簡易檢索 / 詳目顯示

研究生: 林于庭
Lin, Yu-Ting
論文名稱: 氧化鈥鋅薄膜的磁光與電性
Magneto-optical and Electric Properties of Ho-doped ZnO Thin Films
指導教授: 駱芳鈺
Lo, Fang-Yuh
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 76
中文關鍵詞: 氧化鋅脈衝雷射蒸鍍磁光電性
英文關鍵詞: zinc oxide, Holmium, pulsed laser deposition, magneto-optical Faraday effect, electric property
DOI URL: http://doi.org/10.6345/NTNU202001151
論文種類: 學術論文
相關次數: 點閱:72下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討脈衝雷射蒸鍍法在c方向藍寶石基板上所製備之氧化鈥鋅薄膜(Ho: ZnO)的結構、光學、磁和磁光,及導電特性。氧化鈥鋅薄膜的製備條件為氧壓3×10-1 mbar,基板溫度525 ℃,雷射波長266 nm,雷射能量密度2.0 J/cm2,鈥的摻雜比例0~10 原子莫爾濃度(at. %)。
    X光繞射光譜和拉曼散射光譜顯示氧化鈥鋅薄膜沒有其他雜質或晶相存在,代表薄膜中鈥原子成功取代了鋅原子。隨摻雜比例增加後,晶格常數與晶粒大小會變小,表示鈥原子(0.904 Å)取代鋅原子(0.74 Å)過程中產生缺陷造成薄膜結構變差。摻雜5及8 at. %之氧化鈥鋅薄膜的拉曼散射光譜還包含Ho 4f軌域5S2→5I8及5F4→5I8能階的螢光訊號。光致螢光光譜顯示純氧化鋅(Ho: 0 at. %)有很強的近能隙發光,隨摻雜比例增加,近能隙的發光變弱,缺陷的發光變強,從光致螢光光譜可以辨認出氧空缺、鋅空缺、鋅間隙等缺陷。
    SQUID的結果顯示在T = 5與300 K氧化鈥鋅都呈現順磁性,飽和磁矩隨摻雜比例增加而變大,在8 at. %達最大值120 emu/cm3。磁矩和溫度關係結果表明,薄膜磁矩在2~100 K的範圍內都快速下降,在150 K後趨於平緩,且在40~60 K的地方有很強的氧退吸附訊號,若扣除掉氧退吸附的訊號,推測所有薄膜皆不具磁有序特性。磁光光譜顯示所有氧化鈥鋅薄膜皆為順磁性,其法拉第旋轉角對磁場的斜率隨波長越大而變小,此外氧化鈥鋅薄膜的Verdet常數數值隨波長增長變小,大約降低86 %。
    從電流-電壓特性曲線可以看到所有氧化鈥鋅薄膜電極皆符合歐姆定律。且在摻雜之後電阻率從0.022 Ω-cm上升到0.221 Ω-cm,表示摻雜和產生的缺陷會增加電阻率。

    In this paper, holmium-doped zinc oxide (Ho:ZnO) thin films are grown by pulsed-laser deposition on c-oriented sapphire substrates with Ho concentration ranging from 0 to 10 atomic percent. During deposition, the oxygen partial pressure is 3×10-1 mbar, the substrate temperature is 525 °C, the laser wavelength and energy fluence are 266 nm and 2.0 J/cm2, respectively. The structural, luminescent, magnetic, and magneto-optical properties as well as electrical resistivity were investigated.
    X-ray diffraction and Raman scattering spectra show Ho incorporation into ZnO without any secondary phase. The c lattice constant and grain size becomes smaller as Ho dopant concentration increases, which is attributed to defect formation during growth. Moreover, luminescence of Ho 4f 5S2→5I8 and 5F4→5I8 transition are also observed for thin films of 5 and 8 at. % of Ho doping in Raman scattering spectra.
    In Photoluminescence (PL) spectra, ZnO shows strong near-band-edge (NBE) emission at both T = 5 K and T = 300 K. As Ho content increases, NBE peaks becomes weaker which defect emission peaks becomes stronger. Oxygen vacancy, zinc vacancy and zinc interstitial are identified from PL spectra of Ho-doped thin films.
    Magnetization loops measured by superconducting quantum interference device at T = 5 and 300 K reveal only paramagnetism from all Ho:ZnO thin films. Other than strong oxygen desorption characteristic between 40 and 60 K, temperature dependence of magnetization of Ho:ZnO thin films also not show any magnetic ordering.
    Magneto-optical Faraday effect at room temperature exhibit paramagnetic behavior for all Ho:ZnO thin films for wavelength between 380 and 700 nm. Verdet constant of Ho:ZnO thin films decrease with increasing wavelength.
    III
    Current-voltage curves show that all electrode on Ho:ZnO thin films are ohmic contact. The resistivity does not change with current, but increases after Ho cncoporation. This increase in resistivity is attributed to defects in Ho:ZnO thin films.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 第二章 背景知識 7 2.1 氧化鋅(zinc oxide)、鈥(Holmium)及藍寶石基板(sapphire)性質 7 2.1.1 氧化鋅(zinc oxide) 7 2.1.2 鈥(Holmium) 7 2.1.3 藍寶石基板(sapphire) 9 2.2 脈衝雷射蒸鍍法(Pulsed Laser Deposition) 10 2.2.1 脈衝雷射蒸鍍法原理 10 2.2.2 PLD鍍膜系統 11 2.3 表面輪廓儀(Profilometer) 12 2.4 X光繞射光譜(X-ray diffraction, XRD) 13 2.4.1 X光光譜 13 2.4.2 布拉格繞射 (Bragg's diffraction) 14 2.5 拉曼散射光譜(Raman scattering spectrum) 16 2.5.1 拉曼原理 16 2.5.2 晶格振動模式 17 2.6 光致螢光光譜(Photoluminescence) 20 2.6.1 光致螢光原理 20 2.6.2 氧化鋅發光機制 22 2.6.3 光致螢光實驗過程 24 2.7 磁性物質簡介 25 2.7.1 磁性 25 2.7.2 磁性物質 25 2.8 磁光效應(Magneto-optical effect) 30 2.8.1 法拉第磁光效應原理(Magneto-optical Faraday effect) 30 2.8.2 法拉第效應理論 31 2.8.3 薄膜的法拉第旋轉角計算 32 2.9 電性簡介 32 2.9.1 電阻率與電導率(Resistivity and Conductivity) 33 2.9.2 Van der Pauw量測原理 33 2.9.3 霍爾效應(Hall effect) 34 第三章 樣品製備 38 3.1 鍍膜條件 38 3.2 靶材製備 38 3.3 基板清洗 38 3.4 鍍膜流程 39 3.5 電性量測樣品製備 39 第四章 結果討論 41 4.1 鍍膜速率分析 41 4.2 XRD結果 41 4.3 Raman結果 44 4.4 PL結果 45 4.5 SQUID結果 49 4.6 法拉第磁光結果 53 4.7 電性結果 64 第五章 結論與未來展望 67 參考資料 69 附錄 76

    1. M. Johnson and R. H. Silsbee, Interfacial charge spin-coupling: Injection and detection of spin magnetization in metal, Physics Review Letters, 55, 17 (1985).
    2. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Physics Review Letters, 61, 2472 (1988).
    3. 國立彰化師範大學陳建淼、洪連輝教授,巨磁阻,科學online高瞻自然科學教學資源平台。
    4. S. Datta and B. Das, Electronic analog of the electro-optic modulator, Applied Physics Letters, 56, 665 (1990).
    5. 許華書、黃俊榮,以3d 過渡金屬摻雜氧化物之稀磁性半導體研究,物裡雙月刊,二六卷四期,2004。
    6. Research Center for Magnetic and Spintronic Materials, Spin polarized field effect transistor (Spin-FET).
    7. 駱芳鈺,摻雜釓元素的氮化鎵薄膜的磁性質,物理雙月刊,50期,2009。
    8. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Electric-field control of ferromagnetism, Letters to Nature, 408, 944 (2000).
    9. A. M. Nazmul, S. Sugahara, and M. Tanaka, Ferromagnetism and high Curie temperature in semiconductor heterostructures with Mn δ-doped GaAs and p-type selective doping, Physical Review B, 67, 241308(R) (2003).
    10. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors, Science, 287, 1019 (2000).
    11. 王詩茵、劉鴻儒、歐信良、武東星,稀磁性氧化鋅透明導電膜的發展,台灣電子材料與元件協會,2016。
    12. K. Sato and H. Katayama-Yoshida, Material design for transparent ferromagnets with ZnO-based magnetic semiconductors, Japanese Journal of Applied Physics, 39, L555 (2000).
    13. K. Ueda, H. Tabata, and T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films, Applied Physics Letters, 79, 988 (2001).
    14. Y. M. Cho, W. K. Choo, H. Kim, D. Kim, and Y. E. Ihm, Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1-x (Co0.5Fe0.5)x O thin films, Applied Physics Letters, 80, 3358 (2002)
    15. H. Wang, Y. Chen, H. B. Wang, C. Zhang, F. J. Yang, J. X. Duan, C. P. Yang, Y. M. Xu, M. J. Zhou, and Q. Li, High resolution transmission electron microscopy and Raman scattering studies of room temperature ferromagnetic Ni-doped ZnO nanocrystals, Applied Physics Letters, 90, 052505 (2007)
    16. S. Kumar, Y. J. Kim, B. H. Koo, S. K. Sharma, J. M. Vargas, M. Knobel, S. Gautam, K. H. Chae, D. K. Kim, Y. K. Kim and C. G. Lee, Structural and magnetic properties of chemically synthesized Fe doped ZnO, Journal of Applied Physics, 105, 07C520 (2009).
    17. X. Chen, Z. Zhou, K. Wang, X. Fan, S. Hu, Y. Wang, Y. Huang, Ferromagnetism in Fe-doped tetra-needle like ZnO whiskers, Materials Research Bulletin, 44, 799 (2009).
    18. S. K. Mandal, T. K. Nath and D. Karmakar, Magnetic and optical properties of Zn1–xFexO (x=0.05 and 0.10) diluted magnetic semiconducting nanoparticles, Philosophical Magazine, 88, 265 (2008).
    19. H. Tanaka, M. Hashimoto, S. Emura, A. Yanase, R. Asano, Y.-K. Zhou, H. Bang, K. Akimoto, T. Honma, N. Umesaki, and H. Asahi, Magnetic properties of the rare‐earth-doped semiconductor GaEuN, Physics Status Solid (c) 0, 2864 (2003) and reference within
    20. N. Teraguchi, A. Suzuki, Y. Nanishi, Yi-Kai Zhou, M. Hashimoto, and H. Asahi, Room-temperature observation of ferromagnetism in diluted magnetic semiconductor GaGdN grown by RF-molecular beam epitaxy, Solid State Communications, 122, 651 (2002).
    21. H. Bang, J. Sawahata, G. Piao, M. Tsunemi, H. Yanagihara, E. Kita, and K. Akimoto, Magnetic properties of rare‐earth‐doped GaN, Physics Status Solid (c) 0, 2874 (2003).
    22. K. Fabitha and M. S. Ramachandra Rao, Ho3+ doped ZnO nano phosphor for low-threshold sharp red light emission at elevated temperatures, Journal of the Optical Society of America B, 34, 2485 (2017).
    23. G. M. Rai, M. A. Iqbal, Y. Xu, I. G. Will, and W. Zhang, Influence of rare earth Ho3+ doping on structural, microstructure and magnetic properties of ZnO bulk and thin films systems, Chinese Journal of Chemical Physics, 24, 353 (2011).
    24. S. Goel, N. Sinha, and B. Kumar, 3D hierarchical Ho-doped ZnO micro-flowers assembled with nanosheets: A high temperature ferroelectric material, Physica E: Low-dimensional Systems and Nanostructure, 105, 29 (2019).
    25. 葉育廷,脈衝雷射蒸鍍法製備氧化鈥鋅薄膜的探討:結構、光學與磁性研究,國立臺灣師範大學(碩士論文),2016。
    26. M. Akyol, A. Ekicibil, and K. Kiymac, DC magnetic properties of the Ho doped ZnO compounds, Journal of Superconductivity and Novel Magnetism, 26, 3257 (2013).
    27. S. Singh, J.N. Divya Deepthi, B. Ramachandran, and M.S. Ramachandra Rao, Synthesis and comparative study of Ho and Y doped ZnO nanoparticles, Materials Letters, 65, 2930 (2011).
    28. M. Novotny, P. Hruska, P. Fitl, E. Maresova, S. Havlova, J. Bulir, L. Fekete, R. Yatskiv, M. Vrnata, J. Cizek, M.O. Liedke, and J. Lancok, Investigation of optical properties and defects structure of rare earth (Sm, Gd, Ho) doped zinc oxide thin films prepared by pulsed laser deposition, Acta Physica Polonica A, 137, 215 (2020).
    29. C. Xia, C. Hu, Y. Tian, P. Chen, B. Wan, and J. Xu, Room temperature ferromagnetic properties of Fe-doped ZnO rod arrays, Solid State Sciences, 13, 388 (2011).
    30. T. Minami, S. Ida, T. Miyata, and Y. Minamino, Transparent conducting ZnO thin films deposited by vacuum arc plasma evaporation, Thin Solid Films, 445, 268 (2003).
    31. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, d H. Morkoç, A comprehensive review of ZnO materials and devices, Journal Applied Physics, 98, 041301 (2005).
    32. 化學生活lifechem。檢自:https://www.lifechem.tw/blog/180302。
    33. D. Jiles, Introduction to magnetism and magnetic materials, Chapman and hall (1991).
    34. Wikipedia, Holmium(Ⅲ) oxide.
    35. Y.-Z. Liu, M.J. Ying, X.L. Du, J.F. Jia, Q.K. Xue, X.D. Han, Z. Zhang, The 30° rotation domains in wurtzite ZnO films, Journal of Crystal Growth, 290, 631 (2006).
    36. P. R. Willmott and J. R. Huber, Pulsed laser vaporization and deposition, Reviews of Modern Physics, 72, 315 (2000).
    37. A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient, Journal of Applied Physics, 90, 5661 (2001).
    38. 宵定全、朱建國、朱基亮、申林,薄膜物理與器件,國防工業出版社,2011。
    39. R. Eason, Pulsed laser deposition of thin films: applications-led growth of functional materials, Wiley-Interscience publication (2007).
    40. 謝宗均,氧化釓鋅薄膜在不同鍍膜氧壓下的結構、光學與磁性,國立台灣師範大學(碩士論文),2015。
    41. 林建良,脈衝雷射沉積法製備釔銩鐵石榴石薄膜的探討:結構、光學與磁性研究,國立台灣師範大學(碩士論文),2018。
    42. X-RAY繞射基礎原理介紹。檢自:http://www.excellence.fju.edu.tw/plan/2.1.1.c/content05/html/41.htm#X%E5%85%89%E7%9A%84%E7%94%A2%E7%94%9F_。
    43. B. D. Cullity, Element of X ray diffraction, Addison-Wesley Publishing, Second edition (1978).
    44. 劉源俊,東吳大學量子物理。
    45. 科學online,X-光繞射與布拉格定律,檢自:https://highscope.ch.ntu.edu.tw/wordpress/?p=41141。
    46. Wikipedia, Raman spectroscopy.
    47. 章樹林,拉曼散射學與低維度奈米半導體。
    48. 大川光學股份有限公司,拉曼光譜原理。
    49. 謝宜暾,氧化鋅摻雜銅及鎳之物性研究,國立台南大學(碩士論文),2006。
    50. 姚壬茨,溫度與氧壓對氧化鋅摻雜釓的光學性質與磁性影響,國立台灣師範大學(碩士論文),2019。
    51. R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, and M. J. Callahan, Temperature dependence of Raman scattering in ZnO, Physics Review B, 75, 165202 (2007).
    52. J. Yu, C. Lei, H. He, S. Yan, Y. Hu, H. Wu, Raman spectra of RE2O3 (RE=Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y): laser-excited luminescence and trace impurity analysis, Journal of Rare Earths, 32, 1 (2014).
    53. 林建霖,以有機化學氣相沉基法成長的m平面氮化銦鎵/氮化鎵量子井之光學特性,國立中山大學(碩士論文),2008。
    54. 謝嘉民、賴一凡、林永昌、枋志堯,光激發螢光量測的原理、架構及應用,科儀新知,第二十六卷第六期,2005。
    55. 蔡逸凡,氧化鋅鎂合金之電子-聲子交互作用研究,國立高雄大學(碩士論文),2013。
    56. P. Misra, Optical polarization anisotropy in nonpolar GaN thin films due to symmetry and anisotropic strain, daktaro disertacija, Humboldt-Universität Berlin, 62 (2005).
    57. J. Simmons and K. Potter, Optical materials, Academic Press (1999).
    58. J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, and K.V. Rao, P-type ZnO materials: theory, growth, properties and devices, Progress in Materials Science, 58, 874 (2013).
    59. B. X. Lin, Z. X. Fu, and Y. B. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Applied Physics Letters, 79, 943 (2011).
    60. G. Bertotti, Hysteresis in Magnetism, Academic Press (1998).
    61. 周啟,磁性材料,國立中山大學物理系。
    62. 杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓育泯,磁性基本特性及磁性材料應用,國立台灣大學化學系。
    63. David K. Cheng, Field and wave electromagnetics, 2nd edition, Pearson (1989).
    64. P. Bhattacharya, R. Fornari and H. Kamimura, Comprehensive semiconductor science and technology, Elsevier Science (2011).
    65. F. Oliveira, Faraday effect and other magneto-optical effects in semiconductors, Universidade do Minho (2011).
    66. Donald A. Neamen, Semiconductor physics and devices: basic principles, fourth edition, Mc Graw Hill (2012).
    67. L. J. Van der Pauw, A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape, Philips Technical Review, 20, 220 (1958).
    68. U. Eckern, C. Gorini, R. Raimondi, and S. Tölle, Room-temperature transport properties of spin-orbit coupled Fermi systems: spin thermoelectric effects, Cornell University (2016).
    69. E.H. Hall, On the new action of magnetism on a permanent electric current, Philosophical Magazine, 10, 301 (1880).
    70. Y. Niimi and Y. Otani, Reciprocal spin Hall effects in conductors the strong spin–orbit coupling: A review, Reports on Progress in Physics, 78,12 (2015).

    下載圖示
    QR CODE