簡易檢索 / 詳目顯示

研究生: 黃永宜
Huang, Yung-Yi
論文名稱: 理論計算在化學上的應用 : 有機動力學分割反應與電極表面的離子液體的電腦模擬
The applications of theoretical calculations in chemistry: modeling the organic kinetic resolution reaction and ionic liquids at electrode surfaces
指導教授: 蔡明剛
Tsai, Ming-Kang
口試委員: 李涵榮
Li, Han-Jung
陳焜銘
Chen, Kwun-Min
蔡明剛
Tsai, Ming-Kang
口試日期: 2021/06/25
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 110
中文關鍵詞: 電子密度泛函理論有機動力分割反應離子液體兩性高分子薄膜
英文關鍵詞: DFT, Kinetic Resolution reaction, ionic liquid, amphiphilic polymer membrane
研究方法: 電腦化學理論模擬方法
DOI URL: http://doi.org/10.6345/NTNU202100969
論文種類: 學術論文
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文分為兩個部分,第一部分我們主要針對 Kinetic Resolution reaction (KR-reaction) 的部分及有機催化反應循環,利用理論計算進行深入的探討。眾所 皆知的事實是實驗室合成的藥物多為外消旋混合物,而市售的藥品也經常就以此種型態售出;但這樣的藥物可能存在著一些不必要的副作用以及降低藥效的可能。因此近年來許多人在藥物的分離上有所著墨,但在進行實驗的過程我們經常無法看到微觀世界中的分子行為以及藥物分離機制。本論文的第一部分將深入探討整個有機催化反應循環及 KR-reaction 的每一個步驟之反應機構,並透過理論模擬的方式補足實驗上所無法看到的一些化學及物理現象。我們成功的在實驗中觀察到許多微觀世界中的催化反應,也進而提出及證實了合理之反應機構。第二部分則透過多尺度模擬探討固態電極表面及離子液體之間的離子傳導行為。隨著人類平均壽命的上升,我們更為重視生活的質量,此外全球暖化的影響,造成天氣日漸炎熱,使用電需求大大上升,在能源生產與儲存的技術上大受挑戰。其中電化學儲能技術被許多人提出來研究,電化學的電池儲能技術最重要的環節就是中間離子傳導的過程,而如何挑選電池中間的隔離膜成為重要的課題;部分研究已證實 兩 性 離 子 液 體 所 合 成 出 來 的 聚 合 兩 性 高 分 子 薄 膜 (amphiphilic polymer membrane)所包含帶部分正電的咪唑以及帶部分負電的磺酸根可以有效幫助離子傳導並提高電池穩定度。本研究想透過理論模擬探討電化學電池中隔離膜在離子傳導過程中扮演著甚麼樣重要的角色,也想比較不同的離子液體對離子傳導所造成的影響。我們挑選了正負電荷完全分離與正負電荷於同一條碳鏈的結構,深入探討其對離子傳導的影響,並透過多尺度的理論模擬從分子古典力學到量子力學研究有關離子傳導行為的變化。最終研究結果顯示一維的水分布結構將有效幫助離子傳導之行為進而提高離子傳導率。

    This paper is divided into two parts. In the first part, we mainly focus on the Kinetic Resolution reaction (KR-reaction) and the whole catalytic reaction cycle. We use theoretical calculations to discuss organocatalytic reaction cycles. A well-known fact is that many drugs are synthesized in the laboratory and those are racemic mixtures, however, may have some unnecessary side effects with the possibility of reducing the efficacy of the drug. Therefore, it is important to separate the enantiomers. In the process of experiments, we often cannot microscopically see the molecular behavior and drug separation mechanism. In the first part, we applied theoretical simulations to investigate these chemical and physical phenomena. Finally, we successfully confirmed and proposed reasonable reaction mechanisms. In the second part, ionic liquid moiety of the imidazole-based membrane has shown the enhanced performance for the proton exchange efficiency of the high temperature fuel cell. Typically, the tertiary amines and sulfonate groups appear to play important roles in facilitating the proton transfer processes. In this study, we conducted a multi-scaling approach to investigate the interplay of these ionic-liquid functional groups and the hydrogen bond network near the electrode–electrolyte interface. Two polymer models were built to conceptually represent the cationic and anionic moieties interactions, one containing the well separated charge groups and the other containing a zwitterionic side chain. The classical molecular simulations were carried out to sample the possible electrolyte-water morphology with accounting the electrode surface interactions. The collected representatives for these flexible membrane structures were subsequently simulated by Density Functional Theory (DFT) to identify the proton transfer processes. The electric field effect was taken into account in the classical dynamic calculations to monitor the field-induced electrolyte-water-membrane responses.

    謝辭 i 中文摘要 ii Abstract iii 總目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 第一部份:有機動力分割反應機構模擬 1 第二部份:離子傳導於離子液體與電極介面的理論模擬 8 第二章 理論計算背景與原理 13 2-1 理論計算方法 13 2-1-1 分子力學 13 2-1-1-1 分子動力學 15 2-1-1-2 parameter 17 2-1-1-3 Optimized Potentials for Liquid Simulations force field 17 2-1-1-4 key file 18 2-1-1-5 控溫器 (Andersen and Berendsen thermostat) 18 2-1-1-6 均方位移 (Mean Squared Displacement, MSD) 18 2-1-1-7 徑向分佈函數 (Radial Displacement Function, RDF) 19 2-1-2 電子密度泛函理論 19 2-1-2-1 基底函數 21 2-1-2-2 單點能量 (Single point energy) 22 2-1-2-3 結構優化 22 2-1-2-4 勢能面掃描 23 2-1-2-5 Nature bond orbitals (NBO) and deletion energy 24 2-1-2-6 溶劑效應 24 2-1-2-7 動力學模擬 (Ab initio Molecular Dynamic) 25 2-1-2-8 控溫器 (Langevin Thermostat) 26 2-1-2-9 水中水合氫離子 (hydronium ion)與氫氧根離子 (hydroxide ion)的重組 (recombination) 26 2-2 本文使用的計算軟體 28 2-2-1 Tinker 28 2-2-2 Gaussian 16 28 2-2-3 Vienna Ab initio Simulation Package (VASP) 28 第三章 結果與討論 29 第一部分 有機動力分割反應機構模擬 29 3-1-1 動力分割反應 (KR-reaction) 29 3-1-2 脫水反應 (dehydration reaction) 37 3-1-3 開環反應探討 (reaction of open ring) (Re-face vs Si face) 40 3-1-4 動力控制與熱力控制產物探討 (kinetic product vs thermodynamic product) 43 第二部分 離子傳導於離子液體與電極介面的理論模擬 45 3-2-1 parameter fitting 45 3-2-2 探討離子液體之兩性高分子薄膜 (amphiphilic polymer membrane)中的水傳導 49 3-2-3 探討表面電荷對離子液體與電極介面間的水分子分布影響 53 第四章 總結 55 第一部分 有機動力分割反應機構模擬 55 第二部分 離子傳導於離子液體與電極介面的理論模擬 56 參考文獻 57 附錄-第一部份 63 TS (OH-case) 初始結構座標 63 TS (NHPh-case) 初始結構座標 66 熱力控制反應 TS1 初始結構座標 69 熱力控制反應 TS2 初始結構座標 71 附錄-第二部份 73 Additional Parameters 73 Model A (優化後結構座標_用於建構 Parameters) 75 Model B (優化後結構座標_用於建構 Parameters) 79 Input coordinate and atom num. of Model A (after 1 ns pre-equilibrium, 不含水與無機鹽離子) 82 Input coordinate and atom num. of Model B (after 1 ns pre-equilibrium, 不含水與無機鹽離子) 95 水鍵長分析 (python) 105 水密度分析 (python) 107 水配位估算法 (python) 110

    1. Brecher, J., Graphical representation of stereochemical configuration (IUPAC Recommendations 2006). Pure Appl. Chem., 2006. 78(10): p. 1897-1970.
    2. Herschel, J.F.W., ed. On the rotation impressed by plates of rock crystal on the planes of polarization of the rays of light, as connected with certain peculiarities in its crystallization. Transactions of the Cambridge Philosophical Society. 1820. 43-51.
    3. Cahn, R.S., C. Ingold, and V. Prelog, Specification of Molecular Chirality. Angew. Chem. Int. Edit., 1966. 5(4): p. 385-415.
    4. McMurry, J., ed. Organic Chemistry. 9 ed. 2015, Cengage Learning: US. 115-148.
    5. Williams, R., Optical Rotatory Effect in the Nematic Liquid Phase ofpAzoxyanisole. Phys. Rev. Lett., 1968. 21(6): p. 342-344.
    6. Williams, R., Optical‐Rotatory Power and Linear Electro‐optic Effect in Nematic Liquid Crystals of p‐Azoxyanisole. J. Chem. Phys., 1969. 50(3): p.1324-1332.
    7. Millership, J.S. and A. Fitzpatrick, Commonly used chiral drugs: A survey. Chirality, 1993. 5(8): p. 573-576.
    8. 衛生福利部食品藥物管理署:拒當大藥罐系列報導(三)--止痛藥停看聽 Food and Drug Administration, Ministry of Health and Welfare, R.O.C.(Taiwan). Three reports on avoiding the large medicine jar -- analgesics: stop, look, and listen.Food Drug Consum Newslett. 藥物食品安全週報, 2006. 66:p. 1-2.
    9. Adams, S.S., Ibuprofen, the propionics and NSAIDs: Personal reflections over four decades. InflammoPharmacology, 1999. 7(3): p. 191-197.
    10. Halford, G.M., M. Lordkipanidzé, and S.P. Watson, 50th anniversary of the discovery of ibuprofen: an interview with Dr Stewart Adams. Platelets, 2012. 23(6): p. 415-422.
    11. Chavez, M.L. and C.J. DeKorte, Valdecoxib: a review. Clin Ther, 2003. 25(3): p. 817-51.
    12. AM, E., Comparative pharmacology of S(+)-ibuprofen and (RS)-ibuprofen. Clin. Rheumatol., 2001.
    13. Evans, A.M., Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal anti-inflammatory drugs. Eur. J. Clin. Pharmacol., 1992. 42(3): p. 237-256.
    14. Hutt, A.J. and J. Caldwell, The metabolic chiral inversion of 2-arylpropionic acids—a novel route with pharmacological consequences. J. Pharm. Pharmacol., 1983. 35(11): p. 693-704.
    15. Wechter, W.J., Drug Chirality: On the Mechanism of R-Aryl Propionic Acid Class NSAIDs. Epimerization in Humans and the Clinical Implications for the Use of Racemates. J. Clin. Pharmacol., 1994. 34(11): p. 1036-1042.
    16. Evans, A.M., Pharmacodynamics and pharmacokinetics of the profens: enantioselectivity, clinical implications, and special reference to S(+)-ibuprofen. J Clin Pharmacol, 1996. 36(12 Suppl): p. 7s-15s.
    17. Fazlena, H., A.H. Kamaruddin, and M.M.D. Zulkali, Dynamic kinetic resolution: alternative approach in optimizing S-ibuprofen production. Bioproc. Biosyst. Eng., 2006. 28(4): p. 227-233.
    18. Miller, M.T., Thalidomide embryopathy: a model for the study of congenital incomitant horizontal strabismus. Trans. Am. Ophthalmol. Soc., 1991. 89: p. 623-674.
    19. Eliel , E.L., Fiaud, J. C., ed. Topics in Stereochemistry. 1988: New York. 249.
    20. Keith, John M., Jay F. Larrow, and Eric N. Jacobsen, Practical Considerations in Kinetic Resolution Reactions. Adv. Synth. Catal., 2001. 343(1): p. 5-26.
    21. Gurubrahamam, R., et al., Organocascade Synthesis of Annulated (Z)-2- Methylenepyrans: Nucleophilic Conjugate Addition of Hydroxycoumarins and Pyranone to Branched Nitro Enynes via Allene Formation/Oxa-Michael Cyclization/Alkene Isomerization Sequence. Org. Lett., 2016. 18(13): p. 3098-3101.
    22. Mimoto, T., et al., Kynostatin (KNI)-227 and -272, highly potent anti-HIV agents: conformationally constrained tripeptide inhibitors of HIV protease containing allophenylnorstatine. Chem Pharm Bull (Tokyo), 1992. 40(8): p.2251-3.
    23. Mimoto, T., et al., Structure−Activity Relationship of Small-Sized HIV Protease Inhibitors Containing Allophenylnorstatine. J. Med. Chem., 1999. 42(10): p. 1789-1802.
    24. Yoshimura, K., et al., JE-2147: A dipeptide protease inhibitor (PI) that potently inhibits multi-PI-resistant HIV-1. P. Natl. Acad. Sci. USA., 1999. 96(15): p. 8675.
    25. Mimoto, T., et al., Structure-activity relationship of orally potent tripeptide based HIV protease inhibitors containing hydroxymethylcarbonyl isostere. Chem Pharm Bull (Tokyo), 2000. 48(9): p. 1310-26.
    26. Gurubrahamam, R., Y.-S. Cheng, and K. Chen, Control of Five Contiguous Stereogenic Centers in an Organocatalytic Kinetic Resolution via Michael/Acetalization Sequence: Synthesis of Fully Substituted Tetrahydropyranols. Org. Lett., 2015. 17(3): p. 430-433.
    27. Gurubrahamam, R., et al., Dihydrooxazine N-Oxide Intermediates as Resting States in Organocatalytic Kinetic Resolution of Functionalized Nitroallylic Amines with Aldehydes. Org. Lett., 2016. 18(13): p. 3046-3049.
    28. Nising, C.F. and S. Brase, Recent developments in the field of oxa-Michael reactions. Chem. Soc. Rev., 2012. 41(3): p. 988-99.
    29. Núñez, M.G., et al., Asymmetric organocatalytic synthesis of six-membered oxygenated heterocycles. Tetrahedron, 2010. 66(12): p. 2089-2109.
    30. Olier, C., et al., ChemInform Abstract: Synthesis of Tetrahydropyrans and Related Heterocycles via Prins Cyclization: Extension to aza-Prins Cyclization. Cheminform, 2010. 41.
    31. Larrosa, I., P. Romea, and F. Urpí, Synthesis of six-membered oxygenated heterocycles through carbon–oxygen bond-forming reactions. Tetrahedron, 2008. 64(12): p. 2683-2723.
    32. Reddy, R.J. and K. Chen, Highly Efficient Organocatalytic Kinetic Resolution of Activated Nitroallylic Acetates with Aldehydes via Conjugate Addition−Elimination. Org. Lett., 2011. 13(6): p. 1458-1461.
    33. Max Roser, E.O.-O.a.H.R. Life Expectancy. First published in 2013; last revised in October 2019; Available from: https://ourworldindata.org/life-expectancy.
    34. 張岱屏. (2018). 到底!是誰把電用光光 - 找能源|公視我們的島. In. Taiwan (Republic of China): 公共電視-我們的島.
    35. 台灣電力股份有限公司. Available from: https://www.taipower.com.tw/tc/index.aspx.
    36. Lund, H., et al., Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices. Appl. Therm. Eng., 2009. 29(5): p. 799-806.
    37. Ould Amrouche, S., et al., Overview of energy storage in renewable energy systems. Int. J. Hydrogen Energ., 2016. 41(45): p. 20914-20927.
    38. Speidel, S. and T. Bräunl, Leaving the grid—The effect of combining home energy storage with renewable energy generation. Renew. Sust. Energ. Rev., 2016. 60: p. 1213-1224.
    39. Wang, L., et al., Acid-base membranes of imidazole-based sulfonated polyimides for vanadium flow batteries. J. Membrane Sci., 2018. 552: p. 167-176.
    40. K.L.Hsueh. 液流電池技術與儲能應用(Technology of Flow Battery and Their Applications for Energy Storage.). 2017; Available from: https://s3-apnortheast-1.amazonaws.com/static.iyp.tw/37903/files/7901e43e-fecc-4169-8199 35e6bb778176.pdf.
    41. Xi, J., et al., Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J. Power. Sources, 2007. 166(2): p. 531-536.
    42. Chen, D., et al., Optimized Anion Exchange Membranes for Vanadium Redox Flow Batteries. ACS Appl. Mater. Inter., 2013. 5(15): p. 7559-7566.
    43. Mai, Z., et al., Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application. J. Power. Sources, 2011. 196(13): p. 5737-5741.
    44. Li, X., et al., Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energ. Environ Sci., 2011. 4(4): p. 1147-1160.
    45. Doan, T.N.L., T.K.A. Hoang, and P. Chen, Recent development of polymer membranes as separators for all-vanadium redox flow batteries. RSC Adv., 2015. 5(89): p. 72805-72815.
    46. Zhang, H., et al., Novel Triple Tertiary Amine Polymer-Based Hydrogen Bond Network Inducing Highly Efficient Proton-Conducting Channels of Amphoteric Membranes for High-Performance Vanadium Redox Flow Battery. ACS Appl. Mater. Inter., 2019. 11(5): p. 5003-5014.
    47. Choi, S.-W., et al., Hydrocarbon membranes with high selectivity and enhanced stability for vanadium redox flow battery applications: Comparative study with sulfonated poly(ether sulfone)s and sulfonated poly(thioether ether sulfone)s. Electrochim. Acta, 2018. 259: p. 427-439.
    48. Winardi, S., et al., Sulfonated poly (ether ether ketone)-based proton exchange membranes for vanadium redox battery applications. J. Membrane Sci., 2014. 450: p. 313-322.
    49. Xi, J., et al., Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery. J. Power. Sources, 2015. 285: p. 195-204.
    50. Park, S. and H. Kim, Preparation of a Sulfonated Poly(ether ether ketone)-Based Composite Membrane with Phenyl Isocyanate Treated Sulfonated Graphene Oxide for a Vanadium Redox Flow Battery. J. Electrochem. Soc., 2016. 163(10): p. A2293-A2298.
    51. Kim, J., et al., Ion-exchange composite membranes pore-filled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries. J. Power. Sources, 2018. 383: p. 1-9.
    52. Sun, J., et al., The transfer behavior of different ions across anion and cation exchange membranes under vanadium flow battery medium. J. Power. Sources, 2014. 271: p. 1-7.
    53. Sirisopanaporn, C., A. Fernicola, and B. Scrosati, New, ionic liquid-based membranes for lithium battery application. J. Power. Sources, 2009. 186(2): p.490-495.
    54. Li, M., et al., Novel polymeric ionic liquid membranes as solid polymer electrolytes with high ionic conductivity at moderate temperature. J. Membrane Sci., 2011. 366(1): p. 245-250.
    55. Li, M., et al., Polymeric ionic liquid membranes as electrolytes for lithium battery applications. J. Appl. Electrochem., 2012. 42(10): p. 851-856.
    56. Ochędzan-Siodłak, W., K. Dziubek, and D. Siodłak, Densities and viscosities of imidazolium and pyridinium chloroaluminate ionic liquids. J. Mol. Liq., 2013. 177: p. 85-93.
    57. Lewars, E.G. (2016). Computational Chemistry-Introduction to the Theory and Applications of Molecular and Quantum Mechanics. In: Springer.
    58. Kettering, C.F., L.W. Shutts, and D.H. Andrews, A Representation of the Dynamic Properties of Molecules by Mechanical Models. Phys. Rev., 1930. 36(3): p. 531-543.
    59. Born, M. and R. Oppenheimer, Zur Quantentheorie der Molekeln. Ann. Phys. (Leipzig), 1927. 389(20): p. 457-484.
    60. Epstein, S.T., Ground‐State Energy of a Molecule in the Adiabatic Approximation. J. Chem. Phys., 1966. 44(2): p. 836-837.
    61. Fung, Y.C., ed. Foundations of solid mechanics. 1965, Englewood Cliffs, N.J. : Prentice-Hall.
    62. A.C. Ugural, S.K.F., ed. Advanced Strength and Applied Elasticity. 6 ed. 2019, Prentice Hall: USA.
    63. PW, A., ed. Physical chemistry. 5 ed. 1994, Freeman: New York. p.772-773.
    64. Jorgensen, W.L., D.S. Maxwell, and J. Tirado-Rives, Development and Testing
    of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc., 1996. 118(45): p. 11225-11236.
    65. Jorgensen, W.L. and J. Tirado-Rives, The OPLS [optimized potentials for
    liquid simulations] potential functions for proteins, energy minimizations for
    crystals of cyclic peptides and crambin. J. Am. Chem. Soc., 1988. 110(6): p.1657-1666.
    66. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Phys. Rev., 1964. 136(3B): p. B864-B871.
    67. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 1965. 140(4A): p. A1133-A1138.
    68. Grotendorst, J., ed. Modern methods and algorithms of quantum chemistry. 2000, Forschungszentrum Julich: Germany
    69. Agmon, N., The Grotthuss mechanism. Chem. Phys. Lett., 1995. 244(5): p.456-462.
    70. Boese, A.D. and N.C. Handy, New exchange-correlation density functionals: The role of the kinetic-energy density. J. Chem. Phys., 2002. 116(22): p. 9559-9569.
    71. Hassanali, A., et al., On the recombination of hydronium and hydroxide ions in water. P. Natl. Acad. Sci. USA., 2011. 108(51): p. 20410.
    72. Rackers, J.A., et al., Tinker 8: Software Tools for Molecular Design. J. Chem. Theory Comput., 2018. 14(10): p. 5273-5289.
    73. Gaussian 16, Revision. B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
    Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
    74. Sahoo, G., et al., Dihydrooxazine Oxides as Key Intermediates in Organocatalytic Michael Additions of Aldehydes to Nitroalkenes. Angew. Chem. Int. Edit., 2012. 51(52): p. 13144-13148.
    75. Groß, F. Ab Initio Molecular Dynamics:Proton Transport In Water. 2016.
    76. López-Plascencia, C.E., M. Martínez-Negrete-Vera, and R. Garibay-Alonso, Reactive force field study of the molecular structure of water under thermal and electric effects: Water splitting phenomenon. Int. J. Hydrogen Energ., 2017. 42(8): p. 4774-4781.

    無法下載圖示 電子全文延後公開
    2026/07/31
    QR CODE