簡易檢索 / 詳目顯示

研究生: 陳培基
Chen, Pei-Chi
論文名稱: 運算思維策略融入技職體系學生學習成效之研究 -以可程式控制為例
The Study of the Learning Effectiveness of Vocational and Technical Students regarding the Integration of Computational Thinking Strategies:Case study of Programmable Logic Controller
指導教授: 周明
Jou, Min
口試委員: 周春美 石文傑 蕭照焜 曾百由 周明
口試日期: 2021/06/24
學位類別: 博士
Doctor
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 215
中文關鍵詞: 技職體系運算思維問題導向學習技能自主學習學習遷移ADDIE教材發展模式
英文關鍵詞: technical and vocational education system, computational thinking, Problem-Based Learning, skills, self-directed learning, learning transfer, ADDIE textbook development model
研究方法: 準實驗設計法調查研究半結構式訪談法
DOI URL: http://doi.org/10.6345/NTNU202100796
論文種類: 學術論文
相關次數: 點閱:196下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在融入運算思維策略於可程式控制實習課程,以提升技職體系電機與電子群科(系)學生的技能表現。實驗研究以公私立科技大學各兩班學生(合計120人)、公私立技術型高中各兩班學生(合計120人)為研究對象(合計240人),每週授課兩小時、為期八週的實習課程教學。在實施教學實驗前,實驗組與控制組均接受一般生活化運算思維之前測;在實驗進行階段,實驗組於教學中融入一般生活化運算思維策略教學與使用PLC運算思維教材授課,控制組則採用傳統PLC教材教學,且為了強化學習效能,實驗組與控制組在教學中均採用PBL,並要求學生於課後至雲端教學平台進行自主學習;在實驗結束前,實驗組與控制組均接受一般生活化運算思維策略之後測與PLC學習成效測驗。研究結果發現:(1)技職體系全體實驗組學生之PLC學習成效明顯優於控制組學生;(2)技職體系全體運算思維高分組學生之PLC學習成效明顯優於運算思維低分組學生,由研究結果得知,運算思維素養較高之技職體系學生,能有效提升其實習之學習成效。此外,本研究透過觀察、學生日誌、教師日誌與課堂錄影等資料,進一步了解技術型高中電機與電子群科學生技能表現的改變情形,以及對於本課程方案的態度與看法。植基於研究之結果,本研究據以提出技職體系融入運算思維策略之教學模式,以供技職體系實習課程融入運算思維策略教學之參用。

    This research aims to integrate computational thinking strategies into programmable control practice courses to improve the technical performance of students in the electrical and electronic group (department) of technical and vocational education system. The experimental research takes a class of students from public and private universities of science and technology (120 people in total) and a class of students from public and private vocational high schools (120 people in total) as the research objects (240 people in total) to a 2-hour/week practical course for 8 weeks. Before the implementation of the teaching experiment, both the experimental group and the control group accept the pre-test of general life-oriented computing thinking. In the experimental stage, the experimental group integrates general life-oriented computing thinking strategy teaching and the use of PLC computing thinking textbooks into teaching. On the other hand, the control group is using traditional PLC teaching materials. In order to strengthen learning effectiveness, both the experimental group and the control group use PBL in teaching and students are required to enter the cloud teaching platform for autonomous learning after class. Before the end of the experiment, both the experimental group and the control group take general life-oriented computing thinking strategy post-test and PLC learning effectiveness test. The results of the study found that: (1) The PLC learning effectiveness of all experimental group students in technical and vocational education system was significantly better than that of control group students. (2) The PLC learning effectiveness of all students in the high computational thinking group of technical and vocational education system was significantly better than that of the low computational thinking group according to the research results. Students from technical and vocational education system with higher computational thinking literacy can effectively improve the learning effectiveness of their internships. In addition, this research uses observations, student journals, teacher journals, classroom videos and other materials to further understand the changes in the performance of technical high school electrical and electronic group students, as well as their attitudes and views on the course plan. Based on the results of the research, this research proposes a computational-thinking-strategies-integrated teaching model for the consideration of integrating computational thinking strategies into technical and vocational education system practice courses.

    摘要 i ABSTRACT ii 目次 iv 表次 vii 圖次 ix 第一章 緒論 1 第一節 研究背景與動機 3 第二節 研究目的與待答問題 8 第三節 名詞釋義 12 第四節 研究範圍與限制 26 第二章 文獻探討 29 第一節 工業 4.0 的來臨 29 第二節 科學探究活動與教學 46 第三節 運算思維策略 57 第四節 電機與電子群108課綱 64 第五節 可程式控制實習 66 第六節 自主學習及其相關研究 70 第七節 技能學習階層 85 第八節 學習遷移 88 第九節 ADDIE教材發展模式 91 第三章 研究設計與實施 93 第一節 研究對象 93 第二節 研究場域 94 第三節 研究架構 97 第四節 實驗設計 98 第五節 課程設計流程 101 第六節 實驗教學實施 106 第七節 研究工具 117 第八節 資料處理 125 第四章 研究結果與分析 129 第一節 PLC學習成效結果分析 129 第二節 質性訪談分析 146 第三節 本章小節 153 第五章 結論與建議 157 第一節 結論 157 第二節 建議 160 參考文獻 163 附錄 179 附錄一:教師日誌 179 附錄二:學習日誌 180 附錄三:訪談問題 181 附錄四:運算思維生活模擬試題 182 附錄五:技職體系現職教師觀課意見表 185 附錄六:第一堂課教案 186 附錄七:第二堂課教案 187 附錄八:第三堂課教案 188 附錄九:第四堂課教案 189 附錄十:第五堂課教案 190 附錄十一:第六堂課教案 191 附錄十二:第七堂課教案 192 附錄十三:第八堂課教案 193 附錄十四:學習者前測的質性回饋 194 附錄十五:學習者後測的質性回饋 195 附錄十六:可程式邏輯控制器之運算思維自我評估能力量表 196 附錄十七:技術型高中學生自我導向學習量表 199 附錄十八:技職體系學生自主學習量表(正式問卷) 205 附錄十九:108學年度臺北市立內湖高工電機科教學科目與學分數表 213 附錄二十:108學年度臺北市立內湖高工控制科教學科目與學分數表 214 附錄二十一:108學年度臺北市立內湖高工冷凍科教學科目與學分數表 215

    壹、中文部分
    王文科(1995)。教育研究法。臺北市:五南。
    王金國(2002)。成功學習的關鍵-自我調整學習。課程與教學,5(1),145-163。
    王思堯(2004)。學習教材與認知風格對於學習績效與教材評量的影響研究(未出版之碩士論文)。國立中央大學,桃園市。
    王健全、賴偉文(2016)。生產力4.0產業展望下之勞動發展。就業安全,15(1),6-16。
    王敏祝(2004)。以探究導向教學提昇國中學生學習成效之研究-以「光學」單元為例(未出版之碩士論文)。國立彰化師範大學,彰化市。
    行政院科技會報辦公室(2015)。行政院生產力4.0發展方案。臺灣經濟論衡,13(3),47-62。
    吳清山(2017)。自主學習。教育研究月刊,278,133-134。
    呂慧敏(2018)。日本形塑未來社會的改革與投資。經濟前瞻,178,79-86。
    宋峻杰(2018)。偏遠地區國民教育法令規範與政策之憲法學觀點探究-輔參酌日本經驗。教育實踐與研究,31(2),121-151。
    李咏吟(1998)。建構取向的教學設計。臺北市:文景書局。
    李妮妮(2017)。探討利用創意教學法在高職物理課程中對奈米議題之教學成效(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    李恩萱、李忠謀(2018)。大學生運算思維與程式設計學習成就研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    汪建南、馬雲龍(2016)。工業4.0的國際發展趨勢與臺灣因應之道。國際金融參考資料,69,133-155。
    林建平(2005)。自律學習的理論與研究趨勢。國教新知,52(2),8-25。
    林寶山(1998)。教學原理與技巧。臺北市:五南。
    邱貴發(1996)。情境學習理念與電腦輔助學習:學習社群理念探討。臺北市:師大書苑。
    邵瑞珍、張渭城(1989)。布魯納教育論著選。北京:人民教育出版社。
    洪振方、賴羿蓉(1997)。教師對以邏輯實證與後邏輯實證主義科學哲學觀重組之電化電池發展史教材的認識與可能性。科學教育學刊,5(3),347-390。
    胡欽太、劉麗清、鄭凱(2019)。工業革命4.0背景下的智慧教育新格局,中國電化教育,3,1-8。
    徐昊杲、邱佳椿(2003)。技職教育研究教戰手冊:SPSS進階篇。臺北市:師大書苑。
    唐銀、何思穎(2019)。“人工智慧+高職藝術專業”創業就業教育模式研究。中國商論,14,105。
    國家教育研究院(2018)。十二年國民基本教育技術型高級中等學校群科課程綱要。臺北市:教育部。
    張茵婷、郝永威(2018)。程式設計課程融入體驗學習之探究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    張惠博(1993)。邁向科學探究的實驗教學。教師天地,62,12-20。
    張智奇、林懿貞(2018)。智慧聯網生產型態下勞動市場供需與青年就業促進研究。新北市:勞動部勞動及職業安全衛生研究所。
    張新仁(2003)。學習與教學新趨勢。臺北市:心理出版。
    張靜儀(1995)。自然科探究教學法。屏師科學教育,1,36-45。
    教育部(2016)。運算思維推動計畫。取自http://compthinking.csie.ntnu.edu.tw/
    梁雲霞(2008)。從自主學習理論到學校實務:概念架構與方案發展。當代教育研究,14(4),171-206。
    郭振昌(2016)。推動生產力4.0人才職能發展策略芻議。就業安全,15(1),17-28。
    曾煥雯、張家豪(2003)。智慧型電機接線實驗監控介面設計(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    陳正、修春民(2017)。德國「職業教育4.0」特點與啓示。世界教育訊息,16。取自https://mall.cnki.net/magazine/Article/JYXI201716007.htm
    陳鼎元(2018)。單晶片結合伺服器網頁開發物聯網雲端管理系統(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    游玉英(2020)。技術型高中學生自主學習指標建構與實證分析之研究(未出版之博士論文)。國立臺灣師範大學,臺北市。
    程炳林(2001)。動機,目標設定,行動控制,學習策略之關係。教育科學研究月刊,46(1),67-92。
    程炳林(2002)。大學生學習工作,動機問題與自我調整學習策略之關係。教育心理學報,33(2),79-101。
    程炳林(2003)。四向度目標導向模式之研究。師大學報,48(1),5-40。
    馮一平(2018)。德國聯邦教研部支援虛擬技術應用於職業教育。世界教育資訊,31(8),78-78。
    黃政傑、林佩璇(1996)。合作學習。臺北市:五南。
    黃國彥(2000)。教育大辭書。取自https://terms.naer.edu.tw/detail/1303274/
    楊安琪(2015)。個體對資本邏輯與符號消費的解構-基於雲南X古鎮旅遊開發的研究。中山大學社會科學版,1,128-138。
    溫存儒(2002)。探究國一學生科學探究活動之參與內涵及其參與動機之個案研究。科學教育,13,109-129。
    葉炳煙(2013)。學習動機定義與相關理論之研究。屏東教大體育,16,285-293。
    葉國良、蔡逸舟(2020)。教育部教學實踐研究計畫成果報告。新北市:耕莘健康管理專科學校全人教育中心。
    廖圓圓(2017)。德國通過新智慧財產權法案。甘肅教育,15,128-128。
    劉宏文(2001)。高中學生進行開放式科學探究活動之個案研究(未出版之博士論文)。國立彰化師範大學,彰化市。
    劉宏文、張惠博(2001)。高中學生進行開放式科學探究活動之個案研究-問題的形成與解決。科學教育學刊,9(2),169-196。
    劉威德(2000)。教育大辭書。取自https://terms.naer.edu.tw/detail/1313454/
    德國萊茵TÜV(2018)。迎接工業4.0中國職業教育發展白皮書。上海:德國萊茵TÜV大中華區市場部。
    歐陽鍾仁(1986)。教師啟發兒童創造能力的方法。臺北市:幼獅。
    蔡清田(2000)。教育行動研究。臺北市:五南。
    蕭英勵(2007)。探究「數位機會中心」之有效經營策略。研考雙月刊,31(1),93-101。
    貳、英文部分
    AAAS (1989). Project 2061. Retrieved from https://www.aaas.org/programs/project-2061
    Alexander, P. A. (1995). Superimposing a situation-specific and domain-specific perspective on an account of self-regulated learning. Educational Psychologist, 30, 189-93.
    Anderson, J. R. (1980). Cognitive psychology and its implication. San Francisco: Freeman.
    Armstrong, K., Parmelee, L., Santifort, S., Burley, J., & Van Fleet, J. W. (2018). Preparing Tomorrow’s Workforce for the Fourth Industrial Revolution for Business: A Framework for Action. Retrieved from https://www.unicef.org/rosa/rep
    Artlet, C., Baumert, J., McElvany, N. J., & Peschar, J. (2003). Learners for life. Student approaches to learning. Results from PISA 2000. Paris: OECD.
    Assessment of Performance Unit (APU). (1989). Science at age 11 (and 13, 15). London, HMSO: Author.
    Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological Review, 84 (2), 191.
    Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the role of the computer science education community? Acm Inroads, 2 (1), 48-54.
    Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals. New York: McKay.
    Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing computational thinking in compulsory education-Implications for policy and practice. Seville: Joint Research Centre.
    Boekaerts, M. (1999). Self-regulated learning: Where we are today. International Journal of Educational Research, 31 (6), 445-457.
    Branson, R. K. (1978). The interservice procedures for instructional systems development. Educational Technology, 18(3), 11-14.
    Brown, H. D. (2000). Principles of language learning and teaching. New York: Longman.
    Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18 (1), 32-42.
    Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study of thinking. New York: John Wiley.
    Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017). Changing a generation’s way of thinking: Teaching computational thinking through programming. Review of Educational Research, 87 (4), 834-860.
    Chamot, A. U., Barnhardt, S., & El-Dinary, P. B. (1999). Children's learning strategies in language immersion classrooms. The Modern Language Journal, 83 (3), 319-338.
    Choe, D. (2020). Parents’ and adolescents’ perceptions of parental support as predictors of adolescents’ academic achievement and self-regulated learning. Children and Youth Services Review, 116, 105172.
    Cleary, A. (2006). Computer games. English in Aotearoa, 59, 29-34.
    Cormier, S. M., & Hagman, J. D. (Eds.). (2014). Transfer of learning: Contemporary research and applications. Academic Press.
    Corno, L. (2013). Volitional aspects of self-regulated learning. In Self-regulated learning and academic achievement: Theoretical perspectives. Mahwah, NJ: Lawrence Erlbaum Associates.
    Cronbach, L. J., & Snow, R. E. (1977). Aptitudes and instructional methods: A handbook for research on interactions. NY: Irvington.
    Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper & Row.
    Czerkawski, B. C., & Lyman, E. W. (2015). Exploring issues about computational thinking in higher education. TechTrends, 59 (2), 57-65.
    Deci, E. L., & Ryan, R. M. (2000). The" what" and" why" of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11 (4), 227-268.
    Deloitte. (2018). Deloitte state of AI in the enterprise (2nd ed.). Deloitte LLC. Retrieved from www.deloitte.com/insights/stateofai
    Duschl, R. A. (1990). Restructuring science education: The importance of theories and their development. Teachers College Press.
    Ellis, D., & Zimmerman, B. J. (2001). Enhancing self-monitoring during self-regulated learning of speech. In H. J. Hartman (Eds.), Metacognition in learning and instruction: Theory, research and practice. Boston, MA: Kluwer.
    Evans, G. W., & Rosenbaum, J. (2008). Self-regulation and the income-achievement gap. Early Childhood Research Quarterly, 23 (4), 504-514.
    Fox, E. (2009). The role of reader characteristics in processing and learning from informational text. Review of Educational Research, 79 (1), 197-261.
    Gagné, R. (1985). Presidential address of division 15 learning hierarchies. Educational Psychologist, 6 (1), 1-9.
    Gagné, R. & Briggs, L.J. (1974). Principles of Instructional Design. New York: Rinehart & Winston.
    Gehrke, L., Kühn, A. T., Rule, D., Moore, P., Bellmann, C., Siemes, S., ... & Standley, M. (2015). A discussion of qualifications and skills in the factory of the future: a German and American perspective. VDI/ASME Industry, 4, 1-28.
    Germann, P. J., Haskins, S., & Auls, S. (1996). Analysis of nine high school biology laboratory manuals: Promoting scientific inquiry. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 33 (5), 475-499.
    Google. (2010). Computational thinking for educators. Retrieved from https://computationalthinkingcourse.withgoogle.com/unit?lesson=8&unit=1
    Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational Researcher, 42 (1), 38-43.
    Guay, F., Ratelle, C. F., & Chanal, J. (2008). Optimal learning in optimal contexts: The role of selfdetermination in education. Canadian Psychology/Psychologie Canadienne, 49(3), 233.
    Herron, M. D. (1971). The nature of scientific enquiry. The School Review, 79 (2), 171-212.
    Hong, J. C., Hwang, M. Y., Chang, H. W., Tai, K. H., Kuo, Y. C., & Tsai, Y. H. (2015). Internet cognitive failure and fatigue relevant to learners' self‐regulation and learning progress in English vocabulary with a calibration scheme. Journal of Computer Assisted Learning, 31 (5), 450-461.
    Hong, J. C., Hwang, M. Y., Kuo, Y. C., & Hsu, W. Y. (2015). Parental monitoring and helicopter parenting relevant to vocational student's procrastination and self-regulated learning. Learning and Individual Differences, 42, 139-146.
    ISTE & CSTA (2011). Operational definition of computational thinking for K–12 education. Retrieved from http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf?sfvrsn=2
    James, W. (1978). The teaching of philosophy. Essays in Philosophy, 3-6.
    Jansen, R. S., van Leeuwen, A., Janssen, J., Jak, S., & Kester, L. (2019). Self-regulated learning partially mediates the effect of self-regulated learning interventions on achievement in higher education: A meta-analysis. Educational Research Review, 28, 100292.
    Jossberger, H., Brand Gruwel, S., Boshuizen, H., & Van de Wiel, M. (2010). The challenge of self-directed and self-regulated learning in vocational education: A theoretical analysis and synthesis of requirements. Journal of Vocational Education and Training, 62(4), 415-440.
    Kayacan, K., & Ektem, I. (2019). The effects of biology laboratory practices supported with self-regulated learning strategies on students' self-directed learning readiness and their attitudes towards science experiments. European Journal of Educational Research, 8(1), 313-299.
    Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A serious game for developing computational thinking and learning introductory computer programming. Procedia-Social and Behavioral Sciences, 47, 1991-1999.
    Kehr, H. M., Bles, P., & von Rosenstiel, L. (1999). Self-regulation, self-control, and management training transfer. International Journal of Educational Research, 31(6), 487-498.
    Kirkpatrick, D. L., & Kirkpatrick, J. D. (2006). Evaluating training programs: The four levels (3rd ed.). San Francisco, CA: Berrett-Koehler.
    Kitsantas, A., & Zimmerman, B. J. (1998). Self-regulation of motoric learning: A strategic cycle view. Journal of Applied Sport Psychology, 10 (2), 220-239.
    Kolodziej, M. (2017). Computational thinking in curriculum for higher education (Unpublished doctoral dissertation). Pepperdine University, Malibu, CA.
    Kozma, R. B. (1994). A reply: Media and methods. Educational Technology Research and Development, 42 (3), 11-14.
    Lindner, R. W., & Harris, B. (1993a). Self-regulated learning: Its assessment and instructional implications. Educational Research Quarterly, 16, 29-37.
    Lindner, R. W., & Harris, B. R. (1993b). Teaching self-regulated learning strategies. Paper presented at the convention of the Association for Educational Communications and Technology, New Orleans, LA.
    McClelland, D. C., Atkinson, J. W., Clark, R. A., & Lowell, E. L. (1953). The achievement motive. New York, 5.
    Mohaghegh, D. M., & McCauley, M. (2016). Computational thinking: The skill set of the 21st century. International Journal of Computer Science and Information Technologies, 7 (3), 1524–1530.
    Molenda, M. (2003). In search of the elusive ADDIE Model. Performance Improvement, 42 (5), 34–37.
    Moore, M. G., & Kearsley, G. (1996). Distance education: A systems view. Belmont, CA: Wadsworth.
    National Research Council. (1996). National Science Education.Standards. Washington, DC: National Academy Press.
    OECD (2018). The future of education and skills Education 2030 OECD. Retrieved from https://www.oecd.org/education/2030-project/contact/
    Olson, M. H., & Hergenhahn, B. R. (2012). An introduction to theories of learning (9th ed.). New York, NY: Pearson
    Perry, N. E. (1998). Young children's self-regulated learning and contexts that support it. Journal of Educational Psychology, 90 (4), 715.
    Pike, G. R., Smart, J. C., & Ethington, C. A. (2012). The mediating effects of student engagement on the relationships between academic disciplines and learning outcomes: An extension of Holland’s theory. Research in Higher Education, 53(5), 550-575.
    Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-regulated learning. International Journal of Educational Research, 31 (6), 459-470.
    Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In Handbook of self-regulation, 451-502. New York: Academic Press.
    Radhakrishnan, J., Ontañón, S., & Ram, A. (2009). Goal-driven learning in the GILA integrated intelligence architecture. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) 2009(9), 1205–1210.
    Rashid, T., & Asghar, H. M. (2016). Technology use, self-directed learning, student engagement and academic performance: Examining the interrelations. Computers in Human Behavior, 63, 604-612.
    Rogoff, B. (1994). Developing understanding of the idea of communities of learners. Mind, Culture, and Activity, 1 (4), 209-229.
    Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36 (1-2), 111-139.
    Schunk, D. H. (2008). Metacognition, self-regulation, and self-regulated learning: Research recommendations. Educational Psychology Review, 20(4), 463-467.
    Schunk, D. H., & Zimmerman, B. J. (1994). Self-regulation of learning and performance: Issues and educational applications. Hillsdale, NJ: Erlbaum.
    Schunk, M., Wachinger, W., & Nothdurft, H. D. (2001). Vaccination status and prophylactic measures of travelers from Germany to subtropical and tropical areas: results of an airport survey. Journal of Travel Medicine, 8 (5), 260.
    Schwab, J. J. (1962). The teaching of science as inquiry. In J. J. Schwab & P. F. Brandwein (Eds.). The teaching of science. Cambridge, MA: Harvard University Press.
    Simpson E.J. (1972). The classification of educational objectives in the psychomotor domain. Washington, DC: Gryphon House.
    Sperling, R. A., Howard, B. C., Staley, R., & DuBois, N. (2004). Metacognition and self-regulated learning constructs. Educational Research and Evaluation, 10 (2), 117-139.
    Staer, H., Goodrum, D., & Hacking, M. (1998). High school laboratory work in Western Australia: Openness to inquiry. Research in Science Education, 28 (2), 219-228.
    Thorndike E. (1923). The influence of first year Latin upon the ability to read English. School Sociology, 17, 165-168.
    Trawick, L., & Corno, L. (1995). Expanding the volitional resources of urban community college students. New Directions for Teaching and Learning, 1995 (63), 57-70.
    Umam, C. (2011). Improving the Students’ Speaking Ability through Role-Playing Technique. Jurnal Inovasi, 19, 347-364.
    Vygotsky, L. S. (1978). Socio-cultural theory. Mind in Society, 52-58.
    Westling, D. L., Fox, L., & Carter, E. W. (2000). Teaching students with severe disabilities (2nd Ed.). Upper Saddle River, NJ: Merrill.
    Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49 (3), 33-35.
    Wing, J. M. (2011). Research notebook: Computational thinking: What and why. The Link Magazine, 20-23.
    Wolters, C. (2010). Self-regulated learning and the 21st-century competencies. University of Houston, Department of Educational Psychology. Retrieved from http://kpk12.com/cms/wp-content/uploads/KeepingPace2012.pdf
    Yeh, K. L., Dai, C. Y., Kao, M. T. (2015). Applying Petri-Net knowledge learning pathway for learning diagnosis and remedial teaching of the basic electricity. International Conference on Industrial Technology Education for Sustainable Development, ICITE for SD-2015.
    Zimmerman, B. J. (1989). Models of self-regulated learning and academic achievement. In Self-regulated learning and academic achievement: Theory, research, and practice (1-25). New York: Springer.
    Zimmerman, B. J. (1994). Dimensions of academic self-regulation: A conceptual framework for education. Self-regulation of learning and performance: Issues and Educational Applications, 1, 33-21.
    Zimmerman, B. J. (2000). Attainment of self-regulation: A social cognitive perspective. In M. Boekaerts, P.R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (13-39). San Diego, CA: Academic Press.
    Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into Practice, 41 (2), 64-70.
    Zimmerman, B. J., & Kitsantas, A. (1996). Self-regulated learning of a motoric skill: The role of goal setting and self-monitoring. Journal of Applied Sport Psychology, 8 (1), 60-75.
    Zimmerman, B. J., & Kitsantas, A. (1999). Acquiring writing revision skill: Shifting from process to outcome self-regulatory goals. Journal of Educational Psychology, 91 (2), 1-10.
    Zimmerman, B. J., & Martinez-Pons, M. (1990). Student differences in self-regulated learning: Relating grade, sex, and giftedness to self-efficacy and strategy use. Journal of Educational Psychology, 82 (1), 51.
    Zimmerman, B. J., & Schunk, D. H. (2001). Reflections on theories of self-regulated learning and academic achievement. Self-regulated learning and academic achievement: Theoretical Perspectives, 2, 289-307.

    無法下載圖示 本全文未授權公開
    QR CODE