簡易檢索 / 詳目顯示

研究生: 陳彥翔
Chen, Yan-Xiang
論文名稱: 運用創造思考策略於6E模式實施幼兒STEAM實作課程以探討學習成效之研究
Using Creative Thinking Skills in 6E Model to Implement STEAM Hands-on Activity for Children and to Explore the Student’s Learning Effectiveness
指導教授: 蕭顯勝
Hsiao, Hsien-Sheng
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 156
中文關鍵詞: 幼兒STEAM6E威廉斯創造思考策略實作技能精細動作技能行為序列分析
英文關鍵詞: Preschool STEAM, 6E Model, Creativity Thinking Skills, Hands-on Skills, Fine Motor Skills, Behavior Sequential Analysis
DOI URL: http://doi.org/10.6345/NTNU202001623
論文種類: 學術論文
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來幼兒STEAM(Science, Technology, Engineering, Art and Mathematics)教育議題眾所矚目。根據過往研究推論,於幼兒階段實施STEAM相關課程,不僅有益於學童整合、應用知識的能力,更有益於問題解決、批判思考、創造力等能力培養。除此之外,亦能提升幼兒未來相關學科學習的動機。甚至於動實作過程中,有助於幼兒的精細動技能發展。故整體而言,STEAM的課程對於幼兒學習發展益處,是無庸置疑的。
    雖然幼兒STEAM教育為當前熱門議題,但其相關實證研究卻少之又少。此外過去研究發現,缺一套明確的教學流程架構及策略,為當前STEAM無法於幼兒園順利推動主因之一。因此本研究旨針對此缺口,嘗試6E模式並搭配威廉斯創造思考策略運用,開發幼兒適用的STEAM動手實作課程。除了藉以提升學童知識整合運用能力外,更激發學童於STEAM學習上的創造力行為表現。
    本研究以準實驗法進行,並分有實驗組(運用創造思考策略於6E模式教學),及對照組(傳統式教學)。兩組學童皆進行相同內容、相同時數的課程活動,並於課程結束後針對其精細動作技能、實作技能,以及行為序列分析,以了解不同教學模式下對於學童整體學習成效之差異。根據最後研究結果發現:(1)兩組學童於精細動作技能皆有所進步;(2)實驗組學童實作技能總體優於對照組;(3)實驗組於「問題解決」和「嘗試不同組合、組裝方式」之間行為互相轉移,即代表學童較能掌握整體知識變通力,進而提升問題解決的流暢力。因此根據實作技能之解決方案測驗結果,發現實驗組學童表現優於對照組學童(4)實驗組於「製作組裝」與「創意行為表現」之間互相轉移,即代表實驗組學童於創作過程中,較能展現其創意、獨創想法,並實現於作製作、美化上,且根據實作技能之創新性評比結果亦發現,由於之間轉換頻率頻繁,使實作創新性部分優於對照組學童。

    In recent years, preschool STEAM (Science, Technology, Engineering, Art and Mathematics) education have been much attention by educator. There have been several study indicate that based on STEAM hands-on activity can bring a lot of advantages for children. Such as improving problem solving abilities, Computational thinking, and creativity. Moreover, it can not only improve children motivation of learning STEM related subjects in the future, but also improve children’s fine motor skills.
    Although STEAM hands-on activity can bring a lot of benefit. The main challenge for STEAM education is lack of one clear and appropriate teaching method and strategy, which leads to teacher not know how to plan it. Therefore, this study tried to use the 6E learning model and Creativity Thinking skills to implement STEAM hands-on activity for children, and tried to explore children learning effectiveness.
    This study adopted a quasi-experimental design. The independent variables are two different teaching method (Using Creativity Thinking Skills in 6E model and traditional teaching). All of the student have the same learning activity and product making. The results show that: (1) All of the children improve their fine motor skills. (2) The hands-on ability of children in experimental group is better than control group children; (3) Experimental group children have transfer behavior between “problem solving" and "trying different combinations and assembly methods". It can prove children have a great flexibility and fluency abilities to solve problem and experimental group’s resolution score of CPAM is higher than control group’s score; (4) Experimental group have transfers between “production and deign” and “creativity behavior performance”. It means that students in the experimental group can realize their creativity in their work, and the novelty performance of CPAM matches this result.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 5 第三節 待答問題 6 第四節 研究流程 7 第五節 名詞解釋 9 第二章 文獻探討 13 第一節 精細動作技能 13 第二節 STEAM教學 16 第三節 6E模式 21 第四節 創造力 24 第五節 實作技能 30 第六節 行為序列分析 33 第七節 文獻評析 35 第三章 研究方法 37 第一節 研究架構 37 第二節 研究對象 39 第三節 實驗設計與實施 40 第四節 教學活動設計 43 第五節 研究工具 57 第六節 資料處理與分析 67 第四章 研究結果與討論 71 第一節 精細動作技能成效 71 第二節 實作技能成效 79 第三節 行為序列分析 98 第四節 精細動作與實作技能成效相關性 108 第五章 結論與建議 113 第一節 結論 113 第二節 建議 119 第三節 研究範圍與限制 122 參考文獻 123 附錄 133 附錄一 摩天輪動手實作課程 135 附錄二 空中纜車動手實作課程 141 附錄三 旋轉木馬動手實作課程 146 附錄四 摩天輪學習單 151 附錄五 空中纜車學習單 154 附錄六 旋轉木馬學習單 155 附錄七 精細動作技能量表 156

    一、中文部分
    毛連塭、郭有遹、陳龍安、林幸台(2000)。創造力研究。臺北市:心理出版社。
    吳美慧(2002)。威廉斯創造思考教學模式教材設計對國小學童創造力認知、情意及自然科學業之影響(未出版之碩士論文)。國立臺北教育大學,臺北市。
    吳清山、林天祐(1997)。實作評量、卷宗評量、真實評量。教育資料與研究,15,68-70。
    吳靜吉(2002)。華人學生創造力的發掘與培育。應用心理研究,15,17-22。
    李堅萍(2006)。培育科技創造力應重視實作技能的教學與自我效能的激發。生活科技,39(8),21-28。
    沈姿妤(2016)。五E學習還融入幼兒軌道積木遊戲提升幼兒基本科學能力(未出版之碩士論文)。國立臺東大學,臺東市。
    周家卉(2008)。實作評量在生活科技課程實施之探討。生活科技教育月刊,41(7),51-83。
    張世慧(2018)。創造力理論、教育與技法。臺北市:五南出版社。
    教育部(2002)。創造力教育白皮書。臺北市:教育部。
    教育部(2016)。幼兒園教保活動課程大綱。臺北市:教育部。
    陳文典(2000)。實作評量的理念與實施。科學教育月刊,231,64-66。
    陳龍安(2005)。創造思考的策略與技法。教育資料集刊,30,201-265。
    盧雪梅(1998)。實作評量的應許、難題和挑戰。教育資料與研究雙月刊,20,1-5。
    賴協志(2013)。學習態度對學生學習與學校效能影響之研究。學生學習本位之學校效能整合型研究子計畫五。國家教育研究院。

    二、外文部分
    Aladé, F., Lauricella, A. R., Beaudoin-Ryan, L., & Wartella, E. (2016). Measuring with Murray: Touchscreen technology and preschoolers' STEM learning. Computers in Human Behavior, 62(1), 433-441.
    Alter-Muri, S. B. (2017). Art education and art therapy strategies for autism spectrum disorder students. Art Education, 70(5), 20-25.
    Amabile, T. (1983). The social psychology of creativity. New York, NY: Springer.
    Bakeman, R., & Quera, V. (2011). Sequential analysis and observational methods for the behavioral sciences. New York, NY: Cambridge University Press.
    Becker, D. R., Miao, A., Duncan, R., & McClelland, M. M. (2014). Behavioral self-regulation and executive function both predict visuomotor skills and early academic achievement. Early Childhood Research Quarterly, 29(4), 411-424.
    Beghetto, R. A., & Kaufman, J. C. (2014). Classroom contexts forcreativity. High Ability Studies, 25(1), 53-69.
    Besemer, S. P., & Treffinger, D. J. (1981). Analysis of creative products: Review and synthesis. The Journal of Creative Behavior, 15(3), 158-178.
    Besemer, S. P. (1998). Creative product analysis matrix: Testing the model structure and a comparison among products--three novel chairs. Creativity Research Journal, 11(4), 333-346.
    Besemer, S. P., & O'Quin, K. (1999). Confirming the three-factor creative product analysis matrix model in an American sample. Creativity Research Journal, 12(4), 287-296.
    Bonawitz, E. B., van Schijndel, T. J., Friel, D., & Schulz, L. (2012). Children balance theories and evidence in exploration, explanation, and learning. Cognitive Psychology, 64(4), 215-234.
    Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.
    Bricker, D., & Pretti-Frontczak, K. (1996). AEPS measurement for three to six years. Assessment, evaluation, and programming system for infants and children, volume 3. Baltimore, MD: Paul H. Brookes Publishing Co.
    Burke, B. N. (2014). The ITEEA 6E learning byDeSIG(TM) model. Technology and Engineering Teacher, 73(6), 14-19.
    Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, Co: BSCS, 5(1), 88-98.
    Cameron, C. E., Cottone, E. A., Murrah, W. M., & Grissmer, D. W. (2016). How are motor skills linked to children's school performance and academic achievement. Child Development Perspectives, 10(2), 93-98.
    Carlson, A. G., Rowe, E., & Curby, T. W. (2013). Disentangling fine motor skills’ relations to academic achievement: The relative contributions of visual-spatial integration and visual-motor coordination. The Journal of Genetic Psychology, 174(5), 514-533.
    Chen, J. C., Huang, Y., Lin, K. Y., Chang, Y. S., Lin, H. C., Lin, C. Y., & Hsiao, H. S. (2020). Developing a hands‐on activity using virtual reality to help students learn by doing. Journal of Computer Assisted Learning, 36(1), 46-60.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates Inc.
    Connor, A., Karmokar, S., & Whittington, C. (2015). From STEM to STEAM: Strategies for enhancing engineering & technology education. International Journal of Engineering Pedagogy, 5(2), 37-47.
    Conradty, C., & Bogner, F. X. (2019). From STEM to STEAM: Cracking the code? How creativity & motivation interacts with inquiry-based learning. Creativity Research Journal, 31(3), 284-295.
    Csikszentmihalyi, M. (1999). Handbook of creativity. England: Cambridge University Press.
    Dale, E. (1969). Audiovisual methods in teaching. New York, NY: Dryden Press.
    DeJarnette, N. K. (2018). Implementing STEAM in the early childhood classroom. European Journal of STEM Education, 3(3), 18-26.
    Dewey, J. (1938). Experience and education. New York, NY: Macmillan.
    Doron, E. (2017). Fostering creativity in school aged children through perspective taking and visual media based short term intervention program. Thinking Skills and Creativity, 23(1), 150-160.
    English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(3), 1-8.
    Fischer, U., Suggate, S. P., Schmirl, J., & Stoeger, H. (2018). Counting on fine motor skills: Links between preschool finger dexterity and numerical skills. Developmental Science, 21(4), 1-11.
    Garaigordobil, M., & Berrueco, L. (2011). Effects of a play program on creative thinking of preschool children. The Spanish Journal of Psychology, 14(2), 608-618.
    Gettings, M. (2016). Putting it all together: STEAM, PBL, scientific method, and the studio habits of mind. Art Education, 69(4), 10-11.
    Glăveanu, V. P. (2011). Children and creativity: A most (un) likelypair. Thinking Skills and Creativity, 6(2), 122-131.
    Golbeck, S. L. (2005). Spatial literacy in early childhood. Young Children, 60(6), 72-83.
    Hansel, R. R. (2015). Bringing blocks back to the kindergarten classroom. Young Children, 70(1), 44-51
    Hashim, H., Ali, M. N., & Samsudin, M. A. (2017). Adapting thinking based learning approach and 6E instructional model in implementing green STEM project. The Scholarship of Teaching and Learning 2017. 68-82.
    Hassan, M. N., Abdullah, A. H., Ismail, N., Suhud, S. N. A., & Hamzah, M. H. (2019). Mathematics curriculum framework for early childhood education based on science, technology, engineering and mathematics (STEM). International Electronic Journal of Mathematics Education, 14(1), 15-31.
    Henriksen, D., Mishra, P., & Fisser, P. (2016). Infusing creativity and technology in 21st century education: A systemic view forchange. Journal of Educational Technology & Society, 19(3), 27-37.
    Herro, D., Quigley, C., Andrews, J., & Delacruz, G. (2017). Co-measure: Developing an assessment for student collaboration in STEAM activities. International Journal of STEM Education, 4(26), 1-12.
    Hou, H. T. (2015). Integrating cluster and sequential analysis to explore learners’ flow and behavioral patterns in a simulation game with situated-learning context for science courses: A video-based process exploration. Computers in Human Behavior, 48, 424-435.
    Hsiao, H. S., Chang, C. S., Lin, C. Y., & Hu, P. M. (2014). Development of children's creativity and manual skills within digital game‐based learning environment. Journal of Computer Assisted Learning, 30(4), 377-395.
    Hsiao, H. S., Lin, Y. W., Lin, K. Y., Lin, C. Y., Chen, J. H., & Chen, J. C. (2019). Using robot-based practices to develop an activity that incorporated the 6E model to improve elementary school students’ learning performances. Interactive Learning Environments, 28(7), 1-15.
    Jamil, F. M., Linder, S. M., & Stegelin, D. A. (2018). Early childhood teacher beliefs about STEAM education after a professional development conference. Early Childhood Education Journal, 46(4), 409-417.
    Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and little: The four c model of creativity. Review of General Psychology, 13(1), 1-12.
    Kolb, D. A. (1984). Experiential learning: experience as the source of learningand development. Englewood Cliffs, NJ: Prentice‐Hall.
    Land, M. H. (2013). Full STEAM ahead: The benefits of integrating the arts into STEM. Procedia Computer Science, 20(1), 547-552.
    Leggett, N. (2017). Early childhood creativity: Challenging educators in their role to intentionally develop creative thinking in children. Early Childhood Education Journal, 45(6), 845-853.
    Liao, C. (2016). From interdisciplinary to transdisciplinary: An arts-integrated approach to STEAM education. Art Education, 69(6), 44-49.
    Luo, Z., Jose, P. E., Huntsinger, C. S., & Pigott, T. D. (2007). Fine motor skills and mathematics achievement in East Asian American and European American kindergartners and first graders. British Journal of Developmental Psychology, 25(4), 595-614.
    Marr, D., Cermak, S., Cohn, E. S., & Henderson, A. (2003). Fine motor activities in Head Start and kindergarten classrooms. American Journal of Occupational Therapy, 57(5), 550-557.
    Mclntyre, P., Fulton, J., Paton, E., Kerrigan, S., & Meany, M. (2018). Educating for creativity within higher education [Adobe Acrobat DC version]. doi:10.1007/978-3-319-90674-4
    National Research Council (2011). A framework for k-12 science education: practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
    National Science & Technology Council (2018). Charting a course for success: America’s strategy for STEM education. Washington, DC: Executive Office of the President.
    NGSS Lead States (2013). Next generation science standards: for states, by states. Washington, DC: National Academies Press.
    Oberer, N., Gashaj, V., & Roebers, C. M. (2017). Motor skills in kindergarten: Internal structure, cognitive correlates and relationships to background variables. Human Movement Science, 52(1), 170-180.
    Park, D. Y., Park, M. H., & Bates, A. B. (2018). Exploring young children’s understanding about the concept of volume through engineering design in a STEM activity: A case study. International Journal of Science and Mathematics Education, 16(2), 275-294.
    Quigley, C. F., & Herro, D. (2016). “Finding the joy in the unknown”: Implementation of STEAM teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25(3), 410-426.
    Quigley, C. F., Herro, D., & Jamil, F. M. (2017). Developing a conceptual model of STEAM teaching practices. School Science andMathematics, 117(1), 1-12.
    Ritz, J. M., & Fan, S. C. (2015). STEM and technology education: International state-of-the-art. International Journal of Technology and Design Education, 25(4), 429-451.
    Roberts, G. (2002). SET for success: the supply of people with science, technology, engineering and mathematics skills. London: HM Treasury.
    Rule, A. C., & Stewart, R. A. (2002). Effects of practical life materials on kindergartners' fine motor skills. Early Childhood Education Journal, 30(1), 9-13.
    Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26.
    Sawyer, R. K. (2017). Teaching creativity in art and design studio classes: A systematic literature review. Educational Research Review, 22(1), 99-113.
    Silvia, P. J., Beaty, R. E., Nusbaum, E. C., Eddington, K. M., Levin-Aspenson, H., & Kwapil, T. R. (2014). Everyday creativity in daily life: An experience-sampling study of “little c” creativity. Psychology of Aesthetics, Creativity, and the Arts, 8(2), 183-188.
    Sochacka, N. W., Guyotte, K. W., & Walther, J. (2016). Learning together: A collaborative autoethnographic exploration of STEAM (STEM+ the Arts) education. Journal of Engineering Education, 105(1), 15-42.
    Sternberg, R. J., & Lubart, T. I. (1991). An investment theory of creativity and its development. Human Development, 34(1), 1-31.
    Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51(7), 677-688.
    Stewart, R. A., Rule, A. C., & Giordano, D. A. (2007). The effect of fine motor skill activities on kindergarten student attention. Early Childhood Education Journal, 35(2), 103-109.
    Stöckel, T., & Hughes, C. M. (2016). The relation between measures of cognitive and motor functioning in 5 to 6 year-old children. Psychological Research, 80(4), 543-554.
    Suggate, S., Stoeger, H., & Fischer, U. (2017). Finger-based numerical skills link fine motor skills to numerical development in preschoolers. Perceptual and Motor Skills, 124(6), 1085-1106.
    Suggate, S., Pufke, E., & Stoeger, H. (2019). Children’s fine motor skills in kindergarten predict reading in grade 1. Early Childhood Research Quarterly, 47(1), 248-258.
    Sullivan, A., & Bers, M. U. (2018). Dancing robots: Integrating art, music, and robotics in Singapore’s early childhood centers. International Journal of Technology and Design Education, 28(2), 325-346.
    Tippett, C. D., & Milford, T. M. (2017). Findings from a pre-kindergarten classroom: Making the case for STEM in early childhood education. International Journal of Science and Mathematics Education, 15(1), 67-86.
    Torres-Crespo, M. N., Kraatz, E., & Pallansch, L. (2014). From fearing STEM to playing with it: The natural integration of STEM into the preschool classroom. SRATE Journal, 23(2), 8-16.
    Williams, F. E.(1972). Identifying and measuring creative potential. NJ: Educational Technology Publications.
    Williams, F. E. (1979). Assessing creativity across Williams "cube" model. Gifted Child Quarterly, 23(4), 748-756.
    Wyse, D., & Ferrari, A. (2015). Creativity and education: Comparing the national curricula of the states of the European Union and the United Kingdom. British Educational Research Journal, 41(1), 30-47.
    Yakman, G. (2008, February). STEAM education: An overview of creating a model of integrative education. Pupils' Attitudes Towards Technology (PATT-19) Conference: Research on Technology, Innovation, Design & Engineering Teaching, Salt Lake City, Utah, USA.
    Yildirim, B. (2020). Preschool STEM activities: Preschool teachers’preparation and views. Early Childhood Education Journal, 48(6), 1-14.

    無法下載圖示 電子全文延後公開
    2025/09/15
    QR CODE