ± 0.3 dB,鏡像拒斥比(Image Rejection Ratio)皆小於-30 dBc。1-dB增益壓縮點之輸入功率〖IP〗_1dB約為-2 dBm。整體功率消耗約為0 mW。整體晶片佈局面積為745μm×770μm(含PAD)和620μm×660μm(不含PAD)。
    第二個電路為2-6 GHz可變增益放大器,第一級為電壓緩衝放大器(Voltage Buffer),電路核心使用Inverter Buffer,第二級使用共源級組態(Common Source Mode)。可變方式採用電流控制架構(Current Steering),透過類比控制技術,使放大器增益可變。當供應電壓V_DD為1.2 V且V_C= 0 V時,增益約為5.29 dB ~ 20.82 dB,可變增益範圍約有15.53 dB。1-dB增益壓縮點之輸出功率〖OP〗_1dB約為3.8 dBm。整體功率消耗約為43.2 mW。整體晶片面積為665μm×770μm(含PAD)和545μm×595μm(不含PAD)。
    第三個電路為毫米波寬頻鏡像訊號抑制接收機,由上述兩電路整合實現鏡像訊號抑制接收機。將混頻器混頻後的結果透過可變增益放大器放大,並透過可變技術配合系統產生不同轉換增益,讓此系統有足夠的轉換增益(Conversion Gain)。當電晶體閘極偏壓為0.3 V,LO驅動功率為3 dBm,供應電壓V_DD為1.2 V且V_C= 0 V時,頻帶為23 ~ 29 GHz,轉換增益(Conversion Gain)範圍為-0.5± 0.5 dB,鏡像拒斥比(Image Rejection Ratio)在此頻段皆小於-30 dBc。1-dB增益壓縮點之輸入功率〖IP〗_1dB約為-1 dBm。整體功率消耗約為43.2 mW。整體晶片面積為1405μm×770μm。

    As the progress of the Millimeter Wave band applications, Variable Gain Amplifiers (VGA) and Mixers play important roles in the Phased-Array Radio Frequency Transceiver. Because of the breakthrough of Complementary Metal-Oxide Semiconductor (CMOS), CMOS technologies own the advantages of low power consumption, low cost and high integration. In this thesis, we implemented a 28 GHz IR Mixer and a 2-6 GHz VGA with standard 65-nm 1P9M CMOS process, and then both of the designs were a broadband image rejection receiver.
    The first circuit is a 28 GHz image rejection mixer. The IF signal is mixed by RF signal and LO signal and implemented by I/Q demodulation. The RF signal will be divided into two mixers by Wilkinson Power Divider, and the LO signals in quadrature phase are injected into these mixers are converted into quadrature signal by Marchand Balun through giving two mixers LO Orthogonal signal and RF signal. The output IF port uses the Poly Phase Filter to combined quadrature signal into differential format. The demodulation was operated with gate bias of 0.3 V and LO Power of 3 dBm, and has a measured conversion gain of -24±0.5 dB from 24 GHz to 27 GHz. The input power of -1 dBm at 1-dB gain compression point (〖IP〗_1dB). The DC power consumption is 0mW. The chip size is 745μm×770μm with PAD and 620μm×660μm without PAD.
    The second circuit is a 2-6 GHz VGA. The first stage is voltage buffer, and buffer core is inverter buffer. The second stage utilize Common Source topology with Current Steering techniques. The amplifier gain is controlled by analog control. When the supply voltage is 1.2 V, the amplifier has a maximum gain of 20.82 dB with a gain variation of 15.53 dB. The output power of 3.84 dBm at 1-dB gain compression point (〖OP〗_1dB). The DC power consumption is 43.2 mW. The chip size is 665μm×770μm with PAD and 545μm×595μm without PAD.
    The third circuit is a mmWave Broadband Image Rejection Receiver. The two circuits mentioned above are implemented as an Image Rejection Receiver. Being beneficial from the demodulation cascaded by the proposed VGA, the receiver has a conversion gain range of 10.6 dB for actual system applications. The demodulation was operated with gate bias of 0.3 V and LO Power of 3 dBm, and has a measured conversion gain of -0.5±0.5 dB from 23 GHz to 29 GHz, and Image Rejection Ratio are less then -30 dBc from 23 GHz to 29 GHz. The input power of -1 dBm at 1-dB gain compression point (〖IP〗_1dB). The DC power consumption is 43.2 mW, and the chip size is 1405μm×770μm。

    誌 謝 i 摘 要 iii ABSTRACT v 目 錄 vii 表 目 錄 xii 圖 目 錄 xiii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.2.1 28 GHz鏡像訊號抑制混頻器 2 1.2.2 2-6 GHz可變增益放大器 3 1.2.3 毫米波寬頻鏡像訊號抑制接收機 5 1.3 研究成果 7 1.4 論文架構 8 第二章 鏡像訊號抑制接收機設計參數和簡介 9 2.1 簡介 9 2.2 28 GHz鏡像訊號抑制混頻器設計參數 10 2.2.1 轉換增益對LO驅動功率 10 2.2.2 插入損耗(Insertion Loss) 11 2.2.3 相位誤差(Phase Difference)和振幅誤差(Amplitude Difference) 11 2.2.4 鏡像訊號(Image Tone)和鏡像拒斥比(Image Rejection Ratio) 11 2.3 2-6 GHz可變增益放大器設計參數 13 2.3.1 散射參數(S Parameter) 13 2.3.2 穩定度 15 2.3.3 可變增益範圍(Gain Variation) 20 2.4 毫米波寬頻鏡像訊號抑制接收機設計參數 20 2.4.1 線性度(Linearity) 20 2.4.2 轉換增益/損耗(Conversion Gain/Loss) 23 2.4.3 隔離度(Isolation) 23 2.4.4 選擇度(Selectivity)和靈敏度(Sensitivity) 24 2.5 接收機之常見架構 26 2.5.1 外差式接收機(Heterodyne Receiver) 26 2.5.2 雙中頻外差式接收機(Dual-IF Heterodyne Receiver) 27 2.5.3 同差式接收機(Homodyne Receiver) 28 2.6 雜訊 29 2.6.1 雜訊的來源 30 2.6.2 熱雜訊(Thermal Noise) 31 2.6.3 分散式閘極電阻雜訊(Distributed Gate Resistance Noise) 32 2.6.4 閃爍雜訊(Flicker Noise) 34 2.6.5 雜訊指數(Noise Figure) 35 第三章 28GHz鏡像訊號抑制混頻器設計 38 3.1 混頻器簡介 38 3.2 混頻器架構 40 3.2.1 單端輸入輸出混頻器(Single-Ended Mixer) 40 3.2.2 單端平衡混頻器(Single-Balanced Mixer) 41 3.2.3 雙端平衡混頻器(Double-Balanced Mixer) 43 3.3 被動電阻式環形混頻器(Passive Resistive Ring Mixer) 44 3.4 單邊帶調變混頻器和鏡像抑制混頻器 44 3.5 鏡像抑制混頻器設計 46 3.5.1 混頻器電晶體尺寸與偏壓分析選擇 47 3.5.2 RF端匹配網路設計 60 3.5.3 RF端馬相巴倫(Marchand Blaun)設計 63 3.5.4 LO端馬相巴倫(Marchand Blaun)設計 65 3.5.5 降頻器特性 68 3.5.6 RF端威爾京生分波器(Wilkinson Power Divider)設計 72 3.5.7 IF端多相位濾波器(Poly Phase Filter)設計 74 3.5.8 LO端正交訊號產生器設計 80 3.5.9 鏡像抑制混頻器四相位匹配網路 83 3.6 鏡像訊號抑制混頻器之模擬結果 92 3.7 鏡像訊號抑制混頻器之量測結果 101 3.8 結果與討論 112 3.8.1 轉換增益模擬和量測差異 112 3.8.2 LO端正交耦合器電磁模擬設計問題 114 3.9 總結 117 第四章 2-6 GHz可變增益放大器設計 119 4.1 簡介 119 4.2 可變增益放大器之電流控制架構 119 4.3 主電路電晶體架構分析 121 4.3.1 共源級組態(Common Source Mode)放大器分析 122 4.3.2 Inverter Buffer分析 127 4.4 2-6 GHz可變增益放大器設計 136 4.4.1 電路架構 136 4.4.2 Current Sterring電流控制架構和電流鏡(Current mirror)設計 137 4.4.3 匹配網路設計 140 4.4.4 旁路(Bypass)電路設計 144 4.5 2-6 GHz可變增益放大器模擬結果 145 4.6 2-6 GHz可變增益放大器量測結果 159 4.7 結果與討論 164 4.7.1 增益模擬和量測差異 164 4.7.2 供應偏壓下降特性差異 165 4.8 總結 166 第五章 毫米波寬頻鏡像訊號抑制接收機設計 167 5.1 簡介 167 5.2 接收機之混頻器分類與比較 167 5.3 鏡像訊號抑制混頻器設計 169 5.4 2-6 GHz可變增益放大器設計 169 5.5 寬頻鏡像訊號抑制接收機設計 169 5.6 寬頻鏡像訊號抑制接收機之模擬結果 170 5.7 寬頻鏡像訊號抑制接收機之量測結果 184 5.8 結果與討論 207 5.8.1 混頻器閘極偏壓對鏡像拒斥比模擬量測影響 207 5.8.2 級間測試PAD和供應電壓影響 213 5.9 總結 216 第六章 結論 218 參 考 文 獻 219 自  傳 226 學 術 成 就 226

    [1] J. Tsai, P. Wu, C. Lin, T. Huang, J. G. J. Chern and W. Huang, "A 25–75 GHz Broadband Gilbert-Cell Mixer Using 90-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 17, no. 4, pp. 247-249, April 2007
    [2] F. Zhang, E. Skafidas and W. Shieh, "A 60-GHz Double-Balanced Gilbert Cell Down-Conversion Mixer on 130-nm CMOS," 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2007, pp. 141-144
    [3] C. -. Lin, P. -. Wu, H. -. Chang and H. Wang, "A 9-50-GHz Gilbert-cell down-conversion mixer in 0.13-μm CMOS technology," in IEEE Microwave and Wireless Components Letters, vol. 16, no. 5, pp. 293-295, May 2006,
    [4] J. Chen, C. Kuo, Y. Hsin and H. Wang, "A 15-50 GHz broadband resistive FET ring mixer using 0.18-µm CMOS technology," 2010 IEEE MTT-S International Microwave Symposium, 2010, pp. 784-787
    [5] F. Zhu, K. Wang and K. Wu, "Design Considerations for Image-Rejection Enhancement of Quadrature Mixers," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 3, pp. 216-218, March 2019
    [6] I. C. H. Lai and M. Fujishima, "An Integrated 20-26 GHz CMOS Up-Conversion Mixer with Low Power Consumption," 2006 Proceedings of the 32nd European Solid-State Circuits Conference, 2006, pp. 400-403
    [7] J. Tsai, "Design of 1.2-V Broadband High Data-Rate MMW CMOS I/Q Modulator and Demodulator Using Modified Gilbert-Cell Mixer," in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1350-1360, May 2011
    [8] M. Zeng and R. Weng, "A 0.8V 4.3mW sub-harmonic mixer for ultra-wideband systems," 2012 IEEE International Symposium on Circuits and Systems (ISCAS), 2012, pp. 1927-1930
    [9] C. Huynh, J. Lee and C. Nguyen, "A K-band SiGe BiCMOS fully integrated up-conversion mixer," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), 2013, pp. 185-187
    [10] H. K. Chiou, S. C. Kuo, and H. Y. Chung, “14 30 GHz low power sub harmonic single balanced gate pumped mixer with transformer combiner in 0.18 μm CMOS,” in Electronics Letters., vol. 50, no. 16, pp. 1141 1143, Jul. 2014.
    [11] M. Frounchi, A. Alizadeh, C. T. Coen and J. D. Cressler, "A Low-Loss Broadband Quadrature Signal Generation Network for High Image Rejection at Millimeter-Wave Frequencies," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5336-5346, Dec. 2018
    [12] W. -J. Lin, J. -H. Tsai, J. -H. Cheng, W. -H. Lin, T. -T. Chiang and T. -W. Huang, "A 67-86 GHz Spectrum-Efficient CMOS Transmitter Supporting 1024-QAM With a Process-Variation-Tolerant Design," in IEEE Access, vol. 8, pp. 74458-74471, 2020
    [13] Z. Jiang et al., "A 33.5–39 GHz 5-bit variable gain LNA with 4 dB NF and low phase shift," 2017 IEEE Asia Pacific Microwave Conference (APMC), 2017, pp. 1200-1202
    [14] Q. Zhang, C. Zhao, Y. Yu, H. Liu, Y. Wu and K. Kang, "A Ka-Band CMOS Variable Gain Amplifier with High Gain Resolution and Low Phase Variation," 2020 IEEE Asia-Pacific Microwave Conference (APMC), 2020, pp. 275-277
    [15] H. Yeh, S. Aloui, C. Chiong and H. Wang, "A Wide Gain Control Range V-Band CMOS Variable-Gain Amplifier With Built-In Linearizer," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 902-913, Feb. 2013
    [16] B. -W. Min and G. M. Rebeiz, "Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 4, pp. 272-274, April 2008
    [17] 盧德任,毫米波低相位變異可變増益放大器與低雜訊放大器之研製,國立臺灣大學電信工程學研究所碩士論文,2012年
    [18] B. Wang, H. Gao, R. van Dommele, M. K. Matters-Kammerer and P. G. M. Baltus, "A 60 GHz low noise variable gain amplifier with small noise figure and IIP3 variation in a 40-nm CMOS technology," 2018 IEEE MTT-S International Wireless Symposium (IWS), 2018, pp. 1-4
    [19] R. A. Baki, T. K. K. Tsang and M. N. El-Gamal, "Distortion in RF CMOS short-channel low-noise amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 46-56, Jan. 2006
    [20] S. -F. Chao, J. -J. Kuo, C. -L. Lin, M. -D. Tsai and H. Wang, "A DC-11.5 GHz Low-Power, Wideband Amplifier Using Splitting-Load Inductive Peaking Technique," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 482-484, July 2008
    [21] Chia-Yu Hsieh, Jui-Chih Kao, J. -J. Kuo and K. -Y. Lin, "A 57–64 GHz low-phase-variation variable-gain amplifier," 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, pp. 1-3
    [22] Xingli Huang, Xi Qin, Yajie Qin, Hao Fang and Zhiliang Hong, "A 0.8-3GHz 40dB dynamic range CMOS variable-gain amplifier," 2011 9th IEEE International Conference on ASIC, 2011, pp. 1030-1033
    [23] X. Qin, X. Huang, Y. Qin and Z. Hong, "A 0–35dB wideband variable gain amplifier in 0.13μm CMOS," 2011 IEEE International Symposium on Radio-Frequency Integration Technology, 2011, pp. 61-64
    [24] S. Waghmode and V. S. Kulkarni, "A Wideband Variable-Gain Amplifier in 130 nm CMOS Technology," 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), 2017, pp. 1-4
    [25] J. Abbott, C. Plett and J. W. M. Rogers, "A 15 GHz, 1.8V, variable-gain, modified Cherry-Hooper amplifier," Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005., 2005, pp. 645-648
    [26] H. D. Lee, K. A. Lee and S. Hong, "A Wideband CMOS Variable Gain Amplifier With an Exponential Gain Control," in IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 6, pp. 1363-1373, June 2007
    [27] T. -Y. Chiu, Y. Wang and H. Wang, "A 3.7–43.7-GHz Low-Power Consumption Variable Gain Distributed Amplifier in 90-nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 31, no. 2, pp. 169-172, Feb. 2021
    [28] Shih-chieh Shin, Chin-Shen Lin, Ming-Da Tsai, Kun-You Lin and Huei Wang, "A low-voltage and variable-gain distributed amplifier for 3.1-10.6 GHz UWB systems," in IEEE Microwave and Wireless Components Letters, vol. 16, no. 4, pp. 179-181, April 2006
    [29] J. Chen, C. Kuo, Y. Hsin and H. Wang, "A 15-50 GHz broadband resistive FET ring mixer using 0.18-µm CMOS technology," 2010 IEEE MTT-S International Microwave Symposium, 2010, pp. 784-787
    [30] C. -Y. Chen, J. -L. Lin and H. Wang, "A 38-GHz High-Speed I/Q Modulator Using Weak-Inversion Biasing Modified Gilbert-Cell Mixer," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 822-824, Sept. 2018
    [31] C. Kuo, B. Huang, C. Kuo, K. Lin and H. Wang, "A 10–35 GHz Low Power Bulk-DrivenMixer Using 0.13 $mu$m CMOS Process," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 455-457, July 2008
    [32] M. -Y. Huang, T. Chi, F. Wang, S. Li, T. -Y. Huang and H. Wang, "A 24.5-43.5GHz Compact RX with Calibration-Free 32-56dB Full-Frequency Instantaneously Wideband Image Rejection Supporting Multi-Gb/s 64-QAM/256-QAM for Multi-Band 5G Massive MIMO," 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2019, pp. 275-278
    [33] J. Hsieh, T. Wang and S. Lu, "A 90-nm CMOS V-Band Low-Power Image-Reject Receiver Front-End With High-Speed Auto-Wake-Up and Gain Controls," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 2, pp. 541-549, Feb. 2016
    [34] M. Frounchi, C. Coen, C. D. Cheon, N. Lourenco, W. Williams and J. D. Cressler, "A V-Band SiGe Image-Reject Receiver Front-End for Atmospheric Remote Sensing," 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), 2018, pp. 223-226
    [35] 童義倫,38GHz鏡像抑制混頻器與可變增益放大器設計,國立臺灣師範大學電機工程學系研究所碩士論文,2020年
    [36] 林芳銘,3.5 GHz向量合成式相移器與38 GHz鏡像抑制降頻器設計,國立臺灣師範大學電機工程學系研究所碩士論文,2019年
    [37] Y. -H. Lin, C. -C. Yeh, H. -H. Hsu, J. -H. Tsai and T. -W. Huang, "A 22 — 40 GHz Wideband Image Rejection Mixer in $0.18-mu mathrm{m}$ CMOS Process," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019, pp. 1515-1517
    [38] 黃絹容,Ka頻帶升頻混頻器與I/Q調變器設計與實現,國立臺灣師範大學電機工程學系研究所碩士論文,2016年
    [39] David M. Pozar,Microwave Engineering, 4/e,Wiley,2011
    [40] 洪傳奇,24 GHz與38 GHz功率放大器及線性化技術研究,國立臺灣師範大學電機工程學系研究所碩士論文,2019年
    [41] 沈柏均,28 GHz 向量合成式相移器與低雜訊放大器設計,國立臺灣師範大學電機工程學系研究所碩士論文,2020年
    [42] Razavi, Behzad,RF Microelectronics,Prentice Hall,2011
    [43] B. Johnson, "Thermal agitation of electricity in conductors, Phys. Rev., vol. 32, pp.97-109, July. 1928
    [44] 林禎芳,38 GHz可變增益放大器與單邊帶調變混頻器設計,國立臺灣師範大學電機工程學系研究所碩士論文,2019年
    [45] H. Nyquist, "Thermal agitation of electric charge in conductors." Phys. Rev., vol. 32, pp.110-110. Julv. 1928.
    [46] K. Chang, I. Bahl, and V. Nair, "RF and Microwave Circuit and Component Design for Wireless System." A John Wiely & Sons, INC.2002.
    [47] S. Krishnamurthy and A. M. Niknejad, "10-35GHz Passive Mixer-First Receiver Achieving +14dBm in-band IIP3 for Digital Beam-forming Arrays," 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2020, pp. 275-278
    [48] P. Song and H. Hashemi, "mm-Wave Mixer-First Receiver with Passive Elliptic Low-pass Filter," 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2020, pp. 271-274
    [49] Z. G. Boynton and A. Molnar, "RTu1B-3 A 9-31GHz 65nm CMOS Down-Converter with >4dBm OOB B1dB," 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2020, pp. 279-282
    [50] D. Gharaba and E. Cohen, "A 2mW, 60GHz Mixer First I/Q Receiver in 28nm CMOS," 2021 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), 2021, pp. 1-5.
    [51] M. Haghi Kashani, A. Tarkeshdouz, E. Afshari and S. Mirabbasi, "A 53–67 GHz Low-Noise Mixer-First Receiver Front-End in 65-nm CMOS," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 6, pp. 2051-2063, June 2019
    [52] C. Wilson and B. Floyd, "20–30 GHz mixer-first receiver in 45-nm SOI CMOS," 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2016, pp. 344-347
    [53] A. Moroni and D. Manstretta, "A broadband millimeter-wave passive CMOS down-converter," 2012 IEEE Radio Frequency Integrated Circuits Symposium, 2012, pp. 507-510
    [54] B. Razavi, "A mm-Wave CMOS Heterodyne Receiver with On-Chip LO and Divider," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, 2007, pp. 188-596

    下載圖示
    QR CODE