簡易檢索 / 詳目顯示

研究生: 姜智耀
Chiang, Chih-Yao
論文名稱: 血栓素合成酶及血栓素受體訊息路徑之基因剃除可緩減心肌缺血再灌流損傷
Genetic Depletion of Thromboxane A2/Thromboxane-Prostanoid Receptor Signalling Prevents Microvascular Dysfunction in Ischaemia/Reperfusion Injury
指導教授: 鄭劍廷
Chien, Chiang-Ting
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 74
中文關鍵詞: 阿斯匹靈缺血/再灌流損傷血栓素A2血栓素A2合成酶血栓素前列腺素受體
英文關鍵詞: aspirin, ischaemia/ reperfusion injury, thromboxane A2, thromboxane A2 synthase, thromboxane prostanoid receptor
DOI URL: http://doi.org/10.6345/DIS.NTNU.SLS.003.2019.D01
論文種類: 學術論文
相關次數: 點閱:83下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血栓素及血栓素受體路徑的激活會導致動脈攣縮、血小板粘附作用。本實驗嘗試利用基因剔除小鼠來驗證缺血再灌流損傷對血管失能的影響。
    實驗方法及結果:由靜脈注射生理食鹽水、內皮素、U46619(血栓素合成酶激動劑),用野生型和三種不同基因剔除小鼠以心肌缺血再灌流損傷模式的研究。評估心臟表面的微循環及心電圖變化。心臟受損評估使用心肌滲透率丶troponin I濃度及心肌梗塞的面積。並測量血栓素合成酶、血栓素受體、內皮一氧化氮合成酶丶NADPH oxidase4 菸鹼醯胺腺嘌呤二核苷酸磷酸氧化酶4、介白素1β丶細胞凋亡蛋白含量以及冠循環流出液中的血栓素B2,過氧陰離子、一氧化氮濃度。並使用各種激活劑及拮抗劑於小鼠腸繋膜動脈血管肌做血管張力測試實驗。並使用氯化鐵於活體小鼠做螢光血小板粘附試驗。B6小鼠在缺血再灌流實驗中,明顯提升ST波段上揚高度,心肌組織的下述蛋白含量提高:血栓素合成酶、血栓素受體丶NADPH oxidase4 菸鹼醯胺腺嘌呤二核苷酸磷酸氧化酶4、介白素-1β丶細胞凋亡蛋白含量、血栓素B2,過氧陰離子釋放和心肌梗塞面積增加。而減少了內皮一氧化氮合成酶、一氧化氮濃度,並減少了心臟表面的微循環。這些效應在剔除基因小鼠TXAS–/–, TP–/– , TXAS–/–TP–/–或是服用阿斯匹靈小鼠獲得重要的緩解。服用阿斯匹靈及基因TXAS, TP和TXAS/TP的剔除,可以明顯緩解血管攣縮劑及血管擴張劑所造成血管張力的劇烈變化及在腸繫膜動脈在氯化鐵刺激下的血小板粘附用。
    結論:抑制血栓素合成酶及血栓素受體訊息路徑可以獲得心臟及腸繫膜動脈對抗氧化壓力損傷的血管保護作用。

    Objective: Activation of thromboxane A2 synthase (TXAS)/thromboxane A2 (TXA2)/ thromboxane prostanoid (TP) receptor leads to arterial constriction, platelet aggregation and vascular injury. We attempted to characterize the microvascular dysfunction in ischemia/reperfusion injury using genetically modified TXAS–/–, TP–/– and TXAS–/– TP–/– mice.
    Approach and Results: The cardiac micro-circulation and electrocardiograms were evaluated from B6, TXAS–/–, TP–/– and TXAS–/– TP–/– mice in response to intravenous saline, endothelin-1, U46619 ( a TXA2 agonist ) and myocardial ischemia/reperfusion injury. Cardiac function was investigated with myocardial permeability, the troponin I, concentration and the infarct size. Myocardial TXAS, TP, endothelial nitric oxide synthase (eNOS), nicotinamide adenine dinucleotide phosphate oxidase 4 (NOx4), 4-hydroxynonenal, interleukin (IL)-1β, cell apoptosis, coronary effluent thromboxane B2 (TXB2) and superoxide anions (O2–) and NO concentrations were measured. Mice mesenteric reactivity in response to various drugs was assessed by wire myography. In vivo fluorescent platelet adhesiveness to the mesenteric arterial endothelium after FeCl3 stimulation was examined. In B6 mice, ischemia/reperfusion significantly increased levels of ST-segment elevation, myocardial TXAS, TP, NOx4, IL-1β, apoptosis, coronary endothelin-1, TXB2, O2– release and the infarct size, with concomitant decreases in eNOS, NO concentrations and cardiac micro-circulation. These effects were remarkably depressed in TXAS–/–, TP–/– and TXAS–/– TP–/– mice. Aspirin treatment or depletion of the TXAS, TP or TXAS/TP gene significantly attenuated the exaggerated vascular reactivity by vasoconstrictors and vasodilators and efficiently reduced platelet adhesion to the mesenteric endothelium under FeCl3 stimulation.
    Conclusion: Inhibiting TXAS/TXA2/TP signalling confers microvascular protection against oxidative injury in both cardiac and mesenteric arteries.

    Chapter 1:Introduction and Literature Review 6 1.1 臨床現象觀察與研究動機 7 1.2 血栓素生成及作用的機轉 8 1.3 研究目標 11 Chapter 2: Material and Methods 12 2.1 動物 13 2.2 分組及實驗設計 15 2.3 手術準備及心電圖紀錄 17 2.4 心肌缺血再灌流模式建立 17 2.5 心臟表面微循環之測定 19 2.6 冠循環流出液的測量: TXB2、一氧化氮、超氧化物 20 2.7 心肌血管滲透度測定 21 2.8 活體腸繫膜動脈血小板粘附實驗 22 2.9 心肌梗塞面積計算 23 2.10 腸繫膜動脈的肌張力掃描圖 24 2.11 西方墨點轉漬法 25 2.12 Troponin I的測定 26 2.13 細胞凋亡檢測:TUNEL stain 27 2.14 免疫組織化學染色法:IHC stain,細胞發炎及脂質過氧化代謝檢測 29 2.15 統計分析 30 Chapter 3:Result 31 3.1 心肌缺血再灌流後組織蛋白表現量:血栓素合成酶、血栓素受體、菸鹼醯胺腺嘌呤二核苷酸磷酸氧化酶4及內皮一氧化氮合成酶 32 3.2 心肌缺血再灌流對冠循環的TXB2濃度變化的影響 34 3.3 U46619對心肌微循環的影響 36 3.4 ET-1內皮素-1對心肌微循環的影響 36 3.5 腸繫膜動脈對血管活性劑反應結果 37 3.6 Aspirin對基因剔除小鼠有血管張力調節的功能 38 3.7 腸繫膜動脈之血小板粘附反應結果 39 3.8 在缺血再灌流損傷中基因剔除小鼠對心肌保護作用的病理證明 40 3.9 在缺血再灌流期間心電圖變化及血管收縮劑在基因剔除小鼠的肌張力反應結果 41 Chapter 4:Discussion and Conclusion 42 4.1 缺血再灌流後損傷的機轉 43 4.2 血栓素合成酶的角色 43 4.3 血栓素受體的角色 44 4.4 缺血再灌流後TXAS/TXA2/TP路徑的重要性 44 4.5 TXAS/TXA2/TP路徑影響動脈粥化及血栓形成 45 4.6 TXAS/TXA2/TP路徑在血管張力衡定維穩功能 46 4.7 未來展望 47 4.8 Conclusion 48 參考書目 49

    1. Ammann P, Marschall S, Kraus M, et al. Characteristics and prognosis of myocardial infarction in patients with normal coronary arteries. Chest 2000;117(02):333–338
    2. Brunner F, du Toit EF, Opie LH. Endothelin release during ischaemia and reperfusion of isolated perfused rat hearts. J Mol Cell Cardiol 1992;24(11):1291–1305
    3. Chien CT, Fan SC, Lin SC, et al. Glucagon-like peptide-1 receptor. agonist activation ameliorates venous thrombosis-induced arteriovenous fistula failure in chronic kidney disease. Thromb Haemost 2014;112(05):1051–1064
    4. Li PC, Shaw CF, Kuo TF, Chien CT. Inducible nitric oxide synthase evoked nitric oxide counteracts capsaicin-induced airway smooth muscle contraction, but exacerbates plasma extravasation. Neurosci Lett 2005;378(02):117–122
    5. Angiolillo DJ, Ueno M, Goto S. Basic principles of platelet biology and clinical implications. Circ J 2010;74(04):597–607
    6. Kakouros N, Nazarian SM, Stadler PB, Kickler TS, Rade JJ. Risk
    factors for nonplatelet thromboxane generation after coronary artery bypass graft surgery. J Am Heart Assoc 2016;5(03): e002615
    7. Siangjong L, Gauthier KM, Pfister SL, Smyth EM, Campbell WB. Endothelial 12(S)-HETE vasorelaxation is mediated by thromboxane receptor inhibition in mouse mesenteric arteries. Am J Physiol Heart Circ Physiol 2013;304(03):H382–H392
    8. Zhang M, Song P, Xu J, Zou MH. Activation of NAD(P)H oxidases by thromboxane A2 receptor uncouples endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 2011;31(01):125–132
    9. Capra V, Bäck M, Angiolillo DJ, Cattaneo M, Sakariassen KS. Impact. of vascular thromboxane prostanoid receptor activation on hemostasis, thrombosis, oxidative stress, and inflammation. J Thromb Haemost 2014;12(02):126–137
    10. Reilly MP, Delanty N, Roy L, et al. Increased formation of the isoprostanes IPF2 alpha-I and 8-epi-prostaglandin F2 alpha in acute coronary angioplasty: evidence for oxidant stress during coronary reperfusion in humans. Circulation 1997;96(10): 3314–3320
    11. Michel F, Silvestre JS, Waeckel L, et al. Thromboxane A2/prostaglandin H2 receptor activation mediates angiotensin II-induced postischemic neovascularization. Arterioscler Thromb Vasc Biol 2006;26(03): 488–493
    12. Davì G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007;357(24): 2482–2494
    13. Saitoh S, Onogi F, Aikawa K, et al. Multiple endothelial injury in epicardial coronary artery induces downstream microvascular spasm as well as remodeling partly via thromboxane A2. J Am Coll Cardiol 2001;37(01):308–315
    14. Fu LW, Phan A, Longhurst JC. Myocardial Ischemia-mediated
    excitatory reflexes: a new function for thromboxane A2? Am J Physiol Heart Circ Physiol 2008;295(06):H2530–H2540
    15. Chien CY, Chien CT, Wang SS. Progressive thermopreconditioning attenuates rat cardiac 缺血再灌流 injury by mitochondria- mediated antioxidant and antiapoptotic mechanisms. J Thorac Cardiovasc Surg 2014;148(02):705–713
    16. Xiao CY, Hara A, Yuhki K, et al. Roles of prostaglandin I (2) and thromboxane A (2) in cardiac Ischemia-reperfusion injury: a study using mice lacking their respective receptors. Circulation 2001; 104(18): 2210–2215
    17. Zaugg CE, Hornstein PS, Zhu P, et al. Endothelin-1-induced release of thromboxane A2 increases the vasoconstrictor effect of endothelin-1 in postischemic reperfused rat hearts. Circulation 1996;94(04):742–747
    18. Zuccollo A, Shi C, Mastroianni R, et al. The thromboxane A2 receptor antagonist S18886 prevents enhanced atherogenesis caused by diabetes mellitus. Circulation 2005;112(19): 3001–3008
    19. Zhou Y, Mitra S, Varadharaj S, Parinandi N, Zweier JL, Flavahan NA. Increased expression of cyclooxygenase-2mediates enhanced contraction to endothelin ETA receptor stimulation in endothelial nitric oxide synthase knockout mice. Circ Res 2006;98(11):1439–1445
    20. Fu LW, Guo ZL, Longhurst JC. Undiscovered role of endogenous thromboxane A2 in activation of cardiac sympathetic afferents during ischaemia. J Physiol 2008;586(13):3287–3300
    21. Yu IS, Lin SR, Huang CC, et al. TXAS-deleted mice exhibit normal thrombopoiesis, defective hemostasis, and resistance to arachidonate- induced death. Blood 2004;104(01):135–142
    22. Patrono C, García Rodríguez LA, Landolfi R, Baigent C. Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med 2005;353(22):2373–2383
    23. Gurbel PA, Kuliopulos A, Tantry US. G-protein-coupled receptors signaling pathways in new antiplatelet drug development. Arterioscler Thromb Vasc Biol 2015;35(03):500–512
    24. Cheng Y, Austin SC, Rocca B, et al. Role of prostacyclin in the cardiovascular response to thromboxane A2. Science 2002;296 (5567):539–541
    25. Zaugg CE, Zhu P, Simper D, Lüscher TF, Allegrini PR, Buser PT. Differential effects of endothelin-1 on normal and postischemic reperfused myocardium. J Cardiovasc Pharmacol 1993;22 (Suppl 8): S367–S370
    26. Filep JG, Fournier A, Földes-Filep E. Endothelin-1-induced myocardial ischaemia and edema in the rat: involvement of the ETA receptor, platelet-activating factor and thromboxane A2. Br J Pharmacol 1994;112(03):963–971
    27. Yang CC, Chen KH, Hsu SP, Chien CT. Augmented renal prostacyclin by intrarenal bicistronic cyclo-oxygenase-1/prostacyclin synthase gene transfer attenuates renal Ischemia-reperfusion injury. Transplantation 2013;96(12):1043–1051
    28. Cooke CL, Davidge ST. Endothelial-dependent vasodilation is reduced in mesenteric arteries from superoxide dismutase knockout mice. Cardiovasc Res 2003;60(03):635–642
    29. Thüroff JW, Hort W, Lichti H. Diameter of coronary arteries in 36 species of mammalian from mouse to giraffe. Basic Res Cardiol 1984;79(02):199–206
    30. Basili S, Pignatelli P, Tanzilli G, et al. Anoxia-reoxygenation enhances platelet thromboxane A2 production via reactive oxygen species-generated NOX2: effect in patients undergoing elective percutaneous coronary intervention. Arterioscler Thromb Vasc Biol 2011;31(08):1766–1771
    31. Wacker MJ, Best SR, Kosloski LM, et al. Thromboxane A2-induced arrhythmias in the anesthetized rabbit. Am J Physiol Heart Circ Physiol 2006;290(04):H1353–H1361
    32. Sakariassen KS, Alberts P, Fontana P, Mann J, Bounameaux H, Sorensen AS. Effect of pharmaceutical interventions targeting thromboxane receptors and thromboxane synthase in cardiovascular and renal diseases. Future Cardiol 2009;5(05):479–493
    33. Sharma R, Randhawa PK, Singh N, Jaggi AS. Possible role of thromboxane A2 in remote hind limb preconditioning-induced cardioprotection. Naunyn Schmiedebergs Arch Pharmacol 2016; 389(01):1–9
    34. Kolh P, Rolin S, Tchana-Sato V et al. Evaluation of BM-573, a novel TXA2 synthase inhibitor and receptor antagonist, in a porcine model of myocardial Ischemia-reperfusion. Prostaglandins Other Lipid Mediat 2006;79(1-2):53–73
    35. Fontana P, Zufferey A, Daali Y, Reny JL. Antiplatelet therapy: targeting the TxA2 pathway. J Cardiovasc Transl Res 2014;7 (01):29–38
    36. Kusama Y, Kodani E, Nakagomi A, et al. Variant angina and coronary artery spasm: the clinical spectrum, pathophysiology, and management. J Nippon Med Sch 2011;78(01):4–12
    37. Yasue H, Nakagawa H, Itoh T, Harada E, Mizuno Y. Coronary artery spasm clinical features, diagnosis, pathogenesis, and treatment. J Cardiol 2008; 51(01): 2–17
    38. Sun H, Mohri M, Shimokawa H, Usui M, Urakami L, Takeshita A. Coronary microvascular spasm causes myocardial Ischemia in patients with vasospastic angina. J Am Coll Cardiol 2002; 39(05): 847–851
    39. Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal COronary Vasomotion in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol 2012;59(07):655–662
    40. Sueda S, Kohno H, Inoue K, et al. Intracoronary administration of a thromboxane A2 synthase inhibitor relieves acetylcholine-induced coronary spasm. Circ J 2002;66(09):826–830
    41. del CampoM, Sagredo A, del Campo L, Villalobo A, FerrerM. Time dependent effect of orchidectomy on vascular nitric oxide and thromboxane A2 release. Functional implications to control cell proliferation through activation of the epidermal growth factor receptor. PLoS One 2014;9(07): e102523
    42. Järvinen O, Laurikka J, Sisto T, Salenius JP, Tarkka MR. Atherosclerosis of the visceral arteries. Vasa 1995;24(01):9–14
    43. Arshad M, Vijay V, Floyd BC, et al. Thromboxane receptor stimulation suppresses guanylate cyclase-mediated relaxation of radial arteries. Ann Thorac Surg 2006;81(06):2147–2154
    44. Minarchick VC, Stapleton PA, Porter DW, et al. Pulmonary cerium dioxide nanoparticle exposure differentially impairs coronary and mesenteric arteriolar reactivity. Cardiovasc Toxicol 2013;13 (04):323–337
    45. Dzeshka MS, Shantsila A, Lip GY. Effects of aspirin on endothelial function and hypertension. Curr Hypertens Rep 2016;18(11):83
    46. Chang PY, Chen YJ, Chang FH, et al. Aspirin protects human coronary artery endothelial cells against atherogenic electronegative LDL via an epigenetic mechanism: a novel cytoprotective role of aspirin in acute myocardial infarction. Cardiovasc Res 2013;99(01):137–145
    47. Chih-Yao Chiang, Wei-Yin Qiou, Chiang-Ting Chien, et al. Genetic Depletion of Thromboxane A2/Thromboxane-Prostanoid Receptor Signalling Prevents Microvascular Dysfunction in Ischaemia/ Reperfusion Injury. Thromb Haemost 2018;118:1982–1996.

    下載圖示
    QR CODE