簡易檢索 / 詳目顯示

研究生: 郭佳燕
Guo, Jia-Yen
論文名稱: 大學物理實驗課程現況研究-學生觀點之相關性
A study on Physics Laboratory Course of University : from Students' Perspective
指導教授: 陳鴻宜
Chen, Hong-Yi
口試委員: 吳穎沺
Wu, Ying-Tien
傅祖怡
Fu, Tsu-Yi
陳鴻宜
Chen, Hong-Yi
口試日期: 2021/06/30
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 39
中文關鍵詞: 物理實驗探究能力物理教學確認偏誤
英文關鍵詞: Physics Laboratory Course, Physics Education, Inquiry Abilities, Confirmation Bias
研究方法: 文件分析法半結構式訪談法
DOI URL: http://doi.org/10.6345/NTNU202100871
論文種類: 學術論文
相關次數: 點閱:40下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 訓練學生的實驗技能、培養學生探究的能力,進而理解科學的本質為物理實驗課程的教學目標。為探討國內物理教育實施現況,本次研究透過大學部物理系實驗課後的報告,加上與台灣某大學物理系學生的訪談,以瞭解物理實驗課程中學生的學習經驗,以學生經驗的觀點探討國內基礎物理實驗課程的現況。在本研究中看出,目前的課程設計與教學方式較無法激發出學生對於實驗設計的思考,僅注重儀器使用及技術操作,亦缺乏培養獨立思考解釋數據的能力。同時學生在進行數據分析時,由於確認偏誤,為了使得實驗結果看起來更接近公認值,而選擇性的刪減偏離較大的數據、忽略數據背後所代表的意義。在比對物理實驗報告與訪談結果後,我們發現目前大學物理實驗課程設計,對於探究能力的培養,仍有相當大的差距,為此,我們綜合研究成果,提出相關的建議供研究者與教育人員參考。

    The target of the college physics laboratory course is to train students’ experimental skill and also to improve students’ ability of inquiry, and then to comprehend the nature of science. In this study, we adopt the document analysis and interview and to college students to explore the current situation of the college physics laboratory courses. We found that within the traditional mode of teaching, students have only practiced experimental skills but didn’t learn how to design and improve the experiments, analyze data and predict results. Furthermore, current teaching methods may incline students to embrace confirmation bias. That is, students intend to manipulate partial data to fit the theoretical values, or ignore the meaning inherent to data and evidence so that they often attribute the errors on experimental fault. Finally, through the examination of the development of the physics laboratory courses, we found that our teaching methods are unable to cultivate the inquiry abilities because students do not build the good learning attitudes. Therefore, we propose some suggestions to researchers and educators for the future study or education.

    第一章 緒論 1 第一節 研究動機與重要性 1 第二節 研究目的 2 第三節 研究問題 3 第四節 名詞解釋 3 第二章 文獻探討 4 第一節 物理課程中的實驗活動 4 第二節 物理實驗課程近期發展 7 壹、 建構式教學法 7 貳、 學習工具電子化 8 第三節 學生在實驗課中的經驗 10 第三章 研究方法 12 第一節 研究個案分析 12 第二節 研究方法 15 壹、學生實驗報告分析 15 貳、訪談法 16 第三節 資料分析 17 第四章 研究結果 18 第一節 在實驗前的預習 18 第二節 實驗報告中的數據量選取 20 第三節 實驗數據的處理 22 第四節 不確定度來源分析 24 第五節 討論 26 第五章 結論與建議 28 第一節 結論 28 第二節 研究建議 30 參考文獻 32

    王文科(2001)。教育研究法。台北:五南出版社。
    吳定(2003)。政策管理。臺北市:聯經出版社。
    吳惠敏(2011)。紙張實驗室量測作業之不確定度探討。印刷科技季刊,24(1),50-58。
    李銘崇(2007)。國內大專院校「普通物理實驗」教學實驗項目之現況研究(未出版碩士論文)。國立臺中教育大學,台中市。
    邱韻如(2006年,8月)。主題式系列教學活動之設計與實施──以大一普物實驗的示波器教學為例。論文發表於物理教學及示範研討會,臺北市。
    洪耀正、陳淑慧(2019)。物理實驗量測App的開發與實作。科學教育月刊,419(6),48-59。
    財團法人全國認證基金會(2021)。有關量測不確定度之政策(TAF-CNLA-R06(8))。臺北市:作者。
    教育部(2019a)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-自然科學領域。臺北市:作者。
    教育部(2019b)。AI教育x教育AI──人工智慧及新興科技教育總體實施策略。臺北市:作者。
    陳俊佑(2014)。目標導向教學對普通物理實驗學習影響之探討。(未出版碩士論文)。國立臺灣大學,臺北市。
    傅昭銘(2006)。大學物理實驗教學的思維。物理雙月刊,28(3),573-579。
    傅昭銘、石明豐、孫維新(2009)。國立臺灣大學普通物理實驗手冊序言。臺灣大學理學院物理學系,台北市。
    曾耀寰(2017)。利用智慧手機測量單擺周期。物理教育學刊,18(1),65-76。
    劉得光(2009)。探索問題與同儕討論在普通物理實驗教學的運用。(未出版碩士論文)。國立臺灣大學,台北市。
    鄭麗玉(2006)。心理學。臺北市:五南圖書出版。
    蕭民健(2011)。整合式實驗教學在普通物理實驗教學的初探—以「RC/RL 基本交流電路實驗」為例。(未出版碩士論文)。國立臺灣大學,台北市。
    謝怡靜、江俊明(2017)。普通物理實驗創新-利用手機 APP 驗證馬呂士定律。物理教育學刊,18(2),99-106。
    羅章豪、蘇明俊(2010)。如何評鑑學生的實驗報告:大學普通物理學實驗報告評分規準的建立。物理教育學刊,11(2),1-18。
    American Association of Physics Teachers. (1998). Goals of the introductory physics laboratory. American Journal of Physics, 66, 483.
    Applebee, A. N. (1984). Writing and reasoning. Review of Educational Research, 54, 577-596.
    Beck, J., Czerniak, C. M., & Lumpe, A. T. (2000). An exploratory study of teachers' beliefs regarding the implementation of constructivism in their classrooms. Journal of Science Teacher Education, 11(4), 323-343.
    Bergin, S. D., Murphy, C., & Shuilleabhain, A. N. (2018). Exploring problem-based cooperative learning in undergraduate physics labs: student perspectives. European Journal of Physics, 39(2), 025703.
    Bernhard, J. (2018). What matters for students’ learning in the laboratory? Do not neglect the role of experimental equipment! Instructional Science, 46(6), 819-846.
    Blue, J., & Jacob, J. (2009). Student perceptions of an introductory laboratory course. AIP Conference Proceedings, 1179(1), 101-104.
    Chang, H. P., & Lederman, N. G. (1994). The effect of levels of cooperation with physical science laboratory groups on physical science achievement. Journal of Research in Science Teaching, 32, 167-181.
    Driver, R., Asoko, H., Leach, J., Scott, P., & Mortimer, E. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5-12.
    Dudu, W. T. (2014). South African high school students’ experiences of inquiry during investigations: A case study. International Journal of Educational Sciences, 7(2), 241-251.
    Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International journal of science education, 25(6), 671-688.
    EDuit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International journal of science education, 25(6), 671-688.temperature dependence of the Brownian motion of polystyrene microspheres. American
    Edwards, D., & Mercer, N. (2013). Common knowledge: The development of understanding in the classroom. New York, NY: Routledge.
    Eggen, P. O., Kvittingen, L., Lykknes, A., & Wittje, R. (2012). Reconstructing iconic experiments in electrochemistry: Experiences from a history of science course. Science & Education, 21(2), 179-189.
    Fisher, D., Harrison, A., Henderson, D., & Hofstein, A. (1999). Laboratory learning environments and practical tasks in senior secondary science classes. Research in Science Education, 28, 353– 363.
    Gallagher, J. J., & Tobin, K. (1987). Teacher management and student engagement in high school science. Science Education, 71(4), 535-555.
    Gunstone, R. F. (1991). Reconstructing theory from practical experience. In B. E. Woolnough (Ed.), Practical science (pp. 67-77). Milton Keynes: Open University Press.
    Hanif, M., Sneddon, P. H., Al-Ahmadi, F. M., & Reid, N. (2008). The perceptions, views and opinions of university students about physics learning during undergraduate laboratory work. European Journal of Physics, 30(1), 85.
    Hewson, P. W., & Hewson, M. G. B. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13(1), 1-13.
    Jenkins, E. W. (2000). Constructivism in school science education: Powerful model or the most dangerous intellectual tendency? Science & Education, 9(6), 599-610.
    Keys, C. W. (1999). Revitalizing instruction in scientific genres: Connecting knowledge production with writing to learn in science. Science Education, 83(2), 115-130.
    Kuhn, J. (2014). Relevant information about using a mobile phone acceleration sensor in physics experiments. American Journal of Physics, 82(2), 94-94.
    Kyza, E. A., Erduran, S., & Tiberghien, A. (2009). Technology-enhanced learning in science. In N. Balacheff, S. Ludvigsen, T. de Jong, A. W. Lazonder, & S. Barnes (Eds.), Technology-enhanced learning: Principles and products (pp. 121-134). Berlin: Springer.
    Lewis, J. L. (1972). Teaching school physics. Middlesex, England: Penguin Books. https://unesdoc.unesco.org/ark:/48223/pf0000001793
    Mansour, N. (2013). Consistencies and inconsistencies between science teachers’ beliefs and practices. International Journal of Science Education, 35(7), 1230-1275.
    Meltzer, D. E., & Thornton, R. K. (2012). Resource letter ALIP–1: Active-learning instruction in physics. American Journal of Physics, 80(6), 478-496.
    Niaz, M., Klassen, S., McMillan, B., & Metz, D. (2010). Reconstruction of the history of the photoelectric effect and its implications for general physics textbooks. Science Education, 94(5), 903-931.
    Plous, S. (1993). The psychology of judgment and decision making. New York, NY: Mcgraw-Hill Book Company.
    Pushkin, D. B. (1997). Where do ideas for students come from? Journal of College Science Teaching, 26(4), 238-242.
    Redish, E. F. (1994). Implications of cognitive studies for teaching physics. American Journal of Physics, 62(9), 796-803.
    Rivard, L. P. (1994). A review of writing to learn in science: Implication for practice and research. Journal of Research in Science Teaching, 31(9), 969-983.
    Robles, C. M. (1998). Computers at lab. Retrieved from http://listserv.boisestate.edu/archives/physlrnr.html
    Roth, W. M. (1994). Experimenting in a constructivist high school physics laboratory. Journal of Research in Science Teaching, 31(2), 197-223.
    Russell, C. B., & Weaver, G. C. (2011). A comparative study of traditional, inquiry-based, and research-based laboratory curricula: Impacts on understanding of the nature of science. Chemistry Education Research and Practice, 12(1), 57-67.
    Sabah, S. (2012). The Effect of Computer Simulations on Students’ Conceptual Change of Electric Circuits. Journal of Institutional Research South East Asia, 10(2), 60-73.
    Sabelli, N. H. (1995). For our children's sake, take full advantage of technology. Computers in Physics, 9(1), 7-23.
    Seay, C. (2004). Using a “socio-cultural" approach in teaching information technology to African American students with academic difficulties. Journal of Information Technology Education: Research, 3(1), 83-102.
    Singh, A., Karayev, S., Gutowski, K., & Abbeel, P. (2017). Gradescope: a fast, flexible, and fair system for scalable assessment of handwritten work. In Proceedings of the fourth ACM conference on learning@ scale (pp. 81-88).
    Sokoloff, D. R., Laws, P. W., & Thornton, R. K. (2007). RealTime Physics: Active learning labs transforming the introductory laboratory. European Journal of Physics, 28(3), S83.
    Staacks, S., Hütz, S., Heinke, H., & Stampfer, C. (2018). Advanced tools for smartphone-based experiments: phyphox. Physics Education. 53(4).
    Subali, B., Gumilar, S., & Sartika, D. (2019). What’s wrong with cookbook experiment? A case study of its impacts toward learning outcomes of pre-service physics teachers. Journal of Physics: Conference Series, 1280(5), 52-47.
    Tamir, P. (1991). Practical work in school science: An analysis of current practice. Practical Science, 13-20.
    Thornton, R. K. (1987). Tools for scientific thinking-microcomputer-based laboratories for physics teaching. Physics Education, 22(4), 230.
    Thornton, R. K. (2008). Effective learning environments for computer supported instruction in the physics classroom and laboratory. In M. Vicentini & E. Sassi (Eds.), Connecting research in physics education with teacher education (pp. 1-21). Berlin: International Commission on Physics Education.
    Thornton, R., & Sokoloff, D. (1990). Learning motion concepts using real-time microcomputer-based laboratory tools. American Journal of Physics 58, 858-864.
    Trumper, R. (2003). The physics laboratory–a historical overview and future perspectives. Science & Education, 12(7), 645-670.
    Trumper, R., & Gelbman, M. (2002). What are microcomputer-based laboratories (MBLs) for? An example from introductory kinematics. Journal of Computers in Mathematics and Science Teaching, 21(3), 207-227.
    Ural, E. (2016). The effect of guided-inquiry laboratory experiments on science education students' chemistry laboratory attitudes, anxiety and achievement. Journal of Education and Training Studies, 4(4), 217-227.
    Welk, K. N. (2020). AI for K-12: Bringing next-level tech skills into the classroom. The Elective. Retrieved from https://elective.collegeboard.org/ai-k-12-bringing-next-level-tech-skillsclassroom
    Wickman, P. O., & Östman, L. (2002). Learning as discourse change: A sociocultural mechanism. Science Education, 86(5), 601-623.
    Wieman, C., & Holmes, N. G. (2015). Measuring the impact of an instructional laboratory on the learning of introductory physics. American Journal of Physics, 83(11), 972-978.
    Woolnough, B. E. (1991). Setting the scene. In B. E. Woolnough (Ed.), Practical science (pp. 3-9). Milton Keynes: Open University Press.
    Woolnough, B. E., & Allsop, T. (1985). Practical work in science. Cambridge: Cambridge University Press.
    Yang, X. (2019). Accelerated move for AI education in China. ECNU Review of Education, 2(3), 347-352.

    下載圖示
    QR CODE