簡易檢索 / 詳目顯示

研究生: 林至寬
Lin, Chih-Kuan
論文名稱: 導電奈米纖維複合碳黑/石墨烯應用於鋁離子電池之研製
Development of aluminum-ion batteries using conductive nanofibers compounded with carbon black/graphene
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 99
中文關鍵詞: 鋁離子電池靜電紡絲技術碳-微機電石墨烯
英文關鍵詞: Aluminum-ion batteries, Electrospinning, C-MEMS, Graphene
DOI URL: http://doi.org/10.6345/NTNU201900956
論文種類: 學術論文
相關次數: 點閱:35下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I 總目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1前言 1 1.2 SU-8厚膜光阻簡介 2 1.3 C-MEMS製程簡介 6 1.4靜電紡絲技術簡介 9 1.5碳黑簡介 12 1.6鋁離子電池簡介與應用 14 1.7研究動機與目的 17 1.8論文架構 19 第二章 文獻回顧 20 2.1 C-MEMS製程與電極製備之應用 20 2.2靜電紡絲技術 25 2.2.1靜電紡絲基本原理 26 2.2.2影響靜電紡絲纖維成形之因素 28 2.3鋁離子電池 35 2.3.1鋁離子電池之電解液種類及影響 36 2.3.2鋁離子電池之電極材料種類 38 2.3.3鋁離子電池電化學性能評估 39 2.4碳黑 41 2.4.1碳黑於鋁離子電池之應用 42 2.5石墨烯 44 2.5.1石墨烯在鋁離子電池的應用 46 第三章 實驗設計與規劃 51 3.1實驗設計 51 3.2實驗規劃 59 3.3實驗與檢測設備 66 第四章 實驗結果與討論 72 4.1導電碳圓柱結構之製備 72 4.1.1基板選擇 72 4.1.2 SU-8圓柱結構之製備 74 4.1.3 SU-8圓柱結構之高溫碳化 78 4.2碳奈米纖維之製備 79 4.2.1 SU-8紡絲奈米纖維之製備 79 4.2.2 SU-8紡絲奈米纖維之高溫碳化 81 4.3全碳三維陰極之製備 82 4.3.1不同碳黑比例對於電極之影響 83 4.3.2 碳奈米纖維對於電極之影響 84 4.1.3 SU-8圓柱結構之高溫碳化 78 4.4鋁離子電池之元件組裝 85 4.5鋁離子電池之電化學性能量測 87 第五章 結論與未來展望 91 5.1結論 91 5.2未來展望 92 參考文獻 94

    1. https://doi.org/10.1002/anie.201814031
    2. H. Lorenz et al, “Fabrication of photoplastic high-aspect ratio micro parts and micromoldsusing SU-8 UV resist”, Microsystem Technologies, vol. 4, pp. 143-146(1998).
    3. http://www.microchem.com/
    4. 楊啓榮等人, 「SU-8 厚膜光阻於微系統UV-LIGA製成的應用」, 科儀新知, vol. 21(5), pp. 46-53(1998)
    5. C. G. Willson et al., “Chemical amplification in the design of polymers for resist application”, Pure and applied chemistry, pp. 207-219(1982).
    6. D. W. Johnson, “MCC Technical Report”, Advance Package Seminar (1998).
    7. M. Shaw et al., “Improving the process capability of SU-8”, Microsystem Technologies, vol.10, pp. 01-06 (2003).
    8. P. J. F. Harris, “Fullerene-related structure of commercial glassy carbon”, Philosophical Magazine, vol. 84, pp. 3159-3167 (2004).
    9. O. S. Odutemowo et al., “Structural and surface changes in glassy carbon due to strontium implantation and heat treatment”, Journal of Nuclear Materials, vol. 498, pp. 103-116 (2018).
    10. http://www.tondig.com/it/projects/.
    11. http://www.htw-germany.com/products.php5?lang=en&nav0=3&nav1=1.
    12. http://www.microchem.com/Appl-MEMs-CHEMS.htm.
    13. J. I. Heo et al, “Carbon interdigitated array nanoelectrodes for electrochemical applications”, Journal of the Electrochemical Society, vol. 158(3), pp.76-80 (2011).
    14. C. L. Li et al., “Electrochemistry and Morphology Evolution of Carbon Micro-net Films for Rechargeable Lithium Ion Batteries”, The Journal of Physical Chemistry C, vol. 112(35), pp. 13782- 13788 (2008).
    15. W. Chen et al., “Integration of carbon nanotubes to C-MEMs for on-chip supercapacitors”, IEEE Transactions on Nanotechnology, vol. 9(6), pp. 734-740 (2011).
    16. H. Xu. et al., ”Carbon post-microarrays for glucose sensors”, Biosensors and Bioelectronics, vol. 23(11), pp. 1637-1644 (2008).
    17. D. Li. et al., “Electrospinning of Nanofibers:Reinventing the Wheel?” Advanced Materials, vol. 16(14), pp. 1150-1171 (2004).
    18. Hadad S et al., “Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage”, International Journal of Biological Macromolecules, vol. 114, pp. 408-414 (2018).
    19. J. Doshi, “Electrospinning process and applications of electrospun fibers”, Journal of Electrostatics, vol. 35, pp. 151-160 (1995).
    20. P. F. Jao et al., “Fabrication of an all SU-8 electrospun nanofiber based supercapacitor”, Journal of Micromechanics and Microengineering, vol. 23, pp. 11411-11418 (2013).
    21. C. S. Sharma et al., “Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers”, Langmuir, vol. 26(4), pp. 2218-2222 (2010).
    22. C.M. Long et al., “Carbon black vs. black carbon and other airborne materials containing elemental carbon: physical and chemical distinctions”, Environmental Pollution, vol. 181, pp. 271-286 (2013).
    23. Z. Jiang et al., “Effect of surface modification of carbon black (CB) on the morphology and crystallization of poly(ethylene terephthalate)/CB masterbatch”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 395, pp.105-115 (2012).
    24. F. Calegari et al., “Construction and evaluation of carbon black and poly(ethylene co-vinyl)acetate (EVA) composite electrodes for development of electrochemical (bio)sensors”, Sensors and Actuators B: Chemical, vol. 253, pp. 10-18 (2017).
    25. F. Wang et al., “Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance”, Applied Materials & Interfaces, vol. 8(14), pp. 9022-9029 (2016).
    26. N. Jayaprakash et al, “The rechargeable aluminum-ion battery”, Chemical Communications, vol. 47(2008).
    27. M. C. Lin et al., “An ultrafast rechargeable aluminum-ion battery”, Nature, vol. 520, pp. 324-328 (2015).
    28. 楊玨、左峻德,「電網儲能技術發展與應用現況」,臺灣經濟研究月刊,vol. 37(9), pp.74-84(2014).
    29. H. S. Min et al., “Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery”, Journal of Power Sources, vol. 178, pp. 795-800 (2008).
    30. S. Jiang et al., “Fabrication of a 3D micro/nano dual-scale array and its demonstration as the micro electrodes for supercapacitors”, Journal of Micromechanics and Microengineering, vol. 24, pp. 45001-45009 (2014).
    31. G. G. Wallace et al., “Nanobionics: the impact of nanotechnology on implantable medical bionic devices”, Nanoscale, vol. 4, pp. 4327-4347 (2012).
    32. A. Formhals, “Artifical thread and method of producing same”, U.S. Patent, 2, 187, 306, Application(1937)
    33. A. Formhals, “Method and apparatus for spinning”, U.S. Patent, 2, 160, 962, Application(1936)
    34. A. Formhals, “Process and apparatus for preparing artificial threads”, U.S. Patent, 1, 975, 504, Application(1934)
    35. G. Taylor, “Disintegration of water drops in an electric field”, Proceedings of the royal society A: mathematical, physical and engineering sciences, vol. 280, pp. 383-397(1964).
    36. S. Blonski et al., “Electrospinning of liquid jets”, Mechanics, pp. 15-21, Warsaw, Poland (2004).
    37. A. Koski et al., “Effect of molecular weight on fibrous PVA produced by electrospinning”, vol. 58, pp. 493-497(2004).
    38. S. Megelski et al., “Micro- and nanostructured surface morphology on electrospun polymer fibers”, Macromolecules, vol. 35, pp. 8456-8466(2002).
    39. H. Fong et al., “Beaded nanofibers formed during electrospinning”, Polymer, vol. 40, pp. 4585-4592(1999).
    40. D. H. Reneker et al., “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, Journal of applied physics, vol. 87, pp. 4531-4537(2000).
    41. K. K. Lee et al., “Mechnical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends”, Journal of polymer science: part B polymer physics, vol. 41, pp. 1256-1262(2003).
    42. J. K. Steach et al., “Optimization of electrospinning an SU-8 negative photoresist to create patterned carbon nanofibers and nanobeads”, Journal of Applied Polymer Science, vol. 118, pp. 405-412(2010).
    43. L. Wannatong et al., “Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene”, Polymer International, vol. 53, pp. 1851-1859(2004).
    44. K. H. Lee et al., “Influence of a mixing solvent with tetrahydrofuran and N, N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats”, Journal of polymer science part B: polymer physics, vol. 40, pp. 2259-2268(2002).
    45. 吳大誠、杜仲良、高緒珊,「奈米纖維」,五南書局(2004)。
    46. S. Liu et al., “Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries”, Energy & Environmental Science, vol. 5, pp. 9743-9746(2012).
    47. H. Lahan et al., “Active role of inactive current collector in aqueous aluminum-ion battery”, Ionics, vol. 24, pp. 2175-2180(2018).
    48. J. Wei et al., “An amorphous carbon-graphite composite cathode for long cycle life rechargeable aluminum ion batteries”, Journal of Materials Science & Technology, vol. 34(6), pp. 983-989(2018).
    49. M. C. Lin et al., “An ultrafast rechargeable aluminum-ion battery”, Nature, vol. 520, pp. 324-328 (2015).
    50. D. Y. Wang et al., “Advanced rechargeable aluminum ion battery with a high-quality natural graphite cathode”, Nature Communications, vol. 8, Article number: 14283(2017).
    51. H. Chen et al., “Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life”, Applied Sciences and Engineering, vol. 3(2017).
    52. H. Sun et al., “A new aluminium-ion battery with high voltage, high safety and low cost”, Chemical Communications, vol. 51, pp. 11892-11895(2015).
    53. H. Li et al., “A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries”, Nano Energy, vol. 56, pp. 100-108(2019).
    54. S. Wang et al., “High-performance aluminum-ion battery with CuS@C Microsphere Composite Cathode”, ACS Nano, vol. 11, pp. 469-477(2016).
    55. H. Lahan et al., “An approach to improve the Al3+ ion intercalation in anatase TiO2 nanoparticle for aqueous aluminum-ion battery”, Ionics, vol. 24, pp. 1855-1860(2018)
    56. J. Liu et al., “Nanosphere-rod-like Co3O4 as high performance cathode material for aluminium ion batteries”, Journal of Power Sources, vol. 422, pp. 49-56(2019).
    57. A. Rose et al., “Investigation of cyclic voltammetry of graphene oxide/polyaniline/polyvinylidene fluoride nanofibers prepared via electrospinning”, Materials Science in Semiconductor Processing, vol. 31, pp. 281-286(2015).
    58. T. A. Silva et al., “Electrochemical Biosensors Based on Nanostructured Carbon Black: A Review”, Journal of Nanomaterials, vol. 2017, Article ID 4571614.
    59. S. Mahajan, “Encyclopedia of Materials: Science and Technology” (2001).
    60. S. Wang et al., “High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode”, ACS Nano, vol. 11, pp. 469-477(2016).
    61. http://curiosoando.com/que-es-el-grafeno
    62. K. S. Novoselov et al., “Electric field effect in atomically thin carbon films”, Science, vol. 306, pp. 666-669(2004).
    63. http://nobelprize.org/nobel_prizes/physics/laureates/2010/
    64. C. Y. Su, Graphene: The applications in optical electronics and thermal management, SumKen (2013).
    65. C. Lee et al., “Measurement of the elastic properties amd intrinsic strength of monolayer graphene”, Science, vol. 321, pp. 385-388(2008).
    66. R. R. Nair et al., “Fine structure constant defines visual transparency of graphene”, Science, vol. 320, pp. 1308-1315(2008)/
    67. H. Huang et al., “Graphene aerogel derived compact films for ultrafast and high-capacity aluminum ion batteries”, Energy Storage Materials, (2019).
    68. X. Zhang et al., “Flower‐like Vanadium Suflide/Reduced Graphene Oxide Composite: An Energy Storage Material for Aluminum‐Ion Batteries”, vol. 11, pp. 709-715(2017).
    69. C. Liu et al., “Graphene-based supercapacitor with an ultrahigh energy density”, Nano letters, vol. 10, pp. 4863-4868(2010).
    70. H. Chen et al., “A Defect‐Free Principle for Advanced Graphene Cathode of Aluminum‐Ion Battery”, Advanced Materials, vol. 29, 1605958(2017).
    71. X. Huang et al., “Free-standing monolithic nanoporous graphene foam as a high performance aluminum-ion battery cathode”, Journal of Materials Chemistry A, vol. 5, 19416(2017).

    無法下載圖示 電子全文延後公開
    2024/08/26
    QR CODE