簡易檢索 / 詳目顯示

研究生: 洪啟超
Hung, Chi-Chao
論文名稱: 混頻交流磁導率應用於生物分子C反應蛋白之檢測
Mixing frequency Alternating Current Magnetic Susceptibility Reduction for Assaying Biomolecule C-Reactive Protein
指導教授: 廖書賢
Liao, Shu-Hsien
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 41
中文關鍵詞: C反應蛋白奈米磁性粒子交流混頻磁導率
英文關鍵詞: C-reactive protein, magnetic nanoparticles, mixing frequency Alternating Current Magnetic Susceptibity
DOI URL: http://doi.org/10.6345/THE.NTNU.EPST.009.2018.E08
論文種類: 學術論文
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • C反應蛋白(C-Reactive Protein,CRP)是一種在發炎時期由肝臟生成的血漿蛋白,研究指出C反應蛋白會在有感染、發炎或損傷時,在血漿含量較高。
    本研究利用具有超順磁特性的奈米磁性粒子,並將具有高靈敏度與穩定度的C反應蛋白披覆於奈米磁性粒子上,利用抗原與抗體互相結合之特性,進行交流混頻磁導率免疫檢測。
    原線圈架構只能透過一個線圈調整梯度線圈的磁場平衡度,量測原線圈架構的訊雜比為4.26,且在雜訊部分,原線圈架構的數值為158 µV,已經影響到了樣品訊號。為了改善此狀況,所以本實驗重新設計了線圈架構,將可調整的線圈數增加為兩個,以提高梯度線圈的磁場平衡度,進一步降低背景訊號對擷取訊號的影響,使得到的量測訊號,可以趨近於樣品訊號,新線圈架構所量測到的訊雜比為16.89,且在雜訊部分,新線圈架構的數值下降至0.05 µV,改善了原線圈架構發生的問題。

    C-reactive protein (CRP) is an acute phase reactant which is produced by liver during the episode of acute inflammation, whose levels rise in response to inflammation.
    In this study, we used magnetic nanoparticles with superparamagnetic properties. C-reactive protein with high sensitivity and stability coat on magnetic nanoparticles. We use the characteristics of the combination of antigen and antibody to perform Mixing frequency Alternating Current Magnetic Susceptibility.
    The original coil structure uses a coil to adjust the magnetic field balance of the gradient coil, and the signal-to-noise ratio of the original coil structure is 4.26. The noise part, with a value of 158 μV, has affected the sample signal. In order to better this situation, this experiment redesigned the coil structure and increased the number of adjustable coils to two to increase the magnetic field balance of the gradient coil, further reducing the effect of the background signal on the pick-up signal, So that the measured signal can be approached to the sample signal. The new coil structure has a signal-to-noise ratio of 16.89. In the noise part, the value drops to 0.05 μV, which improves the problem with the original coil structure.

    致謝 I 摘要 III Abstract IV 圖目錄 VII 表目錄 X 第一章 緒論 1 第二章 實驗原理 3 2.1 免疫檢測原理 3 2.1.1 抗原及抗體 3 2.1.2 C反應蛋白 4 2.2 檢測系統原理 4 第三章 實驗方法 8 3.1 系統概述 8 3.2 線圈設計 10 3.2.1 激發線圈 10 3.2.2 擷取線圈 11 3.2.3 新線圈架構調整機制 12 3.3 原線圈架構參數及調整機制 13 3.4 奈米磁性試劑製程 14 第四章 實驗結果 17 4.1 梯度線圈之磁場平衡度(Balance) 17 4.2 改變激發頻率 17 4.3 原線圈與新線圈架構之SNR比較 20 4.4 系統穩定度測試 21 4.5 系統量測不同濃度的磁性流體 22 4.6 CRP試劑VSM量測 24 4.7 系統量測相同抗原濃度χac,φ不同時間比較及CRP抗原不同濃度的磁減量變化 25 4.8 系統量測CRP總結 35 第五章 結論 39 參考資料 40

    [1] 衛福部統計處106年主要死因統計結果分析
    [2] Black, Jacquelyn G., ‘‘Microbiology principles and application 2nd”, Prentice halline.,p.15-18(1993)
    [3] 陳文新, 「人體血清中感染因子C-reactive Protein之檢測」,國立臺灣師範大學光電科技研究所碩士論文(2007)
    [4] T.L. Paoli, J.F. Svacek, Rev. Sci. Instrum. 47,1016-1019(1976)
    [5] Peter J. Delves, Seamus J. Martin, Dennis R. Burton, Ivan M. Roitt, ‘‘Essential Immunology 4th ed. ’’, Gower Medical Publishing, New York,1996.
    [6] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter, ‘‘Molecular Biology of the Cell, 4th ed.’’, Garland Science Publishing(2002)
    [7] David Nelson, Michael Cox, ‘‘Lehninger:Principles of Biochemistry”, Worth Publishing(2000)
    [8] 楊謝樂,「磁性奈米粒子於生物醫學上之應用」,物理雙月刊,(廿八卷四期),2006年8月.
    [9] S.E. Khalafalla, G.W. Reimers, ‘‘Preparation of dilution stable aqueous magnetic fluids” IEEE Trans., Volume 16, Issue 2.
    [10] W.S. Tillett, Jr.T. Francis, ‘‘Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus”JEM 52,4,561,Published October 1,1930
    [11] Lack Shore 7000 Series System User’s Manual(Lack Shore, U.S.A.,1992)
    [12] 邱業展, 「混頻交流磁導率量測系統之製作及其於磁性標記免疫檢測上之應用研究」,國立臺灣師範大學光電科技研究所碩士論文(2007)
    [13] L. Néel, Ann.Geophys.,5,99(1949)
    [14] C.Y. Hong, S.Y. Yang, K.W. Huang, H.E. Horng, H.C. Yang, No.DETC2011-47178, p.11-15
    [15] P.J. Fisher, M.J. Springett, A.B. Dietz, P.A. Bulur, S.Vuk-Pavlovic, J. ‘‘Immunomagnetic separation reagents as markers in electron microscopy” Immunological Methods,262,95(2002)
    [16] W.Q. Jiang, H.C. Yang, S.Y. Yang, H.E. Horng, J.C. Hung, Y.C. Chen, Chin-Yih Hong, J, Magn.Magn.Mater.,283,210(2004)
    [17] H.E. Horng, S.Y. Yang, Y.W. Huang, W.Q. Jiang, C.Y. Hong, H.C. Yang, ‘‘Nanomagnetic Particles for SQUID-Based Magnetically Labele Immunoassay” IEEE Trans. Appl. Supercond.,15,668(2005)
    [18] H.E. Horng, Chin-Yih Hong, S.Y. Yang, H.C. Yang, S.H. Liao, C.M. Liu, C.C. Wu, ‘‘Magnetic nano-particles and their applications in immunoassay”J.Korean Phys. Soc.,48,999(2006)
    [19] K.W. Huang, S.Y. Yang, Y.W. Hong, J.J. Chieh, C.C. Yang, H.E. Horng, C.C. Wu,C.Y. Hong, H.C. Yang, ‘‘Feasibility studies for assaying alpha-fetoprotein using antibody-activated magnetic nanoparticles” International Journal of Nanomedicine,2012,1991-1996(2012)
    [20] Helen W. Davies and J. Patrick Llewellyn, J. Phys. D, 12, 1357(1979).
    [21] Nihad A. Yusuf, Jpn. J. Appl. Phys., 27, 2418(1988).
    [22] S. Neveu-Prin, F.A. Tourinho, J.-C. Bacri, and R. Perzynski, Colloids and Surf. A, 80, 1(1993).
    [23]R. Matthew Ferguson, Amit P. Khandhar, Christian Jonasson, Jakob Blomgen, Christer Johansson, Kannan M. Krishnan, ‘‘Size-Dependent Relaxation Properties of Monodisperse Magnetite Nanoparticles Measured Over Seven Decades of Frequency by AC Susceptometry ” IEEE Trans., Volume 49, Issue 7.
    [24] Eugeniusz Kurgan, Piotr Gas, ‘‘Analysis of electromagnetic heating in magnetic fluid deep hyperthermia” 2016 17th International Conference Computational Problems of Electrical Engineering (CPEE)

    無法下載圖示 本全文未授權公開
    QR CODE