簡易檢索 / 詳目顯示

研究生: 莊英發
Jhuang, Ying-Fa
論文名稱: 探索學習模式與提示策略對國小學生擴增實境遊戲式學習之學習成效、動機及態度的影響
The Effects of Types of Inquiry-based Learning and Prompting Strategy on Augmented Reality Game-based Learning Performance, Motivation and Attitude for Elementary School Students
指導教授: 陳明溥
Chen, Ming-Puu
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 127
中文關鍵詞: 科學學習擴增實境遊戲式學習探索學習模式提示策略
英文關鍵詞: scientific learning, augmented reality, game-based learning, inquiry-based learning, prompt strategy
DOI URL: http://doi.org/10.6345/NTNU202000593
論文種類: 學術論文
相關次數: 點閱:187下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討探索學習模式及提示策略對於學生在擴增實境遊戲式學習環境中,槓桿單元知識概念的學習成效、學習動機及學習態度之影響。研究對象為國小五年級學生,有效樣本120人。本研究使用因子設計之準實驗研究法,自變項為「探索學習模式」和「提示策略」;「探索學習模式」分為結構式探索與引導式探索,「提示策略」分為圖像提示與符號提示。依變項為「槓桿單元學習成效」、「自然科學習動機」及「科學學習態度」;「槓桿單元學習成效」分為知識記憶、知識理解及知識應用共三個面向,「自然科學習動機」分為自我效能、主動學習策略、學習價值、表現目標、成就目標及學習環境刺激共六個面向,「科學學習態度」分為科學變化性、科學有性、科學學習過程、科學理論價值、科學有用性、科學喜好度、科技易用性及科技有用性共八個面向。
    研究結果發現:在學習成效方面,(1) 「引導試探索-符號提示」組學生在知識應用表現最佳;學習動機方面,(2)各實驗組學生對於學習活動皆抱持正向動機表現,其中符號提示組學生,在接受引導式探索之學習動機表現顯著優於接受結構式探索;學習態度方面,(3)各實驗組學生對於學習活動皆抱持正向態度表現;其中引導式探索組學生,接受符號提示在科學變化性、科學有限性及科學有用性的學習態度顯著優於圖像提示。

    The purpose of this study was to investigate the effects of types of inquiry-based learning (Structured inquiry vs. Guided inquiry) and prompting strategy (Iconic prompting vs. Symbolic prompting) on elementary school students learning performance, motivation, and attitude in learning of lever principle through Augmented Reality digital game. A quasi-experimental research design was employed in the study. The participants were 145 fifth graders and the effective sample size was 120. The independent variables were types of game-based inquiry learning and prompting strategy. The dependent variables were students’ lever learning performance, motivation, and attitude.
    The results revealed that (a) for the learning performance, when receiving the guided-inquiry learning the symbolic group outperformed the iconic group in knowledge application performance; (b) for motivation, all participants showed positive motivation toward lever learning and particularly; on symbolic prompting group when students’ receiving guided-inquiry, leaning motivation, is better than structured-inquiry group; (c) for attitude, all participants showed positive attitude toward scientific learning; on guided-inquiry group when students’ receiving symbolic prompting, scientific changed, limited, and useful, is better than iconic prompting.

    附表目錄 iii 附圖目錄 v 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 4 第三節 研究範圍與限制 5 第四節 重要名詞釋義 7 第二章 文獻探討 10 第一節 科學學習 10 第二節 遊戲式學習 13 第三節 探索學習模式 15 第四節 提示策略 18 第三章 研究方法 22 第一節 研究對象 22 第二節 研究設計 23 第三節 實驗流程 43 第四節 研究工具 45 第五節 資料處理與分析 51 第四章 研究結果與討論 56 第一節 槓桿單元學習成效分析 56 第二節 自然科學習動機分析 64 第三節 科學學習態度分析 77 第五章 結論與建議 87 第一節 結論 87 第二節 建議 89 參考文獻 91 中文部分 92 英文部分 93 附錄 100 附錄一 自然與生活科技領域 槓桿單元學習成效測驗 102 附錄二 自然科學動機量表 104 附錄三 科學學習態度量表 107 附錄四 引導式探索學習單 110 附錄五 結構式探索學習單 119

    教育部(2010)。國民中小學九年一貫課程綱要:自然與生活科技學習領域。臺北市:教育部。
    陳定邦(2004)。鷹架教學概念在成人學習歷程上應用之研究(未出版碩士論文)。國立臺灣師範大學,臺北市。
    鄭靜瑜(2010)。資訊科技融入引導發現是教學對國小五年級不同能力學生學習成就與學習保留之研究(未出版碩士論文)。國立屏東大學,屏東市。
    賴俊安 (2012)。問題導向遊戲教學策略輔助國小自然槓桿原理課程學習效益之研究(未出版碩士論文)。國立臺中教育大學數位內容科技學系碩士論文,臺中市。
    蘇育任、黃文美(2007)。國小教師對自然科教科書天文學術語的概念研究。中華民國十八屆科學教育學術研討會論文集,彰化縣。
    Abdusselam, M. S., Kilis, S., Şahin Çakır, Ç., & Abdusselam, Z. (2018). Examining Microscopic Organisms under Augmented Reality Microscope: A 5E Learning Model Lesson. Science Activities, 55(1-2), 68-74.
    Anglin, G. J., Vaez, H., & Cunningham, K. L. (2004). Visual representations and learning: The role of static and animated graphics. Handbook of research on educational communications and technology, 2, 865-916.
    Arici, F., Yildirim, P., Caliklar, Ş., & Yilmaz, R. M. (2019). Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Computers & Education, 142, 103647.
    Ashcraft, P. G. (2006). A comparison of student understanding of seasons using inquiry and didactic teaching methods. In AIP conference proceedings (Vol. 818, No. 1, pp. 85-88). American Institute of Physics.
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
    Baker, D. R. (1985). Predictive value of attitude, cognitive ability, and personality to science achievement in the middle school. Journal of Research in Science Teaching, 22(2), 103-113.
    Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65-79.
    Bawa, P., Watson, S. L., & Watson, W. (2018). Motivation is a game: Massively multiplayer online games as agents of motivation in higher education. Computers & Education, 123, 174-194.

    Bower, M., Howe, C., McCredie, N., Robinson, A., & Grover, D. (2014). Augmented Reality in education–cases, places and potentials. Educational Media International, 51(1), 1-15.
    Brophy, J. E. (2013). Motivating students to learn: Routledge.
    Bruner, J. S., & Kenney, H. J. (1965). Representation and mathematics learning. Monographs of the Society for Research in Child Development, 30(1), 50-59.
    Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs: BSCS.
    Calle-Bustos, A. M., Juan, M. C., García-García, I., & Abad, F. (2017). An augmented reality game to support therapeutic education for children with diabetes. PloS one, 12(9).
    Chang, C. Y. (2005). Taiwanese science and life technology curriculum standards and earth systems education. International Journal of Science Education, 27(5), 625-638.
    Clark, D. B., Nelson, B. C., Chang, H. Y., Martinez-Garza, M., Slack, K., & D’Angelo, C. M. (2011). Exploring Newtonian mechanics in a conceptually-integrated digital game: Comparison of learning and affective outcomes for students in Taiwan and the United States. Computers & Education, 57(3), 2178-2195.
    Colburn, A. (2000). An inquiry primer. Science Scope, 23(6), 42-44.
    Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 189-211.
    Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Massachusetts Institute of Technology.

    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340.
    Deci, E. L., & Ryan, R. M. (1991). A motivational approach to self: Integration in personality.
    Di Serio, Á., Ibáñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students' motivation for a visual art course. Computers & Education, 68, 586-596.
    Dindar, M. (2018). An empirical study on gender, video game play, academic success and complex problem solving skills. Computers & Education, 125, 39-52.
    Erbas, C., & Demirer, V. (2019). The effects of augmented reality on students' academic achievement and motivation in a biology course. Journal of Computer Assisted Learning, 35(3), 450-458.
    Finson, K. D., & Enochs, L. G. (1987). Student attitudes toward science‐technology‐society resulting from visitation to a science‐technology museum. Journal of Research in Science Teaching, 24(7), 593-609.
    Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research.
    Gecu‐Parmaksiz, Z., & Delialioglu, O. (2019). Augmented reality‐based virtual manipulatives versus physical manipulatives for teaching geometric shapes to preschool children. British Journal of Educational Technology, 50(6), 3376-3390.
    Gee, J. P. (2003). What video games have to teach us about learning and literacy. Computers in Entertainment (CIE), 1(1), 20-20.
    Gee, J. P. (2004). Situated language and learning: A critique of traditional schooling. Psychology Press.
    Gee, J. P. (2007). Good video games+ good learning: Collected essays on video games, learning, and literacy. Peter Lang.
    Gee, J. P. (2012). The old and the new in the new digital literacies. In The Educational Forum (Vol. 76, No. 4, pp. 418-420). Taylor & Francis Group.
    Hanrahan, M. (1998). The effect of learning environment factors on students’ motivation and learning. International Journal of Science Education, 20(6), 737-753.
    Henderson, S., & Feiner, S. (2010). Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE transactions on visualization and computer graphics, 17(10), 1355-1368.
    Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and. Educational Psychologist, 42(2), 99-107.
    Jahnke, I., Bergström, P., Mårell-Olsson, E., Häll, L., & Kumar, S. (2017). Digital didactical designs as research framework: iPad integration in Nordic schools. Computers & Education, 113, 1-15.
    Ke, F. (2016). Designing and integrating purposeful learning in game play: A systematic review. Educational Technology Research and Development, 64(2), 219-244.
    Kerawalla, L., Luckin, R., Seljeflot, S., & Woolard, A. (2006). “Making it real”: exploring the potential of augmented reality for teaching primary school science. Virtual Reality, 10(3-4), 163-174.
    Kistner, S., Vollmeyer, R., Burns, B. D., & Kortenkamp, U. (2016). Model development in scientific discovery learning with a computer-based physics task. Computers in Human Behavior, 59, 446-455.
    Klopfer, E., Osterweil, S., & Salen, K. (2009). Moving learning games forward. cambridge, MA: The Education Arcade.
    Law, V., & Chen, C. H. (2016). Promoting science learning in game-based learning with question prompts and feedback. Computers & Education, 103, 134-143.

    Liu, P. H. E., & Tsai, M. K. (2013). Using augmented‐reality‐based mobile learning material in EFL English composition: An exploratory case study. British Journal of Educational Technology, 44(1), E1-E4.
    Marangunić, N., & Granić, A. (2015). Technology acceptance model: a literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81-95.
    Martin, M. O., Mullis, I. V., Gonzalez, E. J., & Chrostowski, S. J. (2004). Findings from IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. TIMSS 2003 International Science Report: ERIC.
    Martín-Gutiérrez, J., Saorín, J. L., Contero, M., Alcañiz, M., Pérez-López, D. C., & Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics, 34(1), 77-91.
    McGonigal, J. (2011). Reality is broken: Why games make us better and how they can change the world. Penguin.
    Metcalf, S. J., Reilly, J. M., Kamarainen, A. M., King, J., Grotzer, T. A., & Dede, C. (2018). Supports for deeper learning of inquiry-based ecosystem science in virtual environments-Comparing virtual and physical concept mapping. Computers in Human Behavior, 87, 459-469.
    Moore, R. W., & Foy, R. L. H. (1997). The scientific attitude inventory: A revision (SAI II). Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 34(4), 327-336.
    Moore, R. W., & Sutman, F. X. (1970). The development, field test and validation of an inventory of scientific attitudes. Journal of Research in Science Teaching, 7(2), 85-94.
    Mullis, I. V., & Martin, M. O. (2008). Overview of TIMSS 2007. Chestnut Hill, MA: TIMSS & PIRLS.

    Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576.
    Oh, S., So, H. J., & Gaydos, M. (2017). Hybrid augmented reality for participatory learning: The hidden efficacy of multi-user game-based simulation. IEEE Transactions on Learning Technologies, 11(1), 115-127.
    Oliveira, A. W., & Barnes, E. M. (2019). Elementary students’ socialization into science reading. Teaching and Teacher Education, 81, 25-37.
    Petersen, N., & Stricker, D. (2015). Cognitive augmented reality. Computers & Graphics, 53, 82-91.
    Pintrich, P., & Schunk, D. (1996). The role of expectancy and self-efficacy beliefs. In Motivation in education: Theory: research & applications.
    Pruitt, S. L. (2014). The next generation science standards: The features and challenges. Journal of Science Teacher Education, 25(2), 145-156.
    Roth, K. J. (2006). Teaching science in five countries: Results from the TIMSS 1999 video study: Statistical analysis report: US Department of Education, National Center for Education Statistics.
    Sahin, D., & Yilmaz, R. M. (2020). The effect of Augmented Reality Technology on middle school students' achievements and attitudes towards science education. Computers & Education, 144, 103710.
    Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13-35.
    Sherin, B. (2006). Common sense clarified: The role of intuitive knowledge in physics problem solving. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 43(6), 535-555.
    Shute, V. J., D’Mello, S., Baker, R., Cho, K., Bosch, N., Ocumpaugh, J., … Almeda, V. (2015). Modeling how incoming knowledge, persistence, affective states, and in-game progress influence student learning from an educational game. Computers in Education, 86, 224–235.
    Siegler, R. S. (1983). How knowledge influences learning: What children already know about scientific and mathematical concepts influences how they acquire additional information. American Scientist, 71(6), 631-638.
    Sivan, E. (1986). Motivation in social constructivist theory. Educational psychologist, 21(3), 209-233.
    Squire, K. D., & Jan, M. (2007). Mad City Mystery: Developing scientific argumentation skills with a place-based augmented reality game on handheld computers. Journal of science education and technology, 16(1), 5-29.
    Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5). Boston, MA: Pearson.
    Tuan*, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students' motivation towards science learning. International Journal of Science Education, 27(6), 639-654.
    Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478.
    Von Glasersfeld, E. (1998). Cognition, construction of knowledge, and teaching. In Constructivism in science education (pp. 11-30): Springer.
    Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes. Harvard university press.
    Windschitl, M. (2003). Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice? Science Education, 87(1), 112-143.
    Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89-100.
    Wouters, P., Van Nimwegen, C., Van Oostendorp, H., & Van Der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 105(2), 249.
    Young, M. F., Slota, S., Cutter, A. B., Jalette, G., Mullin, G., Lai, B., ... & Yukhymenko, M. (2012). Our princess is in another castle: A review of trends in serious gaming for education. Review of Educational Research, 82(1), 61-89.
    Zhang, P., Aikman, S. N., & Sun, H. (2008). Two types of attitudes in ICT acceptance and use. Intl. Journal of Human–Computer Interaction, 24(7), 628-648.

    下載圖示
    QR CODE