簡易檢索 / 詳目顯示

研究生: 李珈穎
Li, Jia-Ying
論文名稱: 新穎全無機二維層狀鈣鈦礦奈米晶體之研究
Development of all inorganic Ruddlesden-Popper phase perovskite nanocrystals
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 58
中文關鍵詞: 全無機二維層狀鈣鈦礦
英文關鍵詞: Ruddlesden-Popper phase perovskite
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.035.2018.B05
論文種類: 學術論文
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,除了塊材的二維層狀鈣鈦礦(Ruddlesden-Popper phase perovskite)之外,已經能夠使用低溫合成法製備膠體有機-無機二維層狀鈣鈦礦的奈米晶體,當材料為奈米晶體時,除了原本層狀結構固有的量子井現象之外,還因粒子達到奈米等級而具有量子侷限效應。然而,有機-無機二維層狀鈣鈦礦結構中的有機絕緣體會導致材料導電性不佳。因此本論文發展出以十八烷二酸(Octadecanedioic acid)取代部分油酸(Oleic acid),並使用高溫注射法合成全無機二維層狀鈣鈦礦奈米晶體。由電子顯微鏡觀察到材料為大小約為100 nm的長方體,且其晶面間距(d-spacing)可以對應到X-光粉末繞射圖的繞射峰。最大放光波長在460 nm的位置,而從X-光粉末繞射圖繞射峰的等間距現象可以證實材料確實有二維層狀結構,將此與理論計算n=3的X-光粉末繞射圖做比對,可以發現兩者的繞射峰位置一樣。由於間隔劑由原本的長碳鏈有機材料轉換為無機的溴化銫,故能改善其導電性,以利後續的應用。

    During the past few years, two-dimentional organic-inorganic hybrid Ruddelsden-Popper perovskite (RPP) nanocrystals has been demonstrated by sol-gel synthesis. These nanocrystals are attracted broad attention about quantum confinement effect and self-assembly layered structure. The structure of nanocrystals consist of inorganic perovskite layers intercalated with organic cation bring appealing quantum-well effect. However, the organic cations are insulator that lead to poor electric performance. Here we present a new method to synthesis all inorganic RPP nanocrystals. The surface ligands of nanocrystals are exchanged partly from oleic acid to octadecanedioic acid under high-temperature injection method. The TEM images show a 100 nm rectangle and d-spacing match with X-ray diffraction (XRD) patterns. The PL of nanocrystals is about 460 nm. We claim that it is two-dimensional structure by the repeating unit of XRD patterns. The simulation confirm these nanocrystals XRD patterns and predict n=3 member of all inorganic RPP. The spacer of these nanocrystals is inorganic cesium bromide that improve electric performance.

    謝誌 I 摘要 II Abstract III 目錄 IV 圖表目錄 VI 第一章 緒論 1 1-1 奈米材料 1 1-1-1 量子侷限效應 3 1-1-2 量子穿隧效應與庫倫阻塞效應 6 1-1-3 半導體直接能隙與間接能隙 6 1-2 量子點介紹 9 第二章 文獻回顧與研究動機 11 2-1 鈣鈦礦簡介 11 2-2 二維層狀鈣鈦礦之介紹 15 2-2-1 三維及二維層狀鈣鈦礦之差異 15 2-2-2 不同空間劑之二維層狀鈣鈦礦 19 2-2-3 不同維度之二維層狀鈣鈦礦 23 2-3 二維層狀結構鈣鈦礦之應用 28 2-4 研究動機 31 第三章 儀器設備 32 3-1 紫外光-可見光-近紅外光分光光譜儀 32 3-2 螢光光譜儀 33 3-3 X-光粉末繞射儀 34 3-4 穿透式電子顯微鏡 36 3-5 時間解析螢光光譜儀 37 第四章 實驗藥品及步驟 38 4-1 實驗流程圖 38 4-2 實驗藥品 39 4-3 實驗步驟 40 4-3-1 零維鈣鈦礦Cs4PbBr6之合成步驟 40 4-3-2 三維鈣鈦礦CsPbBr3之合成步驟 41 4-3-3 二維層狀鈣鈦礦Cs2PbBr4之合成步驟 42 第五章 結果與討論 43 5-1 不同晶格結構鈣鈦礦之結構分析 43 5-2 不同晶格結構鈣鈦礦的吸收與螢光光譜 46 5-3 不同層數二維層狀鈣鈦礦之理論計算 48 5-4 不同晶格結構鈣鈦礦的X-光粉末繞射圖 50 5-5 三維及二維層狀鈣鈦礦之穩定性比較 52 5-6 三維及二維層狀鈣鈦礦的時間解析螢光光譜圖 54 第六章 結論與未來展望 55 第七章 參考資料 56

    [1] Kůsová, K.; Hapala, P.; Valenta, J.; Jelínek, P.; Cibulka, O.; Ondicˇ, L.; Pelant, I. Adv. Mater. Interfaces. 2014, 1, 1300042
    [2] Pour, A. N.; Housaindokht, M. R.; Tayyari, S. F.; Zarkesh, J. Journal of Natural Gas Chemistry. 2010, 19, 284–292
    [3] Saha, A.; Saha, D.; Ranu, B. C. Org. Biomol. Chem. 2009, 7, 1652–1657
    [4] Matsumiya, M.; Shin, W.; Izu, N.; Murayama, N. Sensors and Actuators. 2003, 93, 309–315
    [5] Wise, F. W. Acc. Chem. Res. 2000, 33, 773–780
    [6] Alivisatos, A. P. Science. 1996, 271, 933–937
    [7] Kubo, R. Journal of the Physical Society of Japan. 1962, 17, 975–986
    [8] Miller, D. A. B.; Chemla, D. S.; Damen, T. C.; Gossard, A. C.; Wiegmann,W.; Wood, T. H.; Burrus, C. A. Physical Review Letters. 1984, 53, 2173–2176
    [9] Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226–13239
    [10] Moreels, I.; Geyter, B. D.; Thourhout, D. V.; Hens, Z. J. Opt. Soc. Am. B 2009, 26, 1243–1247
    [11] Rafferty, B.; Brown, L. M. Physical Review B. 1998, 58, 10326-10337
    [12] Mahboob, I.; Veal, T. D.; Piper, L. F. J. ; McConville, C. F. Physical Review B. 2004, 69, 201307
    [13] Adams, G. B.; O'KeefFe, M.; Demkov, A. A.; Sankey, O. F.; Huang, Y. M. Physical Review B. 1994, 49, 8048–8053
    [14] Bera, D.; Qian, L.; Tseng, T. K.; Holloway, H. P. Materials. 2010, 3, 2260–2345
    [15] Li, D.; Liao, P.; Shai, X.; Huang, W.; Liu, S.; Li, H.; Shen, Y.; Wang, M. RSC Adv. 2016, 6 , 89356–89366
    [16] Degtyareva, E. V.; Verba, L. I. Ogneupory. 1978, 19, 39–44
    [17] Guyot, F.; Richet, P.; Courtial; Gillet, P. Phys Chem Minerals. 1993, 20, 141–146
    [18] Devries, R. C.; ROY, R. Journal of the American Ceramic Society. 1995, 38, 142–146
    [19] Gopalakrishnamurthy, H. S.; Rao, M. S.; Kutty, T. R. N. Thermochim Acta. 1975, 13, 1622–1625
    [20] Pfaff, G.; Schmidt, F.; Ludwig, W.; Feltz, A. J. Thermal Anal. 1988, 33, 771–777
    [21] Pfaff, G. Z. Chem. 1989, 29, 30–31
    [22] Moon, J.; Li, T.; Randall, C. A.; Adair, J. H. J. Mater. Res. 1997, 12, 189–197
    [23] Gunnar Beskow (1924) V. M. Goldschmidt: Geochemische Verteilungsgesetze der Elemente, Geologiska Föreningen i Stockholm Förhandlingar 46:6-7, 738–743
    [24] Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764–1769
    [25] Shi, D; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S,; Rothenberger, A.; Katsiev, K.; Losovyj, Y.; Zhang, X.; Dowben, P. A.; Mohammed, O. F.; Sargent, E. H.; Bakr, O. M. Science. 2015, 347, 519–522
    [26] Saidaminov, M. I.; Haque, M. A.; Almutlaq, J.; Sarmah, S.; Miao, X. H.; Begum, R.; Zhumekenov, A. A.; Dursun, I.; Cho, N.; Murali, B.; Mohammed, O. F.; Wu, T.; Bakr, O. M. Adv. Optical Mater. 2017, 5, 1600704
    [27] Eperon, G. E.; Paterno, G.M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. J. Mater. Chem. A. 2015, 3, 19688–19695
    [28] Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. G. J. Phys. Chem. Lett. 2016, 7, 746–751
    [29] Ruddlesden, S. N.; Popper, P. Acta Crystallogr. 1957, 10, 538–539
    [30] Ruddlesden, S. N.; Popper, P. Acta Crystallogr. 1958, 11, 54–55
    [31] Mitzi, D. B. J. Chem. Soc., Dalton Trans.. 2001, 1–12
    [32] Pradeesh, K.; Baumberg, J. J.; Prakash, G. V. Optics Express. 2009, 17, 22171–22178
    [33] Hong, X.; Ishihara, T.; Nurmikko, A. V. Physical Review B. 1992, 45, 6961
    [34] Yuan, M.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P.; Lu, Z.; Kim, D. H.; Sargent, E. H. Nature Nanotechnology. 2016, 11, 872–877
    [35] Gan, X.; Wang, O.; Liu, K.; Du, X.; Guo, L.; Liu, H. Solar Energy Materials & Solar Cells. 2017, 162, 93–102
    [36] Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G. Chem. Mater. 2016, 28, 2852–2867
    [37] Raghavan, C. M.; Chen, T. Z.; Li, S. S.; Chen, W. L.; Lo, C. Y.; Liao, Y. M.; Haider, G.; Lin, C. C.; Chen, C. C.; Sankar, R.; Chang, Y. M.; Chou, F. C.; Chen, C. W. Nano Lett. 2018, 18, 3221–3228
    [38] Hassan, Y.; Song, Y.; Pensack, R. D.; Abdelrahman, A. I.; Kobayashi, Y.; Winnik, M. A.; Scholes, G. D. Adv. Mater. 2016, 28, 566–573
    [39] Aharon, S.; Etgar, L. Nano Lett. 2016, 16, 3230–3235
    [40] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050–6051
    [41] Bi, D.; Yi, C.; Luo, J.; Décoppet, J. D.; Zhang, F.; Zakeeruddin, S. M.; Li, X.; Hagfeldt, A.; Grätzel, M. Nature Energy. 2016, 1, 1–5
    [42] Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nature Materials. 2014, 13, 897–903
    [43] Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Adv. Mater. 2015, 27, 7162–7167
    [44] Zhang, X.; Xu, B.; Zhang, J.; Gao, Y.; Zheng, Y.; Wang, K.; Sun, X. W. Adv. Funct. Mater. 2016, 26, 4595–4600
    [45] Kim, Y. H.; Cho, H.; Heo, J. H.; Kim, T. S.; Myoung, N.; Lee, C. L.; Im, S. H.; Lee, T. W. Adv. Mater. 2015, 27, 1248–1254
    [46] Huang, H.; Zhao, F.; Liu, L.; Zhang, F.; Wu, X. G.; Shi, L.; Zou, B.; Pei, Q.; Zhong, H. ACS Appl. Mater. Interfaces. 2015, 7, 28128–28133
    [47] Byun, J.; Cho, H.; Wolf, C.; Jang, M.; Sadhanala, A.; Friend, R. H.; Yang, H.; Lee, T. W. Adv. Mater. 2016, 28, 7515–7520
    [48] Li, D.; Dong, G.; Li, W.; Wang, L. Scientific Reports. 2015, 5, 7902
    [49] Dou, L.; Yang, Y. M.; You, J.; Hong, Z.; Chang, W. H.; Li, G.; Yang, Y. Nature Communications. 2014, 5, 5404
    [50] Akkerman, Q. A.; Park, S.; Radicchi, E.; Nunzi, F.; Mosconi, E.; Angelis, F. D.; Brescia, R.; Rastogi, P.; Prato, M.; Manna, L. Nano Lett. 2017, 17, 1924−1930
    [51] Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nano Lett. 2015, 15, 3692−3696
    [52] Yu, Y.; Zhang, D.; Yang, P. Nano Lett. 2017, 17, 5489−5494

    無法下載圖示 本全文未授權公開
    QR CODE