簡易檢索 / 詳目顯示

研究生: 張瓊安
Chang, Chiung-An
論文名稱: 掌性銠金屬雙烯錯合物催化不對稱加成反應
Asymmetric Transformations Catalyzed by Rh(I)/Chiral Dienes
指導教授: 吳學亮
Wu, Hsyueh-Liang
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 199
中文關鍵詞: 共軛加成酮酯化合物硼酸三氟硼酸鉀鹽
英文關鍵詞: conjugate addition, rhodium, ketoester, boronic acid, potassium enol ether trifluoroborate
DOI URL: http://doi.org/10.6345/DIS.NTNU.DC.073.2018.B05
論文種類: 學術論文
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討銠金屬與掌性雙環[2.2.1]雙烯配基形成之催化劑催化不對稱加成反應。內容分成下列兩部分。

    一、 一價銠金屬/掌性雙環[2.2.1]雙烯配基催化烯醇醚基三氟硼酸鉀鹽試劑對α,β-不飽和羰基化合物進行不對稱1,4-加成反應
    利用一價銠金屬以及掌性雙環[2.2.1]雙烯配基L1及L6形成之催化劑催化烯醇醚基三氟硼酸鉀鹽試劑2對環狀及鏈狀之α,β-不飽和羰基化合物1進行不對稱1,4-加成反應,可得到最高>99%之產率(13–>99%)及>99.5%之鏡像選擇性(44–>99.5% ee)的加成產物3。加成產物3ha可經由水解反應得到具有掌性中心之1,5-雙羰基結構23a,改善傳統由醛進行麥可加成反應(Michael addition)時會遇到加成產物為外消旋混合物;以及易有醛醇反應(aldol reaction)副反應發生之缺點。

    二、 銠金屬(I)/掌性雙環[2.2.1]雙烯配基催化芳基硼酸試劑對α-酮酯化合物進行不對稱1,2-加成反應:(S)-Flutriafol的合成
    利用一價銠金屬以及掌性雙環[2.2.1]雙烯配基L6形成之催化劑催化芳基硼酸試劑10對α-酮酯化合物76進行不對稱1,2-加成反應。僅需使用0.5 mol %之低催化量的一價銠金屬催化劑,即可得到最高達99%之鏡像選擇性(90–99% ee)及最高>99%之產率(2–>99%)的加成產物78,並成功建立具有掌性四級碳中心之α-羥基酯結構。此研究提供一個更快速、更簡單且產率更高的(S)-Flutriafol ((S)-90)新合成方法。

    This thesis describes the employment of chiral Rh(I)-catalysts, in situ generated from [RhCl(C2H4)2]2 and chiral bicyclo[2.2.1]heptadienes, in the enantioselective addition reactions. The content covers two parts.

    I. Enantioselective 1,4-Addition Reactions of Potassium Enol Ether Trifluoroborates to α,β-Unsaturated Carbonyl Compounds Catalyzed by Rh(I)/Chiral Bicyclo[2.2.1] dienes.
    An enantioselective 1,4-addition of potassium enol ether trifluoroborates 2 to α,β-unsaturated carbonyls is described. In the presence of 3.0 mol % of the catalysts generated in situ from the [RhCl(C2H4)2]2 pre-catalyst and diene L1 or L6, the asymmetric reaction afforded the desired adducts 3 in up to 99% yield (13–>99%) and with up to >99.5% ee (44–>99.5% ee). The method was applied to the synthesis of 1,5-dicarbonyl 23a via a microwave-assisted acid hydrolysis that overcomes those existed in the conventional addition of aldehydes to α,β-unsaturated carbonyl compounds.

    II. Enantioselective Arylation of α-Ketoesters: Total Synthesis of (S)-Flutriafol
    A highly enantioselective addition of arylboronic acids 10 to α-ketoesters 76 catalyzed by a Rh(I)-chiral diene catalyst is reported. This transformation proceeds regioselectively in the presence of as low as 0.5 mol % of the catalyst generated in situ from a Rh(I) salt and diene L6 to afford tertiary chiral α-hydroxy esters 78 with high stereoselectivities (90–99% ee) and in good chemical yields (2–>99%). The method provides a new, expeditious and enantioselective approach to the synthesis of the fungicide (S)-Flutriafol ((S)-90).

    中文摘要.……...i 英文摘要….…....iii 謝誌 ……...….v 縮寫對照表………....xvi 第一章 緒論......1 1-1 何謂鏡像異構物(Enantiomer)?......1 1-2 鏡像異構物(Enantiomer)的重要性......3 1-3 不對稱催化(asymmetric catalysis)合成的重要性......4 1-4 銠金屬催化不對稱芳基化反應(RCAA, Rhodium Catalyzed Asymmetric Arylation)......5 第二章 一價銠金屬/掌性雙環[2.2.1]雙烯配基催化烯醇醚基三氟硼酸鉀鹽試劑對α,β-不飽和羰基化合物進行不對稱1,4-加成反應.......12 2-1 文獻回顧......12 2-2 實驗設計與概念......23 2-3 實驗結果與討論......30 2-4 合成應用......57 第三章 銠金屬(I)/掌性雙環[2.2.1]雙烯配基催化芳基硼酸試劑對α-酮酯化合物進行不對稱1,2-加成反應:(S)-Flutriafol的合成…………………….58 3-1 文獻回顧......58 3-2 實驗結果與討論......68 3-3 合成應用......100 第四章 結論......105 第五章 實驗部分......107 分析儀器及基本實驗......107 General procedures for the synthesis of potassium enol ether trifluoroborates 2a–2f (Exemplified for 2a).......110 General Procedure for Rhodium-Catalyzed 1,4-Addition......116 General Procedures for the Synthesis of (R)-5-oxo-3,5-diphenyl-pentanal (23a)...........143 General Procedure for Rhodium-Catalyzed 1,2-Addition.......145 General Procedures for the Synthesis of (S)-Flutriafol ((S)-90).........184 參考文獻..................190

    參考文獻
    1. (a) Shallenberger, R. S. J. Food Science 1963, 28, 584–589. (b) Shallenberger, R. S. Nature 1967, 216, 480–482.
    2. (a) Franks, M. E.; Macpherson, G. R.; Figg, W. D. The Lancet 2004, 363, 1802–1811. (b) Moghe, V. V.; Kulkarni, U.; Parmar, U. I. Bombay Hosp. J. 2008, 50, 472–476. (c) Landesman-Dwyer, S. Appl. Res. Ment. Retard. 1982, 3, 241–263. (d) Kelsey F. O. J. Dent. Res. 1967, 46, 1201–1205.
    3. (a) Van Caillie-Bertrand, M.; Degenhart, H. J.; Luijendijk, I.; Bouquet, J.; Sinaasappel, M. Arch. Dis. Child. 1985, 60, 652–655. (b) Aronson, J. K. Meyler's Side Effects of Analgesics and Anti- inflammatory Drugs. 1st edn (Elsevier, 2009)
    4. Libershteyn, Y. Optometey. Vision. Sci. 2016, 93, 211–217.
    5. (a) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946–5952. (b) Knowles, W. S. Angew. Chem. Int. Ed. 2002, 41, 1998–2007; Angew. Chem. 2002, 114, 2096–2107.
    6. (a) Noyori, R.; Okhuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1987, 109, 5856–5858. (b) Takaya, H.; Akutagawa, S.; Noyori, R. Org. Synth. 1989, 67, 20–32. (c) Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. Org. Synth. 1993, 71, 1–13.
    7. (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974–5976. (b) Rossiter, B.; Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 464–465. (c) Martin, V.; Woodard, S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237–6240. (d) Sharpless, K. B.; Behrens, C. H.; Katsuki, T.; Lee, A. W. M.; Martin, V. S.; Takatani, M.; Viti, S.M.; Walker, F. J.; Woodard, S. S. Pure Appl. Chem. 1983, 55, 589–604. (e) Hanson, R. M.; Sharpless, K. B. J. Org. Chem. 1986, 51, 1922–1925. (f) Gao, Y.; Klunder, J. M.; Hanson, R. M.; Masamune, H.; Ko, S. Y.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765–5780. (g) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968–1970. (h) Johnson, R. A.; Sharpless, K. B. Comp. Org. Synth. 1991, 7, 389–436. (i) Finn, M. G.; Sharpless, K. B. J. Am. Chem. Soc. 1991, 113, 113–126. (j) Sharpless, K. B., et al. J. Org. Chem. 1992, 57, 2768–2771. (k) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547. (l) DelMonte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.; Strassner, T.; Thomas, A. A. J. Am. Chem. Soc. 1997, 119, 9907–9908.
    8. (a) Tian, P.; Dong, H.-Q.; Lin, G.-Q. ACS Catal. 2012, 2, 95–119. (b) Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997, 16, 4229–4231. (c) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579–5580. (d) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052–5058. (e) Miyaura, N. Bull. Chem. Soc. Jpn. 2008, 81, 1535–1553. (f) Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461–470. (g) Senda, T.; Ogasawara, M.; Hayashi, T. J. Org. Chem. 2001, 66, 6852–6856. (h) Takaya, Y.; Senda, T.; Kurushima, H.; Ogasawara, M.; Hayashi, T. Tetrahedron: Asymmetry 1999, 10, 4047–4056. (i) Brak, K.; Ellman, J. A. J. Org. Chem. 2010, 75, 3147–3150. (j) Pucheault, M.; Darses, S.; Genet̂, J.-P. Eur. J. Org. Chem. 2002, 3552–3557. (k) Pucheault, M.; Darses, S.; Genet̂, J.-P. Tetrahedron Lett. 2002, 43, 6155–6157. (l) Darses, S.; Genet̂, J.-P. Eur. J. Org. Chem. 2003, 4313–4327. (m) Molander, G. A.; Figueroa, R. Aldrichimica Acta 2005, 38, 49–56. (n) Navarre, L.; Martinez, R.; Genet̂, J.-P.; Darses, S. J. Am. Chem. Soc. 2008, 130, 6159–6169. (o) Batey, R. A.; Quach, T. D. Tetrahedron Lett. 2001, 42, 9099–9103. (p) Molander, G. A.; Biolatto, B. Org. Lett. 2002, 4, 1867–1870. (q) Molander, G. A.; Biolatto, B. J. Org. Chem. 2003, 68, 4302–4314. (r) Yuen, A. K. L.; Hutton, C. A. Tetrahedron Lett. 2005, 46, 7899–7903. (s) Gendrineau, T.; Genet̂, J.-P.; Darses, S. Org. Lett. 2009, 11, 3486–3489.
    9. Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412–443.
    10. Enders, D.; Papadopoulos, K.; Rendenbach, B. E. M.; Appel, R.; Knoch, F. Tetrahedron Lett. 1986, 27, 3491–3494.
    11. Chi, Y.; Gellman, S. H. Org. Lett. 2005, 7, 4253–4256.
    12. Danishefsky, S. J.; Rivkin, A.; Fumikiko, Y.; Chou, T.-C.; Gabarda, A. E.; Dong, H. U.S. Patent Appl. 2004/0053910 A1, 2004.
    13. Crump, C. J.; Johnson, D. S.; Li, Y.-M. Biochemistry 2013, 52, 3197–3216.
    14. Du, X.; Hinklin, R. J.; Xiong, Y.; Dransfield, P.; Park, J.; Kohn, T. J.; Pattaropong, V.; Lai, S. J.; Fu, Z.; Jiao, X.; Chow, D.; Jin, L.; Davda, J.; Veniant, M. M.; Anderson, D. A.; Baer, B. R.; Bencsik, J. R.; Boyd, S. A.; Chicarelli, M. J.; Mohr, P. J.; Wang, B.; Condroski, K. R.; DeWolf, W. E.; Conn, M.; Tran, T.; Yang, J.; Aicher, T. D.; Medina, J. C.; Coward, P.; Houze, J. B. ACS Med. Chem. Lett. 2014, 5, 1284–1289.
    15. Duursma, A.; Boiteau, J.-G.; Lefort, L.; Boogers, J. A. F.; de Vries, A. H. M.; de Vries, J. G.; Minnaard, A. J.; Feringa, B. L. J. Org. Chem. 2004, 69, 8045–8052.
    16. Lalic, G.; Corey, E. J. Tetrahedron Lett. 2008, 49, 4894–4896.
    17. Gendrineau, T.; Genet, J.-P.; Darses, S. Org. Lett. 2009, 11, 3486–3489.
    18. Trost, B. M.; Burns, A. C.; Tautz, T. Org. Lett. 2011, 13, 4566–4569.
    19. Yu, H.-J.; Shao, C.; Cui, Z.; Feng, C.-G.; Lin, G.-Q. Chem. Eur. J. 2012, 18, 13274–13278.
    20. 廖柏翔(2014)。碩士論文,國立臺灣師範大學化學研究所,臺北,臺灣。
    21. Fang, J.-H.; Chang, C.-A.; Gopula, B.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Asian J. Org. Chem. 2016, 5, 481–485.
    22. Uozumi, Y.; Lee, S.-Y.; Hayashi, T. Tetrahedron Lett. 1992, 33, 7185–7188.
    23. Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508–11509.
    24. Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 1628–1629.
    25. Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584–13585.
    26. (a) Lemke, K.; Ballschuh, S.; Kunath, A.; Theil, F. Tetrahedron: Asymmetry 1997, 8, 2051–2055. (b) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336–5337.
    27. Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Chem. Eur. J. 2011, 17, 11405–11409.
    28. Hoffmann, R. W.; Krügera, J.; Brücknera, D. New J. Chem. 2001, 25, 102–107.
    29. Gopula, B.; Chiang, C.-W.; Lee, W.-Z.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu. H.-L. Org. Lett. 2014, 16, 632–635.
    30. Ho, H.-E.; Asao, N.; Yamamoto, Y.; Jin, T. Org. Lett. 2014, 16, 4670–4673.
    31. Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Chem. Eur. J. 2011, 17, 11405–11409.
    32. (a) Nilsson, P.; Larhed, M.; Hallberg, A. J. Am. Chem. Soc. 2001, 123, 8217–8225. (b) Barluenga, J.; Escribano, M.; Moriel, P.; Aznar, F.; Valdés, C. Chem. Eur. J. 2009, 15, 13291–13294.
    33. Morita, H.; Arisaka, M.; Yoshida, N.; Kobayashi, J. Tetrahedron 2000, 56, 2929–2934.
    34. Tang, C.-J.; Babjak, M.; Anderson, R. J.; Greene, A. E.; Kanazawa, A. Org. Biomol. Chem. 2004, 4, 3757–3759.
    35. (a) Yeo, D.; Huynh, N.; Beutler, J. A.; Christophi, C.; Shulkes, A.; Baldwin, G. S.; Nikfarjam, M.; He, H. Cancer Lett. 2014, 346, 264–272. (b) Yeo, D.; Huynh, N.; Beutler, J. A.; Baldwin, G. S.; He, H.; Nikfarjam, M. J Invest Surg. 2016, 6, 366–372. (c) Huynh, N.; Beutler, J. A.; Shulkes, A.; Baldwin, G. S.; He, H. Biochim. Biophys. Acta 2015, 1853, 157–165.
    36. Rancati, F.; Rizzi, A.; Carzaniga, L.; Linney, I.; Knight, C.; Schmidt, W. WO 2018/011090 A1.
    37. (a) Coppola, G. M.; Schuster, H. F. Wiley-VCH: Weinheim, 1997. (b) Davis, F. A.; Chen, B.-C. Chem. Rev. 1992, 92, 919–934. (c) Christoffers, J.; Baro, A. Werner, T. Adv. Synth. Catal. 2004, 346, 143–151. (d) Plietker, B. Tetrahedron: Asymmetry 2005, 16, 3453–3459. (e) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981–10080. (f) Wu, H.-L.; Chang, C.-A.; Wu, P.-Y.; Uang, B.-J. Tetrahedron Lett. 2017, 58, 706–710. (g) Barlett, S. L.; Johnson, J. S. Acc. Chem. Res. 2017, 50, 2284–2296.
    38. For recent examples, see: (a) Luo, J.; Wang, H.; Han, X.; Xu, L.-W.; Kwiatkowski, J.; Huang, K.-W.; Lu, Y. Angew. Chem. Int. Ed. 2011, 50, 1861–1864. (b) Ohshima, T.; Kawabata, T.; Takeuchi, Y.; Kakinuma, T.; Iwasaki, T.; Yonezawa, T.; Murakami, H.; Nishiyama, H.; Mashima, K. Angew. Chem. Int. Ed. 2011, 50, 6296–6300. (c) Aikawa, K.; Kondo, A.; Honda, K.; Mikami, K. Chem. Eur. J. 2015, 21, 17565–17569. (d) Robbins, D. W.; Lee, K. A.; Silverio, D. L.; Volkov, A.; Torker, S.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2016, 55, 9610–9614.
    39. For representative examples of asymmetric addition of diorganozincs to α-ketoesters, see: (a) DiMauro, E. F.; Kozlowski, M. C. J. Am. Chem. Soc. 2002, 124, 12668–12669. (b) Jiang, B.; Chen, Z.; Tang, X. Org. Lett. 2002, 4, 3451–3453. (c) DiMauro, E. F.; Kozlowski, M. C. Org. Lett. 2002, 4, 3781–3784. (d) Funabashi, K.; Jachmann, M.; Kanai, M.; Shibasaki, M. Angew. Chem. Int. Ed. 2003, 42, 5489–5492. (e) Wieland, L. C.; Deng, H.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 15453–15456. (f) Blay, G.; Fernández, I.; Marco-Aleixandre, A.; Pedro, J. R. Org. Lett. 2006, 8, 1287–1290. g) Wu, H.-L.; Wu, P.-Y.; Shen, Y.-Y.; Uang, B.-J. J. Org. Chem. 2008, 73, 6445–6447. (h) Zheng, B.; Hou, S.; Li, Z.; Guo, H.; Zhong, J.; Wang, M. Tetrahedron: Asymmetry 2009, 20, 2125–2129. (i) Infante, R.; Nieto, J.; Andrés, C. Chem. Eur. J. 2012, 18, 4375–4379.
    40. (a) Duan, H.-F.; Xie, J.-H.; Qiao, X.-C.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2008, 47, 4351–4353. (b) Cai, F.; Pu, X.; Qi, X.; Lynch, V.; Radha, A.; Ready, J. M. J. Am. Chem. Soc. 2011, 133, 18066–18069. (c) Zhu, T.-S.; Jin, S.-S.; Xu, M.-H. Angew. Chem. Int. Ed. 2012, 51, 780–783. (d) Li, Y.; Zhu, D.-X.; Xu, M.-H.; Chem. Commun. 2013, 49, 11659–11661. (e) Bartlett, S. L.; Keiter, K. M.; Johnson, J. S. J. Am. Chem. Soc. 2017, 139, 3911–3916. For Ru-catalyzed asymmetric addition of arylboronic acids to α-ketoesters, see: (f) Yamamoto, Y.; Shirai, T.; Watanabe, M.; Kurihara, K.; Miyaura, N. Molecules 2011, 16, 5020–5034. For non-asymmetric addition of arylboronic acids to α-ketoesters, see: (g) Ganci, G. R.; Chisholm, J. D. Tetrahedron Lett. 2007, 48, 8266–8269. (h) Miyamura, S.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 2255–2257.
    41. Selected examples on the addition to activated ketones other than α-ketoesters: for isatin substrates, see: (a) Shintani, R.; Inoue, M.; Hayashi, T. Angew. Chem. Int. Ed. 2006, 45, 3353–3356. (b) Toullec, P. Y.; Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2006, 8, 2715–2718. (c) Lai, H.; Huang, Z.; Wu, Q.; Qin, Y. J. Org. Chem. 2009, 74, 283–288. (d) Liu, Z.; Gu, P.; Shi, M.; McDowell, P.; Li, G. Org. Lett. 2011, 13, 2314–2317. (e) Gui, J.; Chen, G.; Cao, P.; Liao, J. Tetrahedron: Asymmetry 2012, 23, 554–563. For trifluoromethyl ketone subtrates, see: (f) Martina, S. L. X.; Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Chem. Commun. 2006, 4093–4095. (g) Jumde, V. R.; Facchetti, S.; Iuliano, A. Tetrahedron: Asymmetry 2010, 21, 2775–2781. (h) Luo, R.; Li, K.; Hu, Y.; Tang, W. Adv. Synth. Catal. 2013, 355, 1297–1302.
    42. Hall, D. G. Boronic Acids, Wiley-VCH: Weinheim, 2005.
    43. For Rh(I)-catalyzed asymmetric 1,4-addition reaction, see: (a) Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Chem. Eur. J. 2011, 17, 11405–11409. (b) Liu, C.-C.; Janmanchi, D.; Chen, C.-C.; Wu, H.-L. Eur. J. Org. Chem. 2012, 2503–2507. (c) Chung, Y.-C.; Janmanchi, D.; Wu, H.-L. Org. Lett. 2012, 14, 2766–2769. (d) Huang, K.-C.; Gopula, B.; Kuo, T.-S.; Chiang, C.-W.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L.; Org. Lett. 2013, 15, 5730–5733. (e) Gopula, B.; Tsai, Y.-F.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Org. Lett. 2015, 17, 1142–1145. (f) Gopula, B.; Yang, S.-H.; Kuo, T.-S.; Hsieh, J.-C.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Chem. Eur. J. 2015, 21, 11050–11055. (g) Fang, J.-H.; Chang, C.-A.; Gopula, B.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Asian J. Org. Chem. 2016, 5, 481–485. (h) Fang, J.-H.; Jian, J.-H.; Chang, H.-C.; Kuo, T.-S.; Lee, W.-Z.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Chem. Eur. J. 2017, 23, 1830–1838. for a Rh(I)-catalyzed diastereoselective synthesis of prostaglandins, see: (i) Syu, J. F.; Wang, Y.-T.; Liu, K.-C.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. J. Org. Chem. 2016, 81, 10832–10844.
    44. For Rh(I)-catalyzed asymmetric 1,2-addition to imines, see: (a) Gopula, B.; Chiang, C.-W.; Lee, W.-Z.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Org. Lett. 2014, 16, 632–635. (b) Chen, C.-C.; Gopula, B.; Syu, J.-F.; Pan, J.-H.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. J. Org. Chem. 2014, 79, 8077–8085. (c) Syu, J.-F.; Lin, H.-Y.; Cheng, Y.-Y.; Tsai, Y.-C.; Ting, Y.-C.; Kuo, T.-S.; Janmanchi, D.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Chem. Eur. J. 2017, 23, 14515–14522. (d) Chiang, P.-F.; Li. W.-S.; Jian, J.-H.; Kuo, T.-S.; Wu, P.-Y.; Wu H.-L. Org. Lett. 2018, 20, 158−161.
    45. 周孟義(2015)。碩士論文,國立臺灣師範大學化學研究所,臺北,臺灣。
    46. 陳明良(2017)。碩士論文,國立臺灣師範大學化學研究所,臺北,臺灣。
    47. (a) Wu, H.-L.; Wu, P.-Y.; Shen, Y.-Y.; Uang, B.-J. J. Org. Chem. 2008, 73, 6445–6447. (b) Weng, J.-Q.; Deng, Q.-M.; Wu, L.; Xu, K.; Wu, H.; Liu, R.-R.; Gao, J.-R.; Jia, Y.-X. Org. Lett. 2014, 16, 776–779.
    48. Chang, M. T.; Kim, H.; Kim, H.-D. Tetrahedron: Asymmetry 2008, 19, 1504–1508.

    無法下載圖示 本全文未授權公開
    QR CODE