簡易檢索 / 詳目顯示

研究生: 周昱辰
Chou, Yu-Chen
論文名稱: 鐵電元件串接電晶體負電容效應及鋁摻雜鉿基氧化物暫態反應
Ferroelectric Devices Conneted FETs with Negative Capacitance Effect and Transient Response of Al doped HfO2
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 97
中文關鍵詞: 鉿基氧化物次臨界擺幅負電容效應
英文關鍵詞: Hafnium–Based oxide, Subthreshold Swing, Negative Capacitance
DOI URL: http://doi.org/10.6345/THE.NTNU.EPST.002.2018.E08
論文種類: 學術論文
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 俱鐵電效應之鉿基氧化物於近幾年吸引相當多討論,在適當的摻雜與退火後將具有鐵電特性,可應於記憶體及鐵電負電容效應。後者於在電晶體應用,可改善次臨界擺幅 (Subthreshold Swing)以達陡峭斜率特性,將大幅降低元件操作電壓,具有低功耗元件應用價值。且鉿基氧化物本身與目前CMOS製程高相容性,於45nm後在業界已導入二氧化鉿介電層使用,故期望本論文提出之技術能夠於未來5nm以下技術節點使用。
    本研究將針對不同摻雜與退火條件之鉿基氧化物,以元件應用為前提進行直流操作、快速操作的研究,以及利用串接的方式,把有鐵電特性的MFM (Matel-Ferroelectric-Matel)結構或是FeFET (Ferroelectric Field Effect Transistors),串接在一般介電質的電晶體上,預期改善次臨界擺幅,跟Al:HfO2(FE-HAO)場效應電晶體的鐵電性並應用於負電容效應。
    根據量測結果顯示,利用1530快速量測IdVg時,檔位的調整非常的重要,在限流的影響下要找到最適合的檔位。7.9%的HAO在1000℃的熱退火處理下,SS正反掃出現了SS=40 mV/dec及SS=39mV/dec,呈現了很好的物理極限,成為具有潛力的MOSFET。

    Ferroelectric hafnium–based oxide has attracted lots of attention by proper dopants and annealing. It could be applied to the memory and negative capacitance (NC) FET. The latter is good for FET with steep Subthreshold Swing (SS) and reducing power consumption, which is achieved by Hafnium–based oxides. This may a promising candidate for low power device application. Furthermore, the Hafnium–based oxides are highly compatible process with current CMOS due to the material widely used in semiconductor industry.
    This study focuses on the hafnium–based oxides with different conditions of dopants and annealings, and operatation conditions of DC sweep and transient behavior. By using cable connection with series method, a Fe-MFM and Fe-FET conneted in another conventional dielectric material transistor to improve SS. Ferroelectric Al:HfO2 (FE-HAO) gate stack adopted on field effect transistor for NC-FET is discussed.
    The IdVg current range of fast IV measurement by Keysight 1530A is very imptant to adjust of the parameters under the current limit. The optimized SS for= 40mV/dec and SS rev=39mV/dec are observed with 7.9% HAO after 1000 °C RTA.

    第一章 簡介 1 第二章 利用外部線路串接鐵電-HZO ( Hf1-xZrxO2) 及場效電晶體特性討論 7 2-1 MFM(HZO)串接HfO2 FET 8 2-2 MFM(HZO)串接ZrO2 FET 13 2-3 HZO FET串接HfO2 FET 18 2-4 MFM(HZO)串接2D 22 2-5 結論 26 第三章 鐵電負電容電晶體快速切換之暫態行為及雜訊分析 27 3-1 設備的連接 28 3-2 晶圓測量的探針 30 3-3 創建簡單波形並執行測量 33 3-4 通過平均量測點來減少noise 44 3-5 快速IV掃描量測 46 3-6 時域I / V採樣 55 3-7 1530 AC IdVg 63 第四章 Al:HfO2電晶體之基本電性高速反應 71 4-1 Al:HfO2 簡介 72 4-2 Al:HfO2之基本電性 81 4-3 鉿基氧化物電晶體在高速操作下之暫態分析 86 4-4 電晶體高速操作下之反應 88 4-5 PDA PMA量測 91 4-6 結論 94 參考文獻 96

    [1] International Technology Roadmap for Semiconductors (ITRS) Roadmap, 2009.
    [2] S. Salahuddin, and S. Datta, “Can the subthreshold swing in a classical FET be lowered below 60 mV/decade,” in IEDM Tech. Dig., pp. 693-696, 2008.
    [3] M. H. Lee, J.-C. Lin, and C.-Y. Kao, “Hetero-Tunnel Field-Effect-Transistors with Epitaxially Grown Germanium on Silicon, ” IEEE Trans. on Electron Device, vol. 60, no.7, pp. 2423-2427, 2013.
    [4] V. P.-H. Hu, P.-C. Chiu, A. B. Sachid, and C. Hu, “Negative capacitance enables FinFET and FDSOI scaling to 2 nm node,” Electron Devices Meeting (IEDM), 2017 IEEE International, pp. 23.1. 1-23.1. 4, 2017.
    [5] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxidesin contact with silicon, ” J. Mater. Res., vol. 11, p.2757, 1996.
    [6] J. Müller, T. S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,’’ Appl. Phys. Lett., vol. 99, iss. 11, 112901, 2011.
    [7] J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, and L. Frey, “Ferroelectricity in yttrium-doped hafnium oxide,’’ J. Appl. Phys., vol. 110, no. 11, 114113, 2011.
    [8] T. S. Böscke, St. Teichert, D. Bräuhaus, J. Müller, U. Schröder, U. Böttger and T. Mikolajick, “Phase transitions in ferroelectric silicon doped hafnium oxide,’’ Appl. Phys. Lett., vol. 99, no. 11, 112904, 2011.
    [9] S. Müller, J. Müller, A. Singh1, S. Riedel, J. Sundqvist, U. Schroeder and T. Mikolajick, “Incipient Ferroelectricity in Al-Doped HfO2 Thin Films,’’ Adv. Funct. Mater., vol. 22, no. 11, pp. 2412-2417, June 6, 2012.
    [10] Y. C. Chiu, Y.-C. Chiu, C.-H. Cheng, C.-Y. Chang, M.-H. Lee, H.-H. Hsu, and S.-S. Yen, “Low Power 1T DRAM/NVM Versatile Memory Featuring Steep Sub-60-mV/decade Operation, Fast 20-ns Speed, and Robust 85°C-Extrapolated 1016 Endurance, ” VLSI Symp., pp. T184-T185, 2017.
    [11] Y.-C. Chiu, C.-H. Cheng, C.-Y. Chang, Y.-T. Tang, and M.-C. Chen, “One-Transistor Ferroelectric Versatile Memory: Strained-Gate Engineering for Realizing Energy-Efficient Switching and Fast Negative-Capacitance Operation, ” VLSI Symp., pp. T150-T151, 2016.
    [12] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett., pp. 4318−4323, 2012
    [13] M. H. Lee, Y.-T. Wei, C. Liu, J.-J. Huang, M. Tang, Y.-L. Chueh, K.-Y. Chu, M.-J. Chen, H.-Y. Lee, Y.-S. Chen, L.-H. Lee, and M.-J. Tsai, “Ferroelectricity of HfZrO2 in Energy Landscape with Surface Potential Gain for Low-Power Steep-Slope Transistors, ” IEEE Trans. Electron Devices, Vol. 3, No. 4, pp. 377-381, July 2015.
    [14] M. H. Lee, Y.-T. Wei, K. Y. Chu, J. J. Huang, C. W. Chen, C. C. Cheng, M. J. Chen, H. Y. Lee, Y. S. Chen, L. H. Lee, and M. J. Tsai, “Steep Slope and Near Non-Hysteresis of FETs With Antiferroelectric-Like HfZrO for Low-Power Electronics, ” IEEE Trans. Electron Devices, Vol. 36, No. 4, pp. 294-296, April 2015.
    [15] M. H. Lee, P.-G. Chen, C. Liu, K-Y. Chu, C.-C. Cheng, M.-J. Xie, S.-N. Liu, J.-W. Lee, S.-J. Huang, M.-H. Liao, M. Tang, K.-S. Li, and M.-C. Chen, “Prospects for Ferroelectric HfZrOx FETs with Experimentally CET=0.98nm, SSfor=42mV/dec, SSrev=28mV/dec, Switch-OFF, ” in IEDM Tech. Dig., Dec. 2015, pp. 616-619. DOI: 10.1109/IEDM.2015.7409759
    [16] M. H. Lee, S.-T. Fan, C.-H. Tang, P.-G. Chen, Y.-C. Chou, H.-H. Chen, J.-Y. Kuo, M.-J. Xie, S.-N. Liu, M.-H. Liao, C.-A. Jong, K.-S. Li, M.-C. Chen, and C. W. Liu, “Physical Thickness 1.x nm Ferroelectric HfZrOx Negative Capacitance FETs,” in IEDM Tech. Dig., Dec. 2016, pp. 306-309. DOI: 10.1109/IEDM.2016.7838400
    [17] K.-S. Li, P.-G. Chen, T.-Y. Lai, C.-H. Lin, C.-C. Cheng, C.-C. Chen, Y.-J. Wei, Y.-F. Hou, M.-H. Liao, M.-H. Lee, M.-C. Chen, J.-M. Sheih, W.-. Yeh, F.-L. Yang, S. Salahuddin, and C. Hu, “Sub-60mV-Swing Negative-Capacitance FinFET without Hysteresis, ” IEDM Tech. Dig., 2015, pp. 620-623.
    [18] Agilent B1530A Waveform Generator/Fast Measurement Unit
    [19] B1500A Semiconductor Device Analyzer user’s manual
    [20] Keysight Technologies Capacitance Measurement Basics for Device/Material Characterization Using Keysight B1500A Semiconductor Device Analyzer
    [21] B1500A Semiconductor Device Analyzer user’s manual
    [22] Keysight Technologies Improve the Accuracy and Efficiency for Organic-Thin Film Transistor (Organic-TFT) Characterization

    無法下載圖示 本全文未授權公開
    QR CODE