簡易檢索 / 詳目顯示

研究生: 薩拉特
Sundaramoorthi Sarathkumar
論文名稱: 使用 錸(I)和釕(II)催化劑於N-吡啶基/ N-Pyrimidylindole和N-Methoxybenzamide系列物的進行具區域和立體選擇性的C(sp2)- H化學鍵官能基化;同時使用不具金屬和沒有氧化劑的氧化劑來進行分子內的C–N化學鍵官能基化
“Rhenium (I) & Ruthenium (II) Catalyst for the Regio- and Stereoselective C(sp2)−H bond functionalization of N- Pyridyl-/ N- Pyrimidylindole and N-Methoxybenzamide and Metal and Oxidant free intramolecular C-N bond formation using Oxazolineamide”
指導教授: 姚清發
Yao, Ching-Fa
口試委員: 林文偉
Lin, Wen-wei
杜玲嫻
Tu, Ling-Hsien
李文仁
Li, Wen-Ren
蘇昭瑾
Su, Chao-chin
口試日期: 2021/04/29
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 190
中文關鍵詞: 錸(I)和釕(II)催化劑C–H化學鍵的官能基化N-吡啶基-/ N-嘧啶基吲哚3-(苯基乙炔基)噁唑烷丁-2-酮N-甲氧基苯甲酰胺炔基硫烷醋酸銫新戊酸鈉無金屬和氧化劑對甲苯磺酸一水合物噁唑啉酰胺喹唑啉酮
英文關鍵詞: Rhenium (I) & Ruthenium (II) catalyst, C-H bond functionalization, Water, N-Pyridyl-/ N- pyrimidylindole, 3-(phenylethynyl)oxazolidin-2-one, N-Methoxybenzamides, Alkynylsulfane, Cesium Acetate, Sodium Pivalate, Metal & Oxidant Free, p-Toluenesulfonic acid monohydrate, Oxazolineamide
DOI URL: http://doi.org/10.6345/NTNU202100420
論文種類: 學術論文
相關次數: 點閱:56下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文的內容共分為四個章節,分別為A、B 、 C和D。
    [A] 章節的內容涵蓋四個部分。第一部分是C–H化學鍵進行官能基化的介紹;第二部分為應用錸(I)催化劑在各類型的C–H化學鍵進行官能基化反應的介紹及其分析;第三部分是介紹釕(II)催化劑來催化C–H化學鍵進行官能基化反應的探討;而最後一部分則是介紹使用各類型的過渡金屬催化劑來合成喹唑啉酮。
    [B] 章節包含幾個部分,主要是集中於屬於水溶性的 Re(I)催化劑的介紹。在溫和的條件以及使用水作為溶劑時,上述催化劑可應用於N-吡啶基/ N-嘧啶基吲哚系列物來進行具有區域和立體選擇性的碳(sp2)–氫烯基化反應,以及應用於N-嘧啶基苯胺衍生物與N-酰胺可進行N–H烯基化的反應。當使用水作為溶劑時,此催化系統具有可回收性的特性,同時也對反應機構以及動力學研究做了詳細的討論。最後是對於[Re(CO)3(H2O)3] Br催化劑的介紹及討論。
    [C] 章節是介紹在微波的條件下,釕(II)世紀可催化炔基硫烷對N-甲氧基苯甲酰胺的C–H / N–O進行活化作用。這部分同時對反應機構進行探討以及其數據進行分析。
    [D] 章節描述了在不使用金屬和氧化劑的條件下,噁唑啉酰胺可進行分子內C–N化學鍵的官能基化反應。本章還同時也對反應機構進行探討以及其數據進行分析。

    The contents of this dissertation are divided into four chapters (A, B, C & D).
    Chapter [A] is subdivided into four parts. Part one is the introduction of C-H bond functionalization. Likewise, part two is focusing on a detailed introduction and depth analysis of various types of C-H bond functionalization reaction using a rhenium (I) catalyst. Then part three is a feature introduction and numerous categories of C-H bond functionalization reaction using a Ruthenium (II) catalyst. Moreover, the final part is the introduction and synthesis of quinazolinones using various types of transition metal catalysts.
    Chapter [B] contains several parts as mainly focus on “a water-soluble rhenium (I)-catalyst for the regio- and stereoselective C(sp2)−H alkenylation of N- pyridyl/ N-pyrimidylIndole and the N−H alkenylation of N-pyrimidylaniline derivatives with ynamides” under mild conditions using water as the solvent has been described (With includes recyclability of the catalytic system and details discussion of mechanistic as well as Kinetic studies). Finally, the preparation of catalyst [Re(CO)3(H2O)3]Br & characterization.
    Chapter [C] was emphasis ruthenium (II)-catalyzed C−H/N−O bond functionalization of N- methoxybenzamides with alkynylsulfane in microwave-assisted is reported. These parts cover an exhaustive examination of mechanistic accompanied by kinetic studies to propose a logical mechanistic cycle.
    Chapter [D] is metal and oxidant-free intramolecular C-N bond formation using oxazolineamide was described. This chapter also includes with introduction and results along with mechanism and characterization data.

    Abstract of the thesis ……………………………………………………………….……..ii-iii Abbreviations ……………………………………………………………………….…..…viii-xii Chapter [A] A-I. Introduction of C-H bond functionalization………………………………..………1 A-II. Introduction and various types of C-H bond activation reaction using a Rhenium (I) catalyst………………………………………...………………1 A-III. Introduction and numerous categories of C-H bond functionalization reaction using a Ruthenium (II) catalyst……………………………….…………7 A-IV. Introduction and synthesis of quinazolinones using a various type of transition metal catalyst ……………………………………………….…………..12 Chapter [B] B-I. The C(sp2)–H Alkenylation of N–Pyridyl/ N- PyrimidylIndole and the N−H Alkenylation of N‐ Pyrimidylaniline derivatives with Ynamides using a water-dissolvable Rhenium (I) – Catalyst……………………….…………………20 B-II. Introduction ……………………………………………………………...…………20 B-III. Results and Discussion ……………………………………………………..……..21-26 B-IV. Recyclability of the catalytic system……………………………..……………….26 B-V. Intermolecular competition reaction ……………………...……………………...26 B-VI. Mechanistic studies…………………………………………………….………….26-28 B-VII. 1.1: Proposed reaction mechanism.……………………………................……..28 B-VIII. 1.1. Z- Selective N-H alkenylation of pyrimidylanilines using ynamide ….…29 B- IX. In Summery ………………………………………...…………….…...……...…..30 B- X. General Procedures …………………………………...…………………………..30 B-XI. Preparation of Catalyst [Re(CO)3(H2O)3]Br and characterization…….………31 B-XII.1 H/D-Exchange experiment…………………………………………...…………35-37 B-XIII. Kinetic isotopic experiment (parallel experiment) ……………………….…...38-40 B-XIV. Testing the Recyclability …………………………….…………………….....42-45 B-XV. Compound Characterization Data ………………...…………………..…......46-56 B-XVI. References …………………………………………………………………..…56-58 Chapter [C] C-I. Ruthenium (II)-Catalyzed C−H/N−O Activation of N-Methoxybenzamides with Alkynylsulfane Assisted by Microwave ……………………………….…59 C-II. Introduction …………………………………………………….…………...…..59 C-III. Results and Discussion …………………………………………………………60-63 C-IV. Limitations ………………………………………………………………...……63 C-V. Mechanistic studies ……………………………………………………...………64 C-VI. Proposed catalytic cycle reaction mechanism……………………………..…..65 C-VII. Conclusion ………………………………………………………………..……65 C-VIII. General Technique …………………………………………...………………66 C- IX. H/D-Exchange ……………….………………………………………………....66-69 C-X. Intermolecular KIE Experiment ……………………………………………….70 C-XI. Compound Characterization Data ……………………………...…...………..71-83 C-XII. References ………………………………………………….…………….........83-84 Chapter [D] D-I. Metal and oxidant free intramolecular C-N bond formation using oxazolineamide…………………………………………………………..…...…....85 D-II. Introduction ………………………………………………………...….……..…85 D-III. Results and Discussion………………………………………...…………...…..86-88 D-IV. Proposed Catalytic cycle Mechanism ……………………………...………….89 D-V. Conclusion …………………………………………………………….....………89 D-VI. General Procedures ……………………………………………….….…...…...89 D-VII. Compound Characterization Data ……………………………….….………90-94 D-VIII. References ………………………………………………………………..…..94-95 X- ray Crystallographic Data …………………………………………….………….96-102 1H and 13C NMR Spectral Copies ………………………………………....……...…103-188 List of Publication ………………………………………………………...…...….….189-190

    1. a) S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N. Chatani, Nature 1993, 366, 529- 531; b) C. Jia, T. Kitamura, Y. Fujiwara, Acc. Chem. Res. 2001, 34, 633- 639; c) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792- 9826; d) T. W. Lyons, M. S. Sandford, Chem. Rev. 2010, 110, 1147- 1169; e) J. A. Palmes, A. Aponick, Synthesis 2012, 44, 3699–3721; f) G. Abbiati, F. Marinelli, E. Rossi, A. Arcadi, Isr. J. Chem. 2013, 53, 856–868; g) S. Mannathan, C. H. Cheng, J. Chin. Chem. Soc. 2014, 61, 59–66; h) G. Abbiati, A. Arcadi, F. Marinelli, E. Rossi, Synthesis 2014, 46, 687–721; i) J. R. Chen, X. Q. Hu, L. Q. Lu, W. J. Xiao, Chem. Rev. 2015, 115, 5301–5365.
    2. For selected reviews on C–H bond activation, see a) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed. 2009, 48, 5094–5115; Angew. Chem. 2009, 121, 5196; b) C.-J. Li, Acc. Chem. Res. , 42, 335–344; c) O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074– 1086; d) E. Nakamura, N. Yoshikai, J. Org. Chem. 2010, 75, 6061–6067; e) L. Ackermann, Chem. Rev. 2011, 111, 1315–1345; f) C.-L. Sun, B.-J. Li, Z. J. Shi, Chem. Rev. 2011, 111, 1293–1314; g) S. H. Cho, J. Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 2011, 40, 5068–5083; h) L. McMurray, F. O'Hara, M. J. Gaunt, Chem. Soc. Rev. 2011, 40, 1885–1898; i) C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 2012, 41, 3464–3484; j) G. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651–3678; k) J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369–375; l) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 2013, 52, 11726–11743; Angew. Chem. 2013, 125, 11942; m) C. Wang, Synlett 2013, 24, 1606–1613; n) K. Gao, N. Yoshikai, Acc. Chem. Res. 2014, 47, 1208–1218; o) R. He, Z.-T. Huang, Q.-Y. Zheng, C. Wang, Tetrahedron Lett. 2014, 55, 5705–5713; p) F. Jia, Z. Li, Org. Chem. Front. 2014, 1, 194– 214; q) Y. Yang, C. Wang, Sci. China Chem. 2015, 58, 1266–1279; r) Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu, Y. Zhang, Org. Chem. Front. 2015, 2, 1107–1295. For selected reviews on C–C bond activation, see: s) M. Murakami, Y. Ito, Top. Organomet. Chem. 1999, 3, 97–129; t) C.-H. Jun, Chem. Soc. Rev. 2004, 33, 610–618; u) F. Chen, T. Wang, N. Jiao, Chem. Rev. 2014, 114, 8613–8661; v) M. Murakami, N. Ishida, J. Am. Chem. Soc. 2016, 138, 13759–13769; w) P. Chen, G. Dong, Chem. Eur. J. 2016, 22, 18290–18315; x) M. Tobisu, N. Chatani, Chem. Soc. Rev. 2008, 37, 300– 307; y) Y. Nakao, T. Hiyama, Pure Appl. Chem. 2008, 80, 1097–1107; z) A. Dermenci, J. W. Coe, G. Dong, Org. Chem. Front. 2014, 1, 567–581.
    3. For recent reviews on rhenium catalysis, see a) Y. Kuninobu, K. Takai, Chem. Rev. 2011, 111, 1938–1953; b) G. Mao, B. Jia, C. Wang, Chin. J. Org. Chem. 2015, 35, 284–293. For selected examples on rhenium catalysis: c) H. Chen, J. F. Hartwig, Angew. Chem. Int. Ed. 1999, 38, 3391–3393; Angew. Chem. 1999, 111, 3597; d) R. Hua, X. Tian, J. Org. Chem. 2004, 69, 5782–5784; e) Y. Kuninobu, Y. Nishina, T. Matsuki, K. Takai, J. Am. Chem. Soc. 2008, 130, 14062–14063; f) Q. Liu, Y.-N. Li, H.-H. Zhang, B. Chen, C.- H. Tung, L.-Z. Wu, J. Org. Chem. 2011, 76, 1444–1447; g) D. Xia, Y. Wang, Z. Du, Q.-Y. Zheng, C. Wang, Org. Lett. 2012, 14, 588–591; h) Y. Fukumoto, M. Daijo, N. Chatani, J. Am. Chem. Soc. 2012, 134, 8762–8765; i) H. Peng, A. Lin, Y. Zhang, H. Jiang, J. Zhou, Y. Cheng, C. Zhu, H. Hu, ACS Catal. 2012, 2, 163–167; j) Y. Wang, L. Zhang, Y. Yang, P. Zhang, Z. Du, C. Wang, J. Am. Chem. Soc. 2013, 135, 18048–18051; k) Q. Tang, D. Xia, X. Jin, Q. Zhang, X.-Q. Sun, C. Wang, J. Am. Chem. Soc. 2013, 135, 4628–4631; l) H. Jin, J. Xie, C. Pan, Z. Zhu, Y. Cheng, C. Zhu, ACS Catal. 2013, 3, 2195– 2198; m) Y. Sun, H. Chen, J. Chem. Theory Comput. 2014, 10, 579–588; n) X. Geng, C. Wang, Org. Lett. 2015, 17, 2434–2437; o) H. Gu, C. Wang, Org. Biomol. Chem. 2015, 13, 5880–5884; p) X. Geng, C. Wang, Org. Biomol. Chem. 2015, 13, 7619–7623; q) H. Jin, Z. Zhu, N. Jin, J. Xie, Y. Cheng, C. Zhu, Org. Chem. Front. 2015, 2, 378–382; r) X. Jin, X. Yang, Y. Yang, C. Wang, Org. Chem. Front. 2016, 3, 268–272.
    4. a) B. M. Trost, M. J. Krische, Synlett, 1998, 1–16; b) T.-Y. Luh, M.-K. Leung, K.-T. Wong, Chem. Rev. 2000, 100, 3187–3204; c) C. H. Jun, Chem. Soc. Rev. 2004, 33, 610–618; d) W. Shi, C. Liu, A. Lei, Chem. Soc. Rev. 2011, 40, 2761–2776; e) K. Huang, C.-L. Sun, Z.-J. Shi, Chem. Soc. Rev. 2011, 40, 2435–2452; f) S. G. Modha, V. P. Mehta, E. V. Van der Eycken, Chem. Soc. Rev. 2013, 42, 5042–5055; g) G. Brahmachari, RSC Adv. 2016, 6, 64676–64725.
    5. a) W. M. Czaplik, M. Mayer, J. Cvengros, A. J. von Wangelin, ChemSusChem 2009, 2, 396–417; b) C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062–5085; Angew. Chem. 2012, 124, 5150–5174; c) T. L. Mako, J. A. Byers, Inorg. Chem. Front. 2016, 3, 766–790; d) N. Hazari, P. R. Melvin, M. M. Beromi, Nat. Rev. Chem. 2017, 1, 0025; e) K. Zhao, L. Shen, Z.-L. Shen, T.-P. Loh, Chem. Soc. Rev. 2017, 46, 586–602.
    6. a) C. Jia, T. Kitamura, Y. Fujiwara, Acc. Chem. Res. 2001, 34, 633–639; b) V. Ritleng, C. Sirlin, M. Pfeffer, Chem. Rev. 2002, 102, 1731–1770; c) R. H. Crabtree, J. Organomet. Chem. 2004, 689, 4083–4091; d) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174–238; e) O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074–1086; f) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed. 2009, 48, 5094–5115; Angew. Chem. 2009, 121, 5196–5217; g) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792–9826; Angew. Chem. 2009, 121, 9976–10011; h) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147–1169; i) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212–11222; j) S. H. Cho, J. Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 2011, 40, 5068–5083.
    7. Representative reviews on Re-catalyzed reactions: a) Y. Kuninobu, K. Takai, Chem. Rev. 2011, 111, 1938–1953; b) G. Mao, B. Jia, C. Wang, Chin. J. Org. Chem. 2015, 35, 284–293; c) G. Mao, Q. Huang, C. Wang, Eur. J. Org. Chem. 2017, 3549–3564. Representative papers on Re-catalyzed C–H bond activation reactions: d) Y. Kuninobu, A. Kawata, K. Takai, J. Am. Chem. Soc. 2005, 127, 13498–13499; e) Y. Kuninobu, Y. Tokunaga, A. Kawata, K. Takai, J. Am. Chem. Soc. 2006, 128, 202–209; f) Y. Kuninobu, Y. Nishina, M. Shouho, K. Takai, Angew. Chem. Int. Ed. 2006, 45, 2766–2768; Angew. Chem. 2006, 118, 2832–2834; g) Y. Kuninobu, Y. Nishina, C. Nakagawa, K. Takai, J. Am. Chem. Soc. 2006, 128, 12376 – 12377; h) Y. Kuninobu, Y. Nishina, T. Matsuki, K. Takai, J. Am. Chem. Soc. 2008, 130, 14062–14063.
    8. Y. Kuninobu,T. Matsuki, and K. Takai, Org. Lett. 2010, 12, 2948–2950.
    9. C. Wang, M. Rueping, ChemCatChem. 2018, 10, 2681-2685.
    10. Xia, D.; Wang, Y.; Du, Z.; Zheng, Q.-Y. ; Wang, C. Org. Lett. 2012, 14, 588.
    11. a) B. D. Palmer, A. M. Thompson, R. J.; Booth, E. M. Dobrusin, A. J. Kraker, H. H.; Lee, E. A. Lunney, L. H. Mitchell, D. F. Ortwine, J. B. Smaill, L. M. Swan, W. A. Denny, J. Med. Chem. 2006, 49, 4896; b) C. Zheng, Y. Lu, J. Zhang, X. Chen, Z. Chai, W. Ma, G. Zhao, Chem. Eur. J. 2010, 16, 5853; c) J. T. Kuethe, A. Wong, I. W. Davies, Org. Lett. 2003, 5, 3721; d) M. Eitel, U. Pindur, Heterocycles 1988, 27, 2353; e) J.-J. Zhao, S.-B. Sun, S.-H. He, Q. Wu, F. Shi, Angew. Chem., Int. Ed. 2015, 54, 5460; f) U. Pindur, M. Eitel, J. Heterocyclic Chem. 1991, 28, 951.
    12. S. Prakash, Y. C. Chang, and C. H Cheng, Chem. Asian J. 2018, 13, 1664 – 1668.
    13. a) L. Ackermann, A. V. Lygin, N. Hofmann, Angew. Chem. Int. Ed. 2011, 50, 6379–6382; Angew. Chem. 2011, 123, 6503; b) B. Li, H. Feng, S. Xu, B. Wang, Chem. Eur. J. 2011, 17, 12573–12577; c) Z. Shi, Y. Cui, N. Jiao, Org. Lett. 2010, 12, 2908–2911; d) H. Zhong, D. Yang, S. Wang, J. Huang, Chem. Commun. 2012, 48, 3236–3238; e) Y. Wu, P. Sun, K. Zhang, T. Yang, H. Yao, A. Lin, J. Org. Chem. 2016, 81, 2166–2173.
    14. a) N. Guimond, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2011, 133, 643–1146; b) S. Rakshit, C. Grohmann, T. Besset, F. Glorius, J. Am. Chem. Soc. 2011, 133, 2350–2353; c) T. K. Hyster, L. Knörr, T. R. Ward, T. Rovis, Science 2012, 338, 500–503; d) B. Ye, N. Cramer, Science 2012, 338, 504– 506.
    15. Q. Tang, D. Xia, X. Jin, Q. Zhang, X. Q. Sun, and C. Wang, J. Am. Chem. Soc. 2013, 135, 4628−4631.
    16. Y. Yang, and C. Wang, Chem. Eur. J. 2019, 25, 8245 – 8248.
    17. Y. C. Chang, S. Prakash, and C. H. Cheng, Org. Chem. Front., 2019, 6, 432–436.
    18. Z. Xu, Y. Wang, Y. Zheng, Z. Huang, L. Ackermann and Z. Ruan, Org. Chem. Front., 2020, 7, 3709– 3714.
    19. X. Jin, X. Yang, Y. Yang and C. Wang, Org. Chem. Front., 2016, 3, 268–272.
    20. X. Geng and C. Wang, Org. Lett. 2015, 17, 2434−2437.
    21. (a) Diederich, F. O.; Stang, P. J. Metal-Catalyzed Cross-Coupling Reactions; Wiley−VCH: Weinheim, 1998. (b) Beller, M.; Bolm, C. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals; Wiley−VCH: Weinheim, 2004.
    22. (a) Yu, J.-Q.; Shi, Z. J. C−H Activation; Springer: Berlin, 2010. (b) Perez, P. J. Alkane C−H Activation by Single-Site Metal Catalysis; Springer: London, 2012. (c) Wu, X.-F. Transition Metal-Catalyzed Heterocycle Synthesis via C-H Activation; John Wiley & Sons: Weinheim, 2015.
    23. For selected reviews, see (a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946. (b) Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. Chem. Commun. 2015, 51, 7986. (c) Kuninobu, Y.; Sueki, S. Synthesis 2015, 47, 3823. (d) Gandeepan, P.; Cheng, C.-H. Chem. - Asian J. 2015, 10, 824. (e) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040. (f) Yang, L.; Huang, H. Chem. Rev. 2015, 115, 3468. (g) Yuan, J.; Liu, C.; Lei, A. Chem. Commun. 2015, 51, 1394. (h) Gandeepan, P.; Cheng, C.-H. Chem. - Asian J. 2016, 11, 448.
    24. Select recent reviews on metal-catalyzed C–H bond functionalizations: (a) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992–2002. (b) Willis, M. C. Chem. Rev. 2010, 110, 725–748. (c) Ackermann, L.; Potukuchi, H. K. Org. Biomol. Chem. 2010, 8, 4503–4513. (d) Daugulis, O. Top. Curr. Chem. 2010, 292, 57–84. (e) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677–685. (f) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624–655. (g) Fagnou, K. Top. Curr. Chem. 2010, 292, 35–56.
    25. Representative recent reviews on oxidative C–H bond functionalizations: (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068–5083. (b) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215–1292. (c) Chao, L.; Hua, Z.; Wei, S.; Aiwen, L. Chem. Rev. 2011, 111, 1780–1824. (d) Yoo, W.-J.; Li, C.-J. Top. Curr. Chem. 2010, 292, 281–302 and references cited therein.
    26. A review: Satoh, T.; Miura, M. Chem.;Eur. J. 2010, 16, 11212– 11222.
    27. For the elegant use of hydroxamic acid derivatives as powerful directing groups in palladium-catalyzed C–H bond transformations, see (a) Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 7190–7191. (b) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058–14059.
    28. (a) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449–6457. (b) Guimond, N.; Gouliaras, C.; Fagnou, K. J.Am.Chem. Soc. 2010, 132, 6908–6909. Direct alkenylations:(c) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350–2353. (d)Willwacher, J.; Rakshit, S.;Glorius, F. Org. Biomol.Chem. 2011, 9, 4736–4740 and references cited therein. Related reactions with oximes:(e) Parthasarathy, K.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2008, 10, 325–328. (f) Too, P. C.; Wang, Y.-F.; Chiba, S. Org. Lett. 2010, 12, 5688–5691.
    29. Selected reviews: (a) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016−9085. (b) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754−8786. (c) Ma, W.; Gandeepan, P.; Li, J.; Ackermann, L. Org. Chem. Front. 2017, 4, 1435−1467. (d) Zheng, Q.-Z.; Jiao, N. Chem. Soc. Rev. 2016, 45, 4590−4627.
    30. Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960−9009.
    31. (a) Seki, M. Org. Process Res. Dev. 2016, 20, 867−877. (b) Ackermann, L. Org. Process Res. Dev. 2015, 19, 260−269.
    32. L. Ackermann and S. Fenner, Org. Lett., 2011, 13, 6548- 6551.
    33. H. Huang, S. Nakanowatari, and L. Ackermann, Org. Lett. 2017, 19, 4620−4623.
    34. R. Boobalan, P. Gandeepan, and C. H. Cheng, Org. Lett. 2016, 18, 3314−3317.
    35. K. Ueura, T. Satoh, M. Miura, Org. Lett. 2007, 9, 1407.
    36. E. Kudo, Y. Shibata, M. Yamazaki, K. Masutomi, Y. Miyauchi, M. Fukui, H. Sugiyama, H. Uekusa, T. Satoh, M. Miura, K. Tanaka, Chem. Eur. J. 2016, 22, 14190.
    37. Z. Zhou, G. Liu, Y. Shen, X. Lu, Org. Chem. Front. 2014, 1, 1161.
    38. C. Kornhaaß, C. Kuper, L. Ackermanna, Adv. Synth. Catal. 2014, 356, 1619.
    39. K.K. Gollapelli, S. Kallepu, N. Govindappa, J. B. Nanubolu and R. Chegondi, Chem. Sci., 2016, 7, 4748–4753.
    40. L. N. Chavan, K. K. Gollapelli, R. Chegondi, and A. B. Pawar, Org. Lett. 2017, 19, 2186−2189.
    41. M. Bian, L. Ma, M. Wu, L. Wu, H. Gao, W. Yi, C. Zhang and Z. Zhou, ChemPlusChem, 2020, 85, 405- 410.
    42. N. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6908–6909.
    43. S. Wu, X. Huang, C. Fu, S. Ma, Org. Chem. Front. 2017, 4, 2002–2007.
    44. Z. Zhou, G. Liu, X. Lu, Org. Lett. 2016, 18, 5668–5671.
    45. Y. Xu, B. Li, X. Zhang and X. Fan, Adv. Synth. Catal. 2018, 360, 2613 – 2620.
    46. F. Wang, Z. Qi, Y. Zhao, S. Zhai, G. Zheng, R. Mi, Z. Huang, X. Zhu, X. He, and X. Li, Angew. Chem. Int. Ed. 2020, 59, 13288 – 13294.
    47. Mhaske, S. B.; Argade, N. P. Tetrahedron. 2006, 62, 9787−9826.
    48. Nanda, A. K.; Ganguli, S.; Chakraborty, R. Molecules 2007, 12, 2413−2426.
    49. Chan, J.-H.; Hong, J.-S.; Kuyper, L. F.; Baccanari, D. P.; Joyner, S. S.; Tansik, R. L.; Boytos, C. M.; Rudolph, S. K. J. Med. Chem. 1995, 38, 3608−3616.
    50. Kikuchi, H.; Yamamoto, K.; Horoiwa, S.; Hirai, S.; Kasahara, R.; Hariguchi, N.; Matsumoto, M.; Oshima, Y. J. Med. Chem. 2006, 49, 4698−4706.
    51. (a) Takase, Y.; Saeki, T.; Watanabe, N.; Adachi, H.; Souda, S.; Saito, I. J. Med. Chem. 1994, 37, 2106−2111. (b) Dupuy, M.; Pinguet, F.; Chavignon, O.; Chezal, J. M.; Teulade, J. C.; Chapat, J. P.; Blache, Y. Chem. Pharm. Bull. 2001, 49, 1061−1065. (c) Chandrika, P. M.; Yakaiah, T.; Rao, A. R. R.; Narsaiah, B.; Reddy, N. C.; Sridhar, V.; Rao, J. V. Eur. J. Med. Chem. 2008, 43, 846−852.
    52. Yen, M.-H.; Sheu, J.-R.; Peng, I.-H.; Lee, Y.-M.; Chern, J.-W. J. Pharm. Pharmacol. 1996, 48, 90−95.
    53. (a) Bhat, B. A.; Sahu, D. P. Synth. Commun. 2004, 34, 2169– 2176; NaHSO3: (b) López, S. E.; Rosales, M. E.; Urdaneta, N.; Godoy, M. V.; Charris, J. E. J. Chem. Research (S) 2000, 258–259; KMnO4: (c) Bakavoli, M.; Sabzevari, O.; Rahimizadeh, M. Chin. Chem. Lett. 2007, 18, 1466–1468.
    54. (a) Hikawa, H.; Ino, Y.; Suzuki, H.; Yokoyama, Y. J. Org. Chem. 2012, 77, 7046–7051; (b) Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Org. Biomol. Chem. 2012, 10, 240–243.
    55. N. Y. Kim, C.-H. Cheon / Tetrahedron Letters 55 (2014) 2340–2344.
    56. Y. Feng, Y. Li, G. Cheng, L. Wang, and X. Cui.; J. Org. Chem. 2015, 80, 7099−7107.
    57. L. Cao, H. Huo, H. Zeng, Y. Yu, D. Lu, and Y. Gong.; Adv. Synth. Catal. 2018, 360, 4764 – 4773.
    58. Joshua T. Gavin, Joel K. Annor-Gyamfi and Richard A. Bunce.; Molecules 2018, 23, 2925.

    B-XVI. References:

    1. a) Liu, S.; Zhao, F.; Chen, X.; Deng, G.‐J, Adv. Synth. Catal. 2020, 362, 3795. b) Sandtorv, A. H. Adv. Synth. Catal. 2015, 357, 2403.
    2. (a) Ding, Z.; Yoshikai, N. Mild , Angew. Chem. Int. Ed. 2012, 51, 4698. b) Palmer, B. D.; Thompson, A. M.; Booth, R. J.; Dobrusin, E. M.; Kraker, A. J.; Lee, H. H.; Lunney, E. A.; Mitchell, L. H.; Ortwine, D. F.; Smaill, J. B.; Swan, L. M.; Denny, W. A. J. Med. Chem. 2006, 49, 4896.
    3. (a) Sen, M.; Rajesh, N.; Emayavaramban, B.; Premkumar, J. R.; Sundararaju, B. Chem. Eur. J. 2018, 24, 342. (b) Sanjosé‐Orduna, J.; Sarria, J. M.; Pérez‐Temprano, T. H. Angew.Chem. Int.Ed. 2018, 57, 11369. (c) Zhou, X.; Luo, Y.; Kong, L.; Xu, Y.; Zheng, G.; Orcid, Y. L.; Li, X. Cp*Co(III)-Catalyzed Branch-Selective Hydroarylation of Alkynes via C–H Activation: Efficient Access to α-gem-Vinylindoles ACS Catal. 2017, 7, 7296.
    4. (a) Wu, X.; Li, P.; Lu, Y.; Qiao, J.; Zhao, J.; Jia, X.; Ni, H.; Kong, L.; Zhang, X.; Zhao, F. Adv. Synth. Catal. 2020, 362, 2953. (b) Li, T.; Wang, Z.; Chen, C.; Zhu, B. Adv. Synth. Catal. 2019, 361, 2855. (c) Tian, M.; Bai, D.; Zheng, G.; Chang, J.; Li, X. J. Am. Chem. Soc. 2019, 141, 9527 (d) Zhou, X.; Pan, Y.; Li, X Angew. Chem. Int. Ed. 2017, 56, 8163. (e) Li S.; Qin L.; Dong L. Org. Biomol. Chem.2016, 14, 4554. (f) Chen, X.; Hu, X. W.; Bai, S. Y.; Deng, Y.; Jiang, H. F.; Zeng, W, Org. Lett.2016, 18, 192. (g) Morioka, R.; Nobushige, K.; Satoh, T.; Hirano, K.; Miura, M, Org. Lett. 2015, 17, 3130. (h) W. Yi, J. Jia, J. Shi, J. Zhou, X. liu, Y. Song, H. E. Xu, Chem. Commun. 2015, 51, 2925. (i) Schipper, D. J.; Hutchinson, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6910.
    5. (a) Cembellín, S.; Dalton, T.; Pinkert, T.; Schäfers, F.; Glorius, F. ACS Catal. 2020, 10, 197. (b) Kumar, A.; Muniraj, N.; Prabhu, K. R. Adv. Synth. Catal. 2019, 361, 4933. (c) Liu, B.; Li, J.; Hu, P.; Zhou, X.; Bai, D.; Li, X. ACS Catal. 2018, 8, 9463. (d) Yi, X.; Chen, K.; Chen W. Adv. Synth. Catal. 2018, 360, 4497. (e) Shi, L.; Zhong, X.; She, H.; Lei, Z.; Li, F. Chem. Commun. 2015, 51, 7136. (f) G. Zheng, J. Sun, S. Zhai, X. Li. Angew. Chem. Int. Ed. 2019, 58, 5090
    6. (a) Xie, Y.; Wu, X.; Li, C.; Wang, J.; Li, J.; Liu H. J. Org. Chem. 2017, 82, 5263. (b) Zhang, W.; Wei, J.; Fu, S. M.; Lin, D.; Jiang, H.; Zeng, W. Org. Lett. 2015, 17, 1349. (c) Manikandan, R.; Jeganmohan, M. Org. Biomol. Chem. 2015, 13, 10420.
    7. (a) Thikekar, T. U.; Sun, C.‐M. Adv. Synth. Catal. 2017, 359, 3388. (b) Wong, M. Y.; Yamakawa, T.; Yoshikai, N. Org. Lett. 2015, 17, 442
    8. Li, M.; Yao, T.-Y.; Sun, S.-Z.; Yan, T.-X.; Wen, L.-R.; Zhang, L.-B. Org. Biomol. Chem. 2020, 3158.
    9. (a) Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Chem. Rev. 2018, 118, 679. (b) Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 2, 725. (c) Li, B.; Dixneuf, P. H. Chem. Soc. Rev. 2013, 42, 5744.
    10. (a) Mao, G.; Huang, Q.; Wang, C. Eur. J. Org. Chem. 2017, 3549. (b) Y. Kuninobu and K. Takai, Chem. Rev., 2011, 111, 1938. (c) Lanke V.; Prabhu K. R. Chem. Commun. 2017, 53, 5117–5120. (d) Chang, Y.-C.; Prakash, S.; Cheng, C.-H. Org. Chem. Front. 2019, 432. (e) Geng, X.; Wang, C. Org. Lett. 2015, 17, 2434.
    11. . (a) Prakash, S.; Chang, Y.‐C.; Cheng, C.‐H. Asian J. 2018, 13, 1664. (b) Jia, B.; Yang, Y.; Jin, X.; Mao, G.; Wang, C. Org. Lett. 2019, 21, 6259. (c) Geng, X.; Wang, C. Org. Biomol. Chem. 2015, 7619. (d) Kuninobu, Y.; Ohta, K.; Takai, K Chem. Commun. 2011, 10791. (e) Y. Kuninobu, P. Yu and K. Takai, Org. Lett. 2010, 12, 4274; (f) Horino, Y. Angew. Chem. Int. Ed. 2007, 46, 2144. (g) Y. Kuninobu, Y. Tokunaga, A. Kawata and K. Takai, J. Am. Chem. Soc. 2006, 128, 202. (h) Wang, C.; Rueping, M.; Chem Cat Chem, 2018, 10, 2681. (i) Xu, Z.; Wang, Y.; Zheng, Y.; Huang, Z.; Ackermann, L.; Ruan, Z. Org. Chem. Front. 2020, 3709
    12. Yang, Y.; Wang, C.; Chem. Eur. J. 2019, 25, 8245.
    13. (a) Michels, G. D.; SVEC, H. J. Inorg. Chem. 1981, 20, 3445. (b) Hemández, J. G.; Butler, I. S.; Friščić, T.; Chem. Sci. 2014, 5, 3576. (c) Lazarova, N.; James, S.; Babitch. J.; Zubieta, J.; Inorg. Chem. Commun. 2004, 7, 1023. (d) Herrick, R. S.; Ziegler, C. J.; Cetin. A.; Franklin. B. R.; Eur. J. Inorg. Chem. 2007, 1632.
    14. (a) Raihan, M. J.; Kavala, V.; Kuo, C.-W.; Raju, B. R.; Yao, C.-F.; Green Chem. 2010, 1090. (b) Raihan, M. J.; Kavala, V.; Habib, P. M.; Guan, Q.-Z.; Kuo, C.-W.; Yao, C.-F.; J. Org. Chem. 2011, 76, 424. (c) Habib, P. M.; Kavala, V.; Raju, B. R.; Kuo, C.‐W.; Huang, W.‐C.; Yao, C.‐F.; Eur. J. Org. Chem. 2009, 4503.
    15. (a) Zhu H.; Zhao, S.; Zhou, Y.; Li, C.; Liu, H. Catalysts 2020, 10, 1253. (b) Chen, J.; He, L.; Natte, K.; Neumann, H.; Beller, M.; Wu, X.‐F. Adv. Synth. Catal. 2014, 356, 2955. (c) Bai, D.; Xia, J.; Song, F.; Li, X.; Liu, B.; Liu, L.; Zheng, G.; Yang, X.; Sun, J.; Li, X.; Chem. Sci. 2019, 10, 3987. (d) Xu, F.; Li, Y. J.; Huang, C.; Xu, H. C.; ACS Catal. 2018, 8, 3820. (e) Ruan, Z.; Lackner, S.; Ackermann, L.; ACS Catal. 2016, 6, 4690. (f) Song, W.; Ackermann, L.; Chem.Comm., 2013, 49, 6638. (g) Chen, J.; Pang, Q.; Sun, Y.; Li, X.; J. Org. Chem. 2011, 76, 3523. (h) Reddy, P. V.; Annapurna, M.; Srinivas, P.; Likhar, P. R..; Kantam, M. L.; New J. Chem., 2015, 39, 3399.
    16. (a) Sun, Q.; Wang, Y.; Yuan, D.; Yao, Y.; Shen, Q.; Organometallics. 2014, 33, 994. (b) Shi, Y.; Hall, C.; Ciszewski, J. T.; Cao, C.; Odom, A. L.; Chem. Commun., 2003, 586.

    C-XII. References:
    1. (a) B. Lian, L. Zhang, D.-C. Fang, Org. Chem. Front. 2019 (doi10.1039/C9QO00154A). (b) R.‐Y. Zhu, M. E. Farmer, Y.‐Q. Chen, J.‐Q. Yu, Angew. Chem. Int. Ed. 2016, 55, 10578-10599. (c) S. Rajkumar, S. A. Savarimuthu, R. S. Kumaran, C. M. Nagaraja, T. Gandhi Chem. Commun. 2016, 52, 2509-2512. (d) L. Ackermann, A. V. Lygin, N. Hofmann, Org. Lett. 2011, 13, 3278. (e) L. Ackermann, L. Wang, A. V. Lygin, Chem. Sci. 2012, 3, 177. (f) N. Quiñones, A. Seoane, R. García-Fandiño, J. L. Mascareñas, M. Gulías, Chem. Sci. 2013, 2874-2879
    2. (a) L. Zheng, R. Hua, Chem. Rec. 2018, 18, 556-569. (b) V. P. Boyarskiy, D. S. Ryabukhin, N. A. Bokach, A. V. Vasilyev, Chem. Rev. 2016, 116, 5894-5986.
    3. (a) Y. Xu, B. Li, X. Zhang, X. Fan, Adv. Synth. Catal. 2018, 360, 2613-2620. (b) B. L. Coles-Taylor, M. S. McCallum, J. S. Lee, B. W. Michel, Org. Biomol. Chem. 2018, 16, 8639-8646. (c) X. Wu, B. Wang, Y. Zhou, H. Liu, Org. Lett. 2017, 19, 1294-1297. (d) G. Sivakumar, A. Vijeta, M. Jeganmohan, Chem. Eur. J. 2016, 22, 5899-5903. (e) K. K. Gollapelli, S. Kallepu, N. Govindappa, J. B. Nanubolu, R. Chegondi, Chem. Sci. 2016, 7, 4748-4753. (f) D.-G. Yu, F. d. Azambuja, T. Gensch, C. G. Daniliuc, F. Glorius, Angew. Chem. Int. Ed. 2014, 53, 9650 -9654. (g) N. Guimond, S.I. Gorelsky, K. Fagnou J. Am. Chem. Soc. 2011, 133, 6449-6457. (h) N. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6908-6909. (i) Patureau. F. W.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 1977-1979.
    4. (a) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879-5918. (b) G. Duarah, P. P. Kaishap, T. Begum, S. Gogoi, Adv. Synth. Catal. 2019, 361, 654–672.
    5. (a) Z. Wang, P. Xie, Y. Xia, Chinese Chem. Lett. 2018, 29, 47-53. (b) L. Ackermann, S. Fenner, Org. Lett. 2011, 13, 6548-6551.
    6. (a) Y. Kajita, S. Matsubara, T. Kurahashi, J. Am. Chem. Soc. 2008, 130, 6058-6059. (b) C.-C. Liu, K. Parthasarathy, C.-H. Cheng, Org. Lett. 2010, 12, 3518-3521. (c) W. Ma, K. Graczyk, L. Ackermann Org. Lett. 2012, 14, 6318-6321.
    7. (a) S. L. Yedage, B. M. Bhanage Green Chem. 2016, 18, 5635-5642. (b) L. Ackermann, S. Fenner Org. Lett. 2011, 13, 6548-6551. (c) B. Li, H. Feng, S. Xu, B. Wang Chem. Eur. J. 2011, 17, 12573 -12577.
    8. H. Huang, S. Nakanowatari, L. Ackermann Org. Lett. 2017, 19, 4620-4623.
    9. K. Kubo, N. Ito, I. Souzu, Y. Isomura, H. Homma US patent 1980, US4198512.
    10. K. Takaki, A. Okamura, Y. Ohshiro, T. Agawa J. Org. Chem. 1978, 43, 402-405.
    11. (a) R. Boobalan, P. Gandeepan, C.-H. Cheng Org. Lett. 2016, 18, 3314-3317. (b) S. Prakash, K. Muralirajan, C.-H. Cheng Chem. Commun. 2015, 13362-13364.
    12. L. Ackermann, A. V. Lygin, N. Hofmann, Angew. Chem., Int. Ed. 2011, 50, 6379–6382.
    13. K. Padala, M. Jeganmohan. Chem. Commun., 2014, 14573-14576.
    14. (a) N. S. Upadhyay, V. H. Thorat, R. Sato, P. Annamalai, S.-C.Chuang, C.-H. Cheng, Green Chem. 2017, 19, 3219- 3224; (b) K. K. Gollapelli, S. Kallepu, N. Govindappa, J. B. Nanubolu, R. Chegondi, Chem. Sci. 2016, 7, 4748-4753.
    15. (a) Y. Fukui, P. Liu, Q. Liu, Z.-T. He, N.-Y. Wu, P. Tian,G.Q. Lin, J. Am. Chem. Soc. 2014, 136, 15607-15614; (b) J. R. Huckins, E. A. Bercot, O. R. Thiel, T.-L. Hwang, M. M. Bio, J. Am. Chem. Soc. 2013, 135, 14492-14495.
    16. F. Yang, L. Ackermann, J. Org. Chem. 2014, 79,12070-12082.
    17. (a) D. D. Perrin, W. L. F. Armarego, In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988; b) R. Boobalan, P. Gandeepan, C.-H. Cheng, Org. Lett. 2016, 18, 3314; c) S. Prakash, K. Muralirajan, C.-H. Cheng, Chem. Commun., 2015, 51, 13362; d) Y. Yang, W. Dong, Y. Guo, R. M. Rioux, Green Chem., 2013, 15, 3170; e) S. Ding, G. Jia, J. Sun, Angew. Chem. Int. Ed. 2014, 53, 1877; f) N. Sing, N. Zheng, M. Li, J. He, J. Li, K. Ding, K. Ullah, Y. Zheng, Adv. Synth. Catal. 2019, 361, 469; g) N. Sing, N. Zheng, M. Li, J. He, J. Li, K. Ding, K. Ullah, Y. Zheng, Org. Lett. 2018, 20, 6705; h) T. Kunz, P. Knochel, Angew. Chem. Int. Ed. 2012, 51, 1958.

    D-VIII. References:

    1. K. Dhanabal.; V. Alagarsamy.; V.R. Solomon.; Bioorg. Med. Chem. 15 (2007) 235- 241.
    2. B.R. Shah, J.J. Bhatt, H.H. Patel, N.K. Undavia, P.B. Trivedi, N.C. Desai, Indian J. Chem. 34 (1995) 201- 206.
    3. T. R. Kelly.; S. Chamberland.; and R. A. Silva.; Tetrahedron 40 (1999) 2723- 2724.
    4. a) Xiao, X.-H.; Qou, G.-L.; Wang, H.-L.; Lui, L.-S.; Zheng, Y.-L.; Jia, Z.-J.; Deng, Z.-B. Chin J. Pharmacol. Toxicol. 1988, 232. b) Ma, Z. Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. Heterocycles 1997, 46, 541.
    5. Yadav, J. S.; Reddy, B. V. S. Tetrahedron Lett. 2002, 43, 1905.
    6. a) P. Loos, M. Riedrich, H.-D. Arndt, Chem. Commun. 2009, 1900– 1902; b) S. Sternativo, O. Walczak, B. Battistelli, L. Testaferri, F. Marini, Tetrahedron 2012, 68, 10536–10541; c) R. Mossetti, T. Pirali, D. Saggiorato, G. C. Tron, Chem. Commun. 2011, 47, 6966–6968; d) K. Uchida, T. Ogawa, Y. Yasuda, H. Mimura, T. Fujimoto, T. Fukuyama, T. Wakimoto, T. Asakawa, Y. Hamashima, T. Kan, Angew. Chem. 2012, 124, 13022–13025; Angew. Chem. Int. Ed. 2012, 51, 12850–12853; e) K. M. Laemmerhold, B. Breit, Angew. Chem. 2010, 122, 2417–2420; Angew. Chem. Int. Ed. 2010, 49, 2367–2370.
    7. 7. H. Takeuchi, S. Hagiwara, S. Eguchi, Tetrahedron 1989, 45, 6375–6386.
    8. 8. S. Eguchi, T. Suzuki, T. Okawa, Y. Matsushita, J. Org. Chem. 1996, 61, 7316–7319.
    9. a) F. He, B. M. Foxman, B. B. Snider, J. Am. Chem. Soc. 1998, 120, 6417–6418; b) B. B. Snider, M. V. Busuyek, Tetrahedron 2001, 57, 3301–3307; c) N. H. Al- Said, L. S. Al-Qaisi, Tetrahedron Lett. 2006, 47, 693– 694.
    10. P. Cledera, C. AvendaÇo, J. C. Men_ndez, J. Org. Chem. 2000, 65, 1743–1749.
    11. L. Cao.;Hengrui Huo.; Haipeng Zeng.; Yu Yu.; Dengfu Lu.; and Yuefa Gong.; Adv. Synth. Catal. 2018, 360, 4764 – 4773.
    12. Y. Feng.; Y. Li.; G. Cheng.; L. Wang.; and X. Cui.; J. Org. Chem. 2015, 80, 7099−7107.

    下載圖示
    QR CODE