簡易檢索 / 詳目顯示

研究生: 謝和秦
Hseih, He-Chin
論文名稱: 氧化亞銅/奈米碳管之陰極複合材料應用於鋰二氧化碳電池陰極觸媒
Cu2O / CNT Functioned as a cathode for Lithium-carbon-dioxide Battery
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 67
中文關鍵詞: 鋰二氧化碳電池氧化亞銅奈米碳管陰極光催化
英文關鍵詞: Lithium-carbon-dioxide battery, Cuprous oxide, Carbon nanotube, Cathode, Photocatalysis
DOI URL: http://doi.org/10.6345/NTNU201900585
論文種類: 學術論文
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目錄 致謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 電池 2 1.2鋰離子電池 5 1.3鋰空氣電池 6 1.4電池種類 13 1.5常用之鋰二氧化碳陰極觸媒材料 17 1.6研究動機與目的 30 第二章 實驗步驟與儀器分析原理 32 2.1 氧化亞銅奈米粒子/奈米碳管複合材料之合成 32 2.2材料結構鑑定 36 第三章 結果與討論 43 3.1氧化亞銅奈米粒子之結構鑑定 43 3.2氧化亞銅/奈米碳管複合材料之電性分析 46 3.3鋰二氧化碳電池之產物分析 59 第四章 結論 64 參考文獻 65

    (1) Liu, Y.; Wang, R.; Lyu, Y.; Li, H.; Chen, L.; Rechargeable Li/CO2–O2 (2:1) Battery and Li/CO2 Battery. Energy Environ. Sci. 2014, 7, 677-681.
    (2) da Silva, P. S.; Maciel, J. M.; Wohnrath, K.; Spinelli, A.; Garcia, J. R., Electrodeposition of Alloys Coatings from Electrolytic Baths Prepared by Recovery of Exhausted Batteries for Corrosion Protection. IntechOpen: 2013; p 210-230.
    (3) Liu, C.; Neale, Z. G.; Cao, G.; Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries. Mater. Today 2016, 19, 109-123.
    (4) Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W.; Lithium− air battery Promise and Challenges. J. Phys. Chem. Lett. 2010, 1, 2193-2203.
    (5) Li, L.; Chang, Z.; Zhang, X.; Recent Progress on the Development of Metal‐Air Batteries. Adv. Sustainable Syst. 2017, 1, 1700036.
    (6) Takechi, K.; Shiga, T.; Asaoka, T.; A Li–O2/CO2 Battery. Chem Commun. 2011, 47, 3463-3465.
    (7) Zhang, X.; Zhang, Q.; Zhang, Z.; Chen, Y.; Xie, Z.; Wei, J.; Zhou, Z.; Rechargeable Li–CO2 Batteries with Carbon Nanotubes as Air Cathodes. Chem Commun. 2015, 51, 14636-14639.
    (8) Yang, S.; He, P.; Zhou, H.; Exploring the Electrochemical Reaction Mechanism of Carbonate Oxidation in Li–air/CO2 Battery through Tracing Missing Oxygen. Energy Environ. Sci. 2016, 9, 1650-1654.
    (9) Wang, L.; Dai, W.; Ma, L.; Gong, L.; Lyu, Z.; Zhou, Y.; Liu, J.; Lin, M.; Lai, M.; Peng, Z.; Monodispersed Ru Nanoparticles Functionalized Graphene Nanosheets as Efficient Cathode Catalysts for O2-Assisted Li–CO2 Battery. ACS Omega 2017, 2, 9280-9286.
    (10) Yin, W.; Grimaud, A.; Lepoivre, F.; Yang, C. Z.; Tarascon, J. M.; Chemical vs Electrochemical Formation of Li2CO3 as a Discharge Product in Li–O2/CO2 Batteries by Controlling the Superoxide Intermediate. J. Phys. Chem. Lett. 2016, 8, 214-222.
    (11) Tan, P.; Jiang, H.; Zhu, X.; An, L.; Jung, C.; Wu, M.; Shi, L.; Shyy, W.; Zhao, T.; Advances and Challenges in Lithium-air Batteries. Appl. Energ. 2017, 204, 780-806.
    (12) Johnson, L.; Li, C.; Liu, Z.; Chen, Y.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G.; The Role of LiO2 Solubility in O2 Reduction in Aprotic Solvents and Its Consequences for Li–O2 Batteries. Nat. Chem. 2014, 6, 1091.
    (13) Burke, C. M.; Pande, V.; Khetan, A.; Viswanathan, V.; McCloskey, B. D.; Enhancing Electrochemical Intermediate Solvation through Electrolyte Anion Selection to Increase Nonaqueous Li–O2 Battery Capacity. Proc. Natl. Acad. Sci. 2015, 112, 9293-9298.
    (14) Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G.; Advances in Understanding Mechanisms Underpinning Lithium–air Batteries. Nat. Energy 2016, 1, 16128.
    (15) Imanishi, N.; Yamamoto, O.; Rechargeable Lithium–air Batteries Characteristics and Prospects. Mater. Today 2014, 17, 24-30.
    (16) Liu, Y.; Li, B.; Kitaura, H.; Zhang, X.; Han, M.; He, P.; Zhou, H.; Fabrication and Performance of All-Solid-State Li–Air Battery with SWCNTs/LAGP Cathode. ACS Appl. Mater. Interfaces 2015, 7, 17307-17310.
    (17) Kim, D. Y.; Jin, X.; Lee, C. H.; Kim, D. W.; Suk, J.; Shon, J. K.; Kim, J. M.; Kang, Y.; Improved Electrochemical Performance of Ordered Mesoporous Carbon by Incorporating Macropores for Li‒O2 Battery Cathode. Carbon 2018, 133, 118-126.
    (18) Qie, L.; Lin, Y.; Connell, J. W.; Xu, J.; Dai, L.; Highly Rechargeable Lithium‐CO2 Batteries with a Boron‐and-nitrogen‐codoped Holey‐graphene Cathode. Angew. Chem. Int. Ed. 2017, 56, 6970-6974.
    (19) Yang, S.; Qiao, Y.; He, P.; Liu, Y.; Cheng, Z.; Zhu, J.; Zhou, H.; A Reversible Lithium–CO2 Battery with Ru Nanoparticles as a Cathode Catalyst. Energy Environ. Sci. 2017, 10, 972-978.
    (20) Wang, C.; Zhang, Q.; Zhang, X.; Wang, X. G.; Xie, Z.; Zhou, Z.; Fabricating Ir/C Nanofiber Networks as Free‐standing Air Cathodes for Rechargeable Li‐CO2 Batteries. Small 2018, 14, 1800641.
    (21) Zhang, X.; Wang, C.; Li, H.; Wang, X.; Chen, Y.; Xie, Z.; Zhou, Z.; High Performance Li–CO2 Batteries with NiO–CNT Cathodes. J. Mater. Chem. A 2018, 6, 2792-2796.
    (22) Hou, Y.; Wang, J.; Liu, L.; Liu, Y.; Chou, S.; Shi, D.; Liu, H.; Wu, Y.; Zhang, W.; Chen, J.; Mo2C/CNT: An Efficient Catalyst for Rechargeable Li–CO2 Batteries. Adv. Funct. Mater. 2017, 27, 1700564.
    (23) Li, Z.; Ganapathy, S.; Xu, Y.; Zhu, Q.; Chen, W.; Kochetkov, I.; George, C.; Nazar, L. F.; Wagemaker, M.; Fe2O3 Nanoparticle Seed Catalysts Enhance Cyclability on Deep (Dis)charge in Aprotic Li-O2 Batteries. Adv. Energy Mater. 2018, 8, 1703513.
    (24) Ma, W.; Lu, S.; Lei, X.; Liu, X.; Ding, Y.; Porous Mn2O3 Cathode for Highly Durable Li–CO2 Batteries. J. Mater. Chem. A 2018, 6, 20829-20835.
    (25) Zhao, G.; Zhang, L.; Wang, B.; Sun, K.; Cuprous Oxide as Cathode Catalysts of Lithium Oxygen Batteries. Electrochim. Acta 2015, 184, 117-123.
    (26) Ma, S.; Liu, Q.; Lei, D.; Guo, X.; Li, S.; Li, Z.; A Powerful Li-O2 Battery Based on An Efficient Hollow Cu2O Cathode Catalyst with Tailored Crystal Plane. Electrochim. Acta 2018, 260, 31-39.
    (27) Qiu, X. Y.; Liu, S. J.; Xu, D. Z.; Yolk-shell Structured Cu2O as A High-performance Cathode Catalyst for the Rechargeable Li-O2 Batteries. J. Mater. Sci. 2018, 53, 1318-1325.
    (28) Liu, Y.; Li, N.; Liao, K.; Li, Q.; Ishida, M.; Zhou, H.; Lowering the Charge Voltage of Li–O2 Batteries via An Unmediated Photoelectrochemical Oxidation Approach. J. Mater. Chem. A 2016, 4, 12411-12415.
    (29) Gong, H.; Wang, T.; Xue, H.; Fan, X.; Gao, B.; Zhang, H.; Shi, L.; He, J.; Ye, J.; Photo-enhanced Lithium Oxygen Batteries with Defective Titanium Oxide as Both Photo-anode and Air Electrode. Energy Storage Mater. 2018, 13, 49-56.
    (30) Veeramani, V.; Chen, Y. H.; Wang, H. C.; Hung, T. F.; Chang, W. S.; Wei, D. H.; Hu, S. F.; Liu, R. S.; CdSe/ZnS QD@ CNT Nanocomposite Photocathode for Improvement on Charge Overpotential in Photoelectrochemical Li-O2 Batteries. Chem. Eng. Sci. 2018, 349, 235-240.
    (31) Chu, C. Y.; Huang, M. H.; Facet-dependent Photocatalytic Properties of Cu2O Crystals Probed by Using Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5, 15116-15123.

    無法下載圖示 電子全文延後公開
    2024/08/06
    QR CODE