簡易檢索 / 詳目顯示

研究生: 陳煥元
Chen, Huan-Yuan
論文名稱: 以FPGA為硬體架構基礎之數位全像重建系統
FPGA-Based Hardware Architecture for Digital Holographic Reconstruction
指導教授: 黃文吉
Hwang, Wen-Jyi
學位類別: 博士
Doctor
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 57
中文關鍵詞: FPGAAutofocusingHologram reconstructiondiscrete cosine transformFresnel transform
英文關鍵詞: FPGA, Autofocusing, Hologram reconstruction, discrete cosine transform, Fresnel transform
DOI URL: http://doi.org/10.6345/DIS.NTNU.DCSIE.008.2018.B02
論文種類: 學術論文
相關次數: 點閱:46下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A novel hardware architecture for the reconstruction of digital holograms with autofocusing is presented in this dissertation. A fast autofocusing algorithm operating on a smaller local block locating at the center of the source digital holograms is proposed. By exploiting global information contained in the local block, accurate focus distance can be computed with less computational complexities. Interval search is also adopted to further accelerate the process. The circuits for the fast autofocusing algorithm and subsequent reconstruction operations are effectively integrated in the proposed architecture. Two FFT cores are shared by the operations for parallel computations with low area costs. The architecture is implemented by field programmable gate array (FPGA), and is used as a hardware accelerator in a network on chip (NOC) system for performance evaluation. Experimental results demonstrate that the proposed circuit exhibits the advantages of high speed computation, low power dissipation and accurate focus distance search and hologram reconstruction for 3D rendering applications.

    Abstract i Acknowledgment ii Contents iii Tables v Figures vii Chapter I. Introduction 1 Chapter II The proposed autofocusing algorithm 7 Section 2.1 Diffraction Computation 7 Section 2.2 Phase Unwrapping 9 Section 2.3 Image Sharpness Evaluation 11 Section 2.4 Autofocusing 12 Chapter III The proposed FPGA architecture 15 Section 3.1 FFT for Discrete Fresnel Transform 16 Section 3.2 FFT for DCT-Based Phase Unwrapping 17 Section 3.3 Architecture of Pre-FFT Units and Post-FFT Units 20 Section 3.3.1 The architecture of Pre-FFT unit 1 21 Section 3.3.2 The architecture of Post-FFT unit 1 25 Section 3.3.3 The architecture of Pre-FFT unit 2 29 Section 3.4 FFT Core 30 Section 3.5 On-Chip Memory Unit and Custom DMA Controller 32 Section 3.6 Global Controller 33 Chapter IV Experimental Results 36 Section 4.1 Development platform 36 Section 4.2 Performance of proposed algorithm 38 Section 4.3 Experimental results and the evaluation of the proposed architecture 45 Chapter V Conclusion 54 Reference 55

    [1] U. Schnars, C. Falldorf, J. Watson, and W. Juptner, Digital Holography and Wavefront Sensing, 2nd ed. Berlin, Germany: Springer-Verlag, 2015.
    [2] P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt., Vol. 47, pp.D176-D182, 2008.
    [3] P. Langehanenberg, G. von Bally, B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Res., Vol. 2, pp.1-11, 2011.
    [4] M. Dogar, H. A. Ilhan, and M. Ozcan, “Real-time, auto-focusing digital holographic microscope using graphics processors,” Rev. of Scientific Instrum., Vol. 84, 2013.
    [5] H. A. Ilhan, M. Dogar and M. Ozcan, “Fast autofocusing in digital holography using scaled holograms,” Opt. Comm., Vol. 287, pp.81-84, 2013.
    [6] Y.-H. Seo, H.-J. Choi, D.-W. Kim, “3D scanning-based compression technique for digital hologram video”, Signal Processing: Image Communication, Vol 22, pp. 144-156, 2007.
    [7] P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro, and B. Javidi, “Automatic focusing in digital holography and its application to stretched holograms,” Opt. Lett., Vol. 36, pp. 1945-1947, 2011.
    [8] C. Trujillo and J. Garcia-Sucerquia, “Comparative analysis of the modified enclosed energy metric for self-focusing holograms from digital lensless holographic microscopy,” Appl. Opt., Vol. 54, pp.5102-5108, 2015.
    [9]N. Masuda, T. Sugie, T. Ito, S. Tanaka, Y. Hamada, S. Satake, T. Kunugi, and K. Sato, “Special purpose computer system with highly parallel pipelines for flow visualization using holography technology,” Computer Physics Commun., Vol. 181, pp. 1986-1989, 2010.
    [10] C.-J. Cheng, W.-J. Hwang, C.-T. Chen, and X.-J. Lai, “Efficient FPGA-based Fresnel transform architecture for digital holography,” IEEE Journal of Display Technology, Vol. 10, pp.272-281, 2014.
    [11] T. Shimobaba, T. Kakue and T. Ito, “Review of fast algorithms and hardware implementations on computer holography,” IEEE Trans. Industrial Informatics, Vol. 12, pp.1611-1622, 2016.
    [12] S. Braganza and M. Leeser, “An efficient implementation of a phase unwrapping kernel on reconfigurable hardware,” in Proc. IEEE Int. Conf. Application- Specific Systems, Architectures and Processors, 2008, pp. 138-143.
    [13] W. J. Hwang, H. Y. Chen, C. J. Cheng, “Region referenced phase unwrapping architecture for digital holographic microscopy,” Appl. Opt., Vol. 54, pp. A67-A75, 2015.
    [14] H. Y. Chen, S.-H. Hsu, W. J. Hwang, and C. J. Cheng, “An Efficient FPGA-Based Parallel Phase Unwrapping Hardware Architecture,” IEEE Trans. Computational Imaging, Accepted for Publication, doi:10.1109/TCI.2017.2663767, Available in IEEE Xplore Feb. 02, 2017.
    [15] Y. L. Lee, Y. C. Lin, H. Y. Tu, and C. J. Cheng, ”Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” Journal of Optics, 025403, 2013.
    [16] Thomas M. Kreis, Mike Adams and Werner P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, Optical Inspection and Micromeasurements II, (17 September 1997); doi: 10.1117/12.281164.
    [17] Altera Corporation, FFT IP core user guide, 2016. [Online]. Available: http://www.altera.com/en US/pdfs/literature/ug/ug fft.pdf, Accessed on: Feb. 1, 2018.
    [18] T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett., Vol. 35, 2010.
    [19] M. Rivera, F. J. Hernandez-Lopez, and A. Gonzalez, “Phase unwrapping by accumulation of residual maps,” Opt. Lasers Eng., vol. 64, pp. 51–58, 2015.
    [20] W. Gao, N. T. T. Huyen, H. S. Loi, and Q. Kemao, “Real-time 2D parallel windowed Fourier transform for fringe pattern analysis using graphics processing unit,” Opt. Express, vol. 17, pp. 23147–23152, 2009.
    [21] P. A. Karasev, D. P. Campbell, and M. A. Richards, “Obtaining a 35x speedup in 2d phase unwrapping using commodity graphics processors,” in Proc. IEEE Radar Conf., 2007, pp. 574–578.
    [22] B. Bhaduri et al., “Diffraction phase microscopy: Principles and applications in materials and life sciences,” Adv. Opt. Photon., vol. 6, pp. 57–119, 2014.
    [23] O. Backoach, S. Kariv, P. Girshovitz, and N. T. Shaked, “Fast phase processing in off-axis holography by CUDA including parallel phase unwrapping,” Opt. Express, vol. 24, pp. 3177–3188, 2016.
    [24] W. J. Hwang, S. C. Cheng, and C. J. Cheng, “Efficient phase unwrapping architecture for digital holographic microscopy,” Sensors, vol. 11, pp. 9160–9181, 2011.
    [25] Y. Jiao, H. Lin, P. Balaji, and W. Feng, “Power and performance characterization of computational kernels on the GPU,” in Proc. IEEE/ACM Int. Conf. Green Comput. Commun., 2010, pp. 221–228.
    [26] B. Duan,W.Wang, X. Li, C. Zhang, P. Zhang, and N. Sun, “Floating-point mixed-radix FFT core generation for FPGA and comparison with GPU and CPU,” in Proc. IEEE Int. Conf. Field Programmable Technol., 2011, pp. 1–6.

    下載圖示
    QR CODE