簡易檢索 / 詳目顯示

研究生: 郭育瑄
Kuo, Yu-Hsuan
論文名稱: 高溫環境對臨界負荷、運動耐受性與肌肉氧合作用之影響
Effects of heat condition on critical power, exercise tolerance and muscle oxygenation
指導教授: 鄭景峰
Cheng, Ching-Feng
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 90
中文關鍵詞: 運動測驗有氧能力運動至衰竭時間肌肉攝氧量運動強度區間
英文關鍵詞: exercise test, aerobic capacity, time to exhaustion, muscle oxygen uptake, exercise intensity domain
DOI URL: http://doi.org/10.6345/DIS.NTNU.DPE.001.2019.F03
論文種類: 學術論文
相關次數: 點閱:135下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:本研究旨在觀察不同環境溫度對臨界負荷、運動耐受性和肺部、腿部肌肉氧合作用的影響。方法:以12名男性自行車運動員為受試對象,採隨機交叉之實驗設計,受試者須在高溫 (35°C, HT) 和常溫 (22°C, NT),分別執行遞增負荷運動測驗 (IET)、3分鐘衰竭測驗 (3MT)、高強度和激烈強度固定負荷運動測驗。測驗間至少間隔48小時。測驗過程中,使用能量分析儀收集攝氧量,並分析最大攝氧量 (VO2max)、第一換氣閾值 (VT1)、第二換氣閾值 (VT2) 並各別對應其輸出功率 (wVO2max、wVT1和wVT2) 及攝氧動力學數據,同時監測心跳率、肺部和腿部作用肌群的肌肉氧合濃度 [包含總血紅素、含氧血紅素 (O2Hb)、去氧血紅素 (HHb) 及組織氧合指標 (TSI)],運動表現記錄包括結束功率 (EP)、高於EP之總作功 (WEP)、功率峰值和平均功率,以及高強度和激烈強度的運動持續時間。結果:IET顯示,VO2max在HT明顯高於NT (NT vs. HT, 59.3 ± 7.6 vs. 61.3 ± 8.0 ml·kg-1·min-1, p < .05),但VT1、VT2和最大心跳率則沒有明顯差異。然而,wVO2max (NT vs. HT, 355 ± 42 vs. 335 ± 44 W)、wVT1 (NT vs. HT, 205 ± 22 vs. 190 ± 23 W) 和wVT2 (NT vs. HT, 243 ± 27 vs. 230 ± 32 W) 在NT明顯高於HT (p < .05)。而在NT 時的3MT運動表現 (NT vs. HT,EP,228 ± 34 vs. 219 ± 33 W;功率峰值,606 ± 82 vs. 588 ± 87 W;平均功率,308 ± 32 vs. 300 ± 34 W) 都明顯高於HT (p < .05),而WEP除外。此外,在相同環境溫度的wVT2和EP (NT, r = .674; HT, r = .672) 以及VO2max和VO2peak (NT, r = .877; HT, r = .893),皆具顯著相關 (p < .05)。在高強度運動部分,HT的生理反應和肌肉氧飽和度在腿部O2Hb和TSI,皆明顯低於NT,而HHb則明顯較高。在激烈強度部分發現,雖然HT的運動耐受性明顯較短於NT,但仍符合激烈強度所需達到的運動持續時間。結論:雖然HT會造成運動時生理壓力的增加,不利運動表現,但不論是在高溫或常溫下,3MT所測得之EP可以適當地評估有氧適能,且均可作為劃分高強度和激烈強度運動區間之強度界線。

    Purpose: To investigate the effects of heat condition on critical power (CP), exercise tolerance, and muscle oxygenation in respiratory and locomotor muscles. Methods: Twelve male cyclists were recruited in the randomized crossover design study. Each subject was required to perform incremental exercise tests, 3-min all-out tests (3MT), and high-intensity and severe-intensity constant load exercises in both high-temperature (HT, 33°C) and neutral-temperature (NT, 22°C) environments. All trials were conducted at least 48 hours apart. Physiological responses, such as maximal oxygen uptake (VO2max), first and second ventilatory thresholds (VT1 and VT2) against the power output (wVO2max, wVT1, and wVT2), and VO2 kinetics were measured during the tests. During each trial, heart rate (HR) and muscle oxygenation in respiratory and locomotor muscles were continuously monitored, including total hemoglobin, oxygenated hemoglobin (O2Hb), deoxygenated hemoglobin (HHb), and tissue saturation index (TSI). End power (EP), anaerobic capacity (WEP), and time to exhaustion were recorded during the tests. Results: VO2max under HT was significantly higher than that under NT (NT vs. HT: 59.3 ± 7.6 vs. 61.3 ± 8.0 ml·kg−1·min−1, p < .05), but no significant difference was noted between these conditions for VT1, VT2, or HRmax. However, wVO2max (NT vs. HT: 355 ± 42 vs. 335 ± 44 W), wVT1 (NT vs. HT: 205 ± 22 vs. 190 ± 23 W), and wVT2 (NT vs. HT: 243 ± 27 vs. 230 ± 32 W) were significantly higher under NT than HT (p < .05). During the 3MT, exercise performance (NT vs. HT: EP, 228 ± 34 vs. 219 ± 33 W; peak power, 606 ± 82 vs. 588 ± 87 W; mean power, 308 ± 32 vs. 300 ± 34 W) was significantly higher under NT than HT (p < .05), with the exception of WEP. Furthermore, significant correlations were observed both between wVT2 and EP (NT, r = .674; HT, r = .672, p < .05), and between VO2max and VO2peak (NT, r = .877; HT, r = .893, p < .05) under the same conditions. During high-intensity exercise sessions, physiological responses and muscle oxygenation of locomotor muscles were significantly higher (HHb) and lower (O2Hb and TSI) under HT than NT. Exercise tolerance during severe-intensity exercise was significantly lower under HT than NT; nevertheless, the exercise duration was sufficient for practical application. Conclusion: Although the increased physiological stress resulted from HT might impair exercise performance, the EP derived from 3MT can accurately estimate aerobic capacity and distinguish high- from severe-intensity exercise, regardless of NT or HT conditions.

    中文摘要 i 英文摘要 ii 目次 iii 表次 vi 圖次 vii 第壹章 緒論 1 第一節 前言 1 第二節 研究的重要性4 第三節 研究目的 4 第四節 研究假設 5 第五節 研究範圍 5 第六節 研究限制 6 第七節 名詞操作性定義 6 第貳章 文獻探討 9 第一節 高溫環境對3分鐘衰竭測驗之影響 9 第二節 高溫環境對高強度耐力運動之影響 11 第三節 臨界負荷持續性評估與相關文獻探討 14 第四節 高溫環境對肌肉氧合反應之影響 16 第五節 攝氧動力學評估與相關文獻探討 17 第六節 本章總結 20 第參章 研究方法與步驟 21 第一節 受試對象 21 第二節 實驗設計 21 第三節 實驗時間與地點 22 第四節 實驗流程圖 22 第五節 實驗儀器與設備 23 第六節 實驗方法與步驟 24 第七節 統計分析 33 第肆章 結果 34 第一節 受試者基本資料 34 第二節 不同環境溫度對遞增負荷運動測驗的影響 35 第三節 不同環境溫度對3MT表現之影響 37 第四節 不同環境溫度對高強度運動耐受性及相關指標之影響 42 第五節 不同環境溫度對激烈強度運動耐受性及相關指標之影響 51 第伍章 討論 59 第一節 高溫環境對遞增負荷運動測驗之影響 59 第二節 高溫環境對3MT表現之影響 61 第三節 高溫環境對高強度運動表現之影響 64 第四節 高溫環境對激烈強度運動耐受性之影響 66 第五節 綜合討論 68 第六節 結論與建議 71 參考文獻 72 附錄 83 附錄一 研究參與者知情同意書 83 附錄二 健康情況調查表 88 附錄三 實驗紀錄表1 89 附錄四 實驗紀錄表2 90

    Altareki, N., Drust, B., Atkinson, G., Cable, T., & Gregson, W. (2009). Effects of environmental heat stress (35°C) with simulated air movement on the thermoregulatory responses during a 4‐km cycling time trial. International Journal of Sports Medicine, 30(1), 9-15.
    American Society of Heating, Refrigerating and Air-Conditioning Engineers. (1993). ASHRAE standard 62-89 analysis: PartII ventilation rate procedure. Engineers Newsletter, 22(1), 1-11.
    Armstrong, N., & Barker, A. R. (2009). Oxygen uptake kinetics in children and adolescents: A review. Pediatric Exercise Science, 21(2), 130-147.
    Arngrímsson, S. Á., Stewart, D. J., Borrani, F., Skinner, K. A., & Cureton, K. J. (2003). Relation of heart rate to percent VO2 peak during submaximal exercise in the heat. Journal of Applied Physiology, 94(3), 1162-1168.
    Backx, K., Mc Naughton, L., Crickmore, L., Palmer, G., & Carlisle, A. (2000). Effects of differing heat and humidity on the performance and recovery from multiple high intensity, intermittent exercise bouts. International Journal of Sports Medicine, 21(6), 400-405.
    Bailey, S. J., Romer, L. M., Kelly, J., Wilkerson, D. P., DiMenna, F. J., & Jones, A. M. (2010). Inspiratory muscle training enhances pulmonary O2 uptake kinetics and high-intensity exercise tolerance in humans. Journal of Applied Physiology, 109(2), 457-468.
    Ball, D., Burrows, C., & Sargeant, A. J. (1999). Human power output during repeated sprint cycle exercise: The influence of thermal stress. European Journal of Applied Physiology and Occupational Physiology, 79(4), 360-366.
    Barker, A. R., Bond, B., Toman, C., Williams, C. A., & Armstrong, N. (2012). Critical power in adolescents: Physiological bases and assessment using all-out exercise. European Journal of Applied Physiology, 112, 1359-1370.
    Barstow, T. J., Lamarra, N., & Whipp, B. J. (1990). Modulation of muscle and pulmonary O2 uptakes by circulatory dynamics during exercise. Journal of Applied Physiology, 68(3), 979-989.
    Beaver, W. L., Wasserman, K., & Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas exchange. Journal of Applied Physiology, 60(6), 2020-2027.
    Berger, N. J., Campbell, I. T., Wilkerson, D. P., & Jones, A. M. (2006). Influence of acute plasma volume expansion on VO2 kinetics, VO2peak, and performance during high-intensity cycle exercise. Journal of Applied Physiology, 101(3), 707-714.
    Borg, G. A. (1982). Psychophysical of perceived exertion. Medicine and Science in Exercise, 14(5), 377-381.
    Brickley, G., Doust, J., & Williams, C. A. (2002). Physiological responses during time to exhaustion at critical power. European Journal of Applied Physiology, 88(1-2), 146-151.
    Broxterman, R. M., Ade, C. J., Poole, D. C., Harms, C. A., & Barstow, T. J. (2013). A single test for the determination of parameters of the speed–time relationship for running. Respiratory Physiology and Neurobiology, 185(2), 380-385.
    Burdon, J. G., Juniper, E. F., Killian, K. J., Hargreave, F. E., & Campbell, E. J. (1982). The perception of breathlessness in asthma. The American Review of Respiratory Disease, 126(5), 825-828.
    Burnley, M., Doust, J. H., Carter, H., & Jones, A. M. (2001). Effects of prior exercise and recovery duration on oxygen uptake kinetics during heavy exercise in humans. Experimental Physiology, 86(3), 417-425.
    Burnley, M., Doust, J. H., & Vanhatalo, A. (2006). A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Medicine and Science in Sports and Exercise, 38(11), 1995-2003.
    Burnley, M., & Jones, A. M. (2007). Oxygen uptake kinetics as a determinant of sports performance. European Journal of Sport Science, 7(2), 63-79.
    Burnley, M., Jones, A. M., Carter, H., & Doust, J. H. (2000). Effects of prior heavy exercise on phase II pulmonary oxygen uptake kinetics during heavy exercise. Journal of Applied Physiology, 89(4), 1387-1396.
    Carter, H., Jones, A. M., Barstow, T. J., Burnley, M., Williams, C. A., & Doust, J. H. (2000). Oxygen uptake kinetics in treadmill running and cycle ergometry: A comparison. Journal of Applied Physiology, 89(3), 899-907.
    Cheng, C. F., Yang, Y. S., Lin, H. M., Lee, C. L., & Wang, C. Y. (2012). Determination of critical power in trained rowers using a three-minute all-out rowing test. European Journal of Applied Physiology, 112(4), 1251-1260.
    Cheuvront, S. N., Kenefick, R. W., Montain, S. J., & Sawka, M. N. (2010). Mechanisms of aerobic performance impairment with heat stress and dehydration. Journal of Applied Physiology, 109(6), 1989-1995.
    Christensen, P. M., Jacobs, R. A., Bonne, T., Flück, D., Bangsbo, J., & Lundby, C. (2016). A short period of high-intensity interval training improves skeletal muscle mitochondrial function and pulmonary oxygen uptake kinetics. Journal of Applied Physiology, 120(11), 1319-1327.
    Cohen, J. (1977). Statistical power analysis for behavioral sciences (revised ed.). New York: Academic Press.
    Davis, C. P. (2017). Hematocrit (Blood Test). Retrieved from https://www.emedicinehealth.com/hematocrit_blood_test/article_em.htm#what_is_a_hematocrit_blood_test
    De Barros, C. L. M., Mendes, T. T., Mortimer, L. A. C. F., Simões, H. G., Prado, L. S., Wisloff, U., & Silami-Garcia, E. (2011). Maximal lactate steady state is altered in the heat. International Journal of Sports Medicine, 32(10), 749-753.
    Dekerle, J., Baron, B., Dupont, L., Vanvelcenaher, J., & Pelayo, P. (2003). Maximal lactate steady state, respiratory compensation threshold and critical power. European Journal of Applied Physiology, 89(3-4), 281-288.
    Falk, B., Radom-lsaac, S., Hoffmann, J. R., Wang, Y., Yarom, Y., Magazanik, A., & Weinstein, Y. (1998). The effect of heat exposure on performance of and recovery from high-intensity, intermittent exercise. International Journal of Sports Medicine, 19(01), 1-6.
    Febbraio, M. A., Snow, R. J., Hargreaves, M., Stathis, C. G., Martin, I. K., & Carey, M. F. (1994). Muscle metabolism during exercise and heat stress in trained men: Effect of acclimation. Journal of Applied Physiology, 76(2), 589-597.
    Gaesser, G. A., & Poole, D. C. (1996). The slow component of oxygen uptake kinetics in humans. Exercise and Sport Sciences Reviews, 24(1), 35-70.
    Galloway, S. D., & Maughan, R. J. (1997). Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Medicine and Science in Sports and Exercise, 29(9), 1240-1249.
    Girard, O., Brocherie, F., & Bishop, D. J. (2015). Sprint performance under heat stress: A review. Scandinavian Journal of Medicine and Science in Sports, 25(1), 79-89.
    González‐Alonso, J., Crandall, C. G., & Johnson, J. M. (2008). The cardiovascular challenge of exercising in the heat. The Journal of Physiology, 586(1), 45-53.
    Guenette, J. A., Vogiatzis, I., Zakynthinos, S., Athanasopoulos, D., Koskolou, M., Golemati, S., & . . . Boushel, B. (2008). Human respiratory muscle blood flow measured by nearinfrared spectroscopy and indocyanine green. Journal of Applied Physiology, 104, 1202-1210.
    Guy, J. H., Deakin, G. B., Edwards, A. M., Miller, C. M., & Pyne, D. B. (2015). Adaptation to hot environmental conditions: an exploration of the performance basis, procedures and future directions to optimise opportunities for elite athletes. Sports Medicine, 45(3), 303-311.
    Hargreaves, M. (2008). Physiological limits to exercise performance in the heat. Journal of Science and Medicine in Sport, 11(1), 66-71.
    Harms, C. A. (2007). Insights into the role of the respiratory muscle metaboreflex. The Journal of Physiology, 584(3), 711-711.
    Harms, C. A., Babcock, M. A., McClaran, S. R., Pegelow, D. F., Nickele, G. A., Nelson, W. B., & Dempsey, J. A. (1997). Respiratory muscle work compromises leg blood flow during maximal exercise. Journal of Applied Physiology, 82(5), 1573-1583.
    Harms, C. A., Wetter, T. J., McClaran, S. R., Pegelow, D. F., Nickele, G. A., Nelson, W. B., ... & Dempsey, J. A. (1998). Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise. Journal of Applied Physiology, 85(2), 609-618.
    Housh, D. J., Housh, T. J., & Bauge, S. J. (1989). The accuracy of the critical power test for predicting time to exhaustion during cycle ergometry. Ergonomics, 32, 997-1004.
    Jones, S., D'Silva, A., Bhuva, A., Lloyd, G., Manisty, C., Moon, J. C., ... & Hughes, A. D. (2017). Improved exercise-related skeletal muscle oxygen consumption following uptake of endurance training measured using near-infrared spectroscopy. Frontiers in Physiology, 8, 1018.
    Jones, A. M., Grassi, B., Christensen, P. M., Krustrup, P., Bangsbo, J., & Poole, D. C. (2011). Slow component of VO2 kinetics: Mechanistic bases and practical applications. Medicine and Science in Sports and Exercise, 43(11), 2046-2062.
    Jones, A. M., & Poole, D. C. (2005). Oxygen uptake dynamics: From muscle to mouth--an introduction to the symposium. Medicine and Science in Sports and Exercise, 37(9), 1542-1550.
    Jones, A. M., Vanhatalo, A., Burnley, M., Morton, R. H., & Poole, D. C. (2010). Critical power: Implications for determination of VO2max and exercise tolerance. Medicine and Science in Sports and Exercise, 42(10), 1876-90.
    Jones, A. M., Wilkerson, D. P., DiMenna, F., Fulford, J., & Poole, D. C. (2008). Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294(2), 585-593.
    Keramidas, M. E., Kounalakis, S. N., Eiken, O., & Mekjavic, I. B. (2011). Muscle and cerebral oxygenation during exercise performance after short-term respiratory work. Respiratory Physiology and Neurobiology, 175(2), 247-254.
    Koppo, K., Bouckaert, J., & Jones, A. M. (2004). Effects of training status and exercise intensity on phase II VO2 kinetics. Medicine and Science in Sports and Exercise, 36, 225-232.
    Kuo, Y. H., Cheng, C. F., Hsu, W. C., & Wong, D. P. (2017). Validity and reliability of the 3-min all-out running test to measure critical velocity in hot environments. Research in Sports Medicine, 25(4), 470-479.
    Lafrenz, A. J., Wingo, J. E., Ganio, M. S., & Cureton, K. J. (2008). Effect of ambient temperature on cardiovascular drift and maximal oxygen uptake. Medicine and Science in Sports and Exercise, 40(6), 1065-1071.
    Legrand, R., Marles, A., Prieur, F., Lazzari, S., Blondel, N., & Mucci, P. (2007). Related trends in locomotor and respiratory muscle oxygenation during exercise. Medicine and Science in Sports and Exercise, 39(1), 91-100.
    Liu, C., Yavar, Z., & Sun, Q. (2015). Cardiovascular response to thermoregulatory challenges. American Journal of Physiology-Heart and Circulatory Physiology, 309(11), 1793-1812.
    Lorenzo, S., Minson, C. T., Babb, T. G., & Halliwill, J. R. (2011). Lactate threshold predicting time-trial performance: Impact of heat and acclimation. Journal of Applied Physiology, 111(1), 221-227.
    McClave, S. A., LeBlanc, M., & Hawkins, S. A. (2011). Sustainability of critical power determined by a 3-minute all-out test in elite cyclists. The Journal of Strength & Conditioning Research, 25(11), 3093-3098.
    McLellen, T. M. & Cheung, K. S. Y. (1992). A comparative evaluation of the individual anaerobic threshold and the critical power. Medicine and Science in Sports and Exercise, 24, 543-550.
    Mitchell, J. B., Rogers, M. M., Basset, J. T., & Hubing, K. A. (2014). Fatigue during high-intensity endurance exercise: The interaction between metabolic factors and thermal stress. The Journal of Strength & Conditioning Research, 28(7), 1906-1914.
    Monod, H., & Scherrer, J. (1965). The work capacity of a synergic muscular group. Ergonomics, 8(3), 329-338.
    Montain, S. J., & Coyle, E. (1992). Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. Journal of Applied Physiology, 73(4), 1340-1350.
    Moritani, T., Nagata, A., deVries, H. A., Muro, M. (1981). Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics, 24(5), 339-350.
    No, M., & Kwak, H. B. (2016). Effects of environmental temperature on physiological responses during submaximal and maximal exercises in soccer players. Integrative Medicine Research, 5(3), 216-222.
    Nybo, L. (2010). Cycling in the heat: Performance perspectives and cerebral challenges. Scandinavian Journal of Medicine and Science in Sports, 20(3), 71-79.
    Nybo, L., Jensen, T., Nielsen, B., & González-Alonso, J. (2001). Effects of marked hyperthermia with and without dehydration on VO2 kinetics during intense exercise. Journal of Applied Physiology, 90(3), 1057-1064.
    Nybo L., & Nielsen B. (2001). Hyperthermia and central fatigue during prolonged exercise in humans. Journal of Applied Physiology, 90, 1055-1060.
    Nybo, L., Rasmussen, P., & Sawka, M. N. (2014). Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Comprehensive Physiology, 4(2), 657-689.
    Parkin, J. M., Carey, M. F., Zhao, S., & Febbraio, M. A. (1999). Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. Journal of Applied Physiology, 86(3), 902-908.
    Pettitt, R. W., Jamnick, N., & Clark, I. E. (2012). 3-min all-out exercise test for running. International Journal of Sports Medicine, 33(6), 426-431.
    Piatrikova, E., Sousa, A. C., Gonzalez, J. T., & Williams, S. (2018). Validity and reliability of the 3-minute all-out test in national and international competitive swimmers. International Journal of Sports Physiology and Performance, 1-24.
    Place, N., Bruton, J. D., & Westerblad, H. (2009). Mechanisms of fatigue induced by isometric contractions in exercising humans and in mouse isolated single muscle fibres. Clinical and Experimental Pharmacology and Physiology, 36(3), 334-339.
    Poole, D. C., Burnley, M., Vanhatalo, A., Rossiter, H. B., & Jones, A. M. (2016). Critical power: An important fatigue threshold in exercise physiology. Medicine and Science in Sports and Exercise, 48(11), 2320-34.
    Poole, D. C., & Jones, A. M. (2012). Oxygen uptake kinetics. Comprehensive Physiology, 2, 933-996.
    Poole, D. C., Schaffartzik, W., Knight, D. R., Derion, T., Kennedy, B., Guy, H. J., ... & Wagner, P. D. (1991). Contribution of excising legs to the slow component of oxygen uptake kinetics in humans. Journal of Applied Physiology, 71(4), 1245-1260.
    Poole, D. C., Ward, S. A., Gardner, G. W., & Whipp, B. J. (1988). Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics, 31(9), 1265-1279.
    Powers, S. K., & Howley, E. T. (2001). Exercise physiology: Theory and applications to fitness and performance (4th ed.). New York, NY: McGraw-Hill.
    Oueslati, F., Boone, J., Tabka, Z., & Ahmaidi, S. (2017). Respiratory and locomotor muscle implications on the VO2 slow component and the VO2 excess in young trained cyclists. Respiratory Physiology & Neurobiology, 239, 1-9.
    Robergs, R. A. (2014). A critical review of the history of low-to moderate-intensity steady-state VO2 kinetics. Sports Medicine, 44(5), 641-653.
    Romer, L. M., Bridge, M. W., McConnell, A. K., & Jones, D. A. (2004). Influence of environmental temperature on exercise-induced inspiratory muscle fatigue. European Journal of Applied Physiology, 91(5-6), 656-663.
    Rossiter, H. B., Ward, S. A., Doyle, V. L., Howe, F. A., Griffiths, J. R., & Whipp, B. J. (1999). Inferences from pulmonary O2 uptake with respect to intramuscular [phosphocreatine] kinetics during moderate exercise in humans. The Journal of Physiology, 518(3), 921-932.
    Sargeant, A. J. (1987). Effect of muscle temperature on leg extension force and short-term power output in humans. European Journal of Applied Physiology and Occupational Physiology, 56(6), 693-698.
    Suzuki, S., Takasaki, S., Ozaki, T., & Kobayashi, Y. (1999). A tissue oxygenation monitor using NIR spatially resolved spectroscopy. The International Society for Optical Engineering, 582-592.
    Tatterson, A. J., Hahn, A. G., Martini, D. T., & Febbraio, M. A. (2000). Effects of heat stress on physiological responses and exercise performance in elite cyclists. Journal of Science and Medicine in Sport, 3(2), 186-193.
    Tong, T. K., Lin, H., McConnell, A., Eston, R., Zheng, J., & Nie, J. (2012). Respiratory and locomotor muscle blood-volume and oxygenation kinetics during intense intermittent exercise. European Journal of Sport Science, 12(4), 321-330.
    Tong, T. K., Fu, F. H., Chow, B. C., Quach, B., & Lu, K. (2003). Increased sensations of intensity of breathlessness impairs maintenance of intense intermittent exercise. European Journal of Applied Physiology, 88(4), 370-379.
    Tong, T. K., Fu, F. H., Quach, B., & Lu, K. (2004). Reduced sensations of intensity of breathlessness enhances maintenance of intense intermittent exercise. European Journal of Applied Physiology, 92(3), 275-284.
    Tucker, R., Rauch, L., Harley, Y. X., & Noakes, T. D. (2004). Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflügers Archiv, 448(4), 422-430.
    Vanhatalo, A., Doust, J. H., & Burnley, M. (2007). Determination of critical power using a 3-min all-out cycling test. Medicine and Science in Sports and Exercise, 39(3), 548-555.
    Vanhatalo, A., Doust, J. H., & Burnley, M. (2008). Robustness of a 3 min all‐out cycling test to manipulations of power profile and cadence in humans. Experimental Physiology, 93(3), 383-390.
    Vanhatalo, A., Poole, D. C., DiMenna, F. J., Bailey, S. J., & Jones, A. M. (2011). Muscle fiber recruitment and the slow component of O2 uptake: Constant work rate vs. all-out sprint exercise. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 300(3), 700-707.
    Vogiatzis, I., Athanasopoulos, D., Habazettl, H., Kuebler, W. M., Wagner, H., Roussos, C., ... & Zakynthinos, S. (2009). Intercostal muscle blood flow limitation in athletes during maximal exercise. The Journal of Physiology, 587(14), 3665-3677.
    Williams, C. A., Dekerle, J., McGawley, K., Berthoin, S., & Carter, H. (2008). Critical power in adolescent boys and girls - An exploratory study. Applied Physiology, Nutrition, and Metabolism, 33, 1105-1111.
    Williams, J. S., O’Keefe, K. A., & Ferris, L. T. (2005). Inspiratory muscle fatigue following moderate-intensity exercise in the heat. Journal of Sports Science & Medicine, 4(3), 239-247.
    Whipp, B. J., & Ozyener, F. (1998). The kinetics of exertional oxygen uptake: Assumptions and inferences. Medicina Dello Sport, 51(2), 139-149.

    下載圖示
    QR CODE