簡易檢索 / 詳目顯示

研究生: 陳彥霖
Chen, Yan-Lin
論文名稱: 建立以單分子螢光顯微技術研究Shugoshin-1蛋白與潛力治療用胜肽間動態交互作用的平台
Development of a single-molecule-fluorescence-microscopy-based platform to study dynamic interactions between Shugoshin-1 and potential therapeutic peptides
指導教授: 李以仁
Lee, I-Ren
口試委員: 楊立威
Yang, Lee-Wei
孫英傑
Sun, Ying-Chieh
口試日期: 2021/08/12
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 62
中文關鍵詞: 胜肽-胜肽交互作用Sgo1PP2A抗微生物胜肽單分子螢光共振能量轉移
英文關鍵詞: Peptide-Peptide interactions, Sgo1, PP2A, Antimicrobial peptides, smFRET
DOI URL: http://doi.org/10.6345/NTNU202101171
論文種類: 學術論文
相關次數: 點閱:40下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質-蛋白質交互作用(Protein-Protein interactions, PPIs)促進大部分生物機能,蛋白質區域與區域之間的交互作用(Domain-Domain interactions, DDIs)引導功用性蛋白在特定區域作用,交互作用必須通過蛋白質的二級結構進行,二級結構中螺旋結構穩定且單純,探討螺旋結構之間的交互作用能夠得到更精確的結果。
    Shugoshin 1 (Sgo1)和蛋白磷酸酶2A (PP2A)之間的結合研究說明Sgo1募集PP2A在保護姊妹染色體中有重要的作用。為了發展一系列抗微生物胜肽,我們擷取Sgo1-PP2A交互作用的片段,將目標Sgo1胜肽和DNA交聯,並經由與生物素標記的互補DNA結合而固定在單分子檢驗平台上,並在緩衝溶液中添加螢光標記的游離潛力治療用胜肽進行交互作用,利用單分子螢光顯微鏡研究胜肽-胜肽交互作用動力學。和傳統的方法比較,需要的胜肽濃度相對較低(< 100 nM),使我們可以對潛力治療用胜肽進行更廣泛的篩選。

    Protein-Protein Interactions (PPIs) facilitate many biological functions, and Domain-Domain Interactions (DDIs) induce functional protein activity in specific regions. The interactions between domains are usually dictated by their secondary structures . Helical structure is relatively simple and stable , hence , becomes a suitable candidate for studying domain-domain interactions . Previous study of Shugoshin 1(Sgo1)-Protein Phosphatase 2A(PP2A) binding demonstrated that recruitment of PP2A by Sgo1 plays an important role in the protection of sister chromatid , Hence , becomes a potent target for the development of antimicrobial peptides. We extract the fragments of Sgo1-PP2A interaction and establish a single-molecule-fluorescence-microscopy-based platform for studying the peptide-peptide interaction dynamics. Target peptide (Sgo1)-DNA hybrid was used in the immobilized single-molecule assays and interacted with the fluorescence-labeled free potential therapeutic peptides in buffer solution. The required concentration (< 100 nM) of peptides is relatively low compared to conventional methods, allowing us to perform a wider range of screening on the potential therapeutic peptides.

    致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 緒論 1 1.1 前言 1 1.2 蛋白質-蛋白質交互作用(Protein-Protein Interactions, PPIs) 2 1.3 區域-區域交互作用(Domain-Domain Interactions, DDIs) 3 1.4 治療用胜肽數據庫(Therapeutic Peptide-DataBank, TP-DB) 7 1.5 抗微生物胜肽(Antimicrobial Peptides, AMPs) 8 1.6 肝細胞癌(Hepatocellular carcinoma, HCC) 10 1.7 研究動機 11 第二章 實驗方法與儀器 13 2.1胜肽和DNA接合與螢光標記PP2A胜肽 13 2.1.1胜肽-DNA接合物製備 13 2.1.2 PP2A胜肽標記 14 2.2實驗儀器與原理 16 2.2.1逆相高效液相層析(Reverd Phase High-Performance Liquid Chromatography, RP-HPLC) 16 2.2.2液相層析質譜儀(Liquid Chromatography-Mass Spectrometry, LC-MS) 17 2.2.3基質協助雷射誘導結晶/離子化-飛行時間質譜儀(Matrix Assisted Laser Desorption Ionization-Time Of Flight Mass Spectrometry, MALDI-TOF-MS) 18 2.2.4單分子螢光共振能量轉移 19 2.2.5全內反射螢光顯微鏡 23 2.3單分子實驗器材與實驗樣品製備流程 25 2.3.1實驗用玻片槽處理與組裝 25 2.3.2顯像緩衝溶液(Image Buffer) 26 2.3.3實驗方法與流程 28 2.4數據處理與分析 32 第三章 實驗結果與討論 34 3.1實驗設計 34 3.2 Sgo1胜肽DNA連接物產物鑑定 35 3.2.1 HPLC純化Sgo1胜肽DNA連接物 35 3.2.2 MALDI-TOF MS鑑定 35 3.2.3 LC-MS鑑定 36 3.2.4目標Sgo1胜肽與DNA共定位 39 3.3目標Sgo1胜肽與PP2A胜肽特定的結合 41 3.3.1透析純化標記上螢光分子的PP2A胜肽 41 3.3.2透析法純化PP2A胜肽與目標Sgo1胜肽結合 42 3.3.4溫度對胜肽結構的影響 49 3.3.5 PP2A胜肽與Sgo1胜肽之間特定的結合 50 3.4 PP2A-Sgo1結合之動力學 51 3.5 Sgo1-PP2A交互作用模型 55 第四章 結論與未來展望 57 參考文獻 59

    [1] Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in Microbiology. 2020, 11, 582779
    [2] Lau, J. L.; Dunn, M. K. Therapeutic Peptides: Historical Perspectives, Current Development Trends, and Future Directions. Bioorganic & Medicinal Chemistry 2018, 26 (10), 2700–2707.
    [3] Marqus, S.; Pirogova, E.; Piva, T. J. Evaluation of the Use of Therapeutic Peptides for Cancer Treatment. Journal of Biomedical Science 2017, 24 (1), 21.
    [4] Burba, A. E. C.; Lehnert, U.; Yu, E. Z.; Gerstein, M. Helix Interaction Tool (HIT): A Web-Based Tool for Analysis of Helix-Helix Interactions in Proteins. Bioinformatics 2006, 22 (22), 2735–2738.
    [5] Kangueane, P.; Nilofer, C. Principles of Protein-Protein Interaction. In Protein-Protein and Domain-Domain Interactions; Springer Singapore: Singapore, 2018; 93–111.
    [6] Rao, V. S.; Srinivas, K.; Sujini, G. N.; Kumar, G. N. S. Protein-Protein Interaction Detection: Methods and Analysis. International Journal of Proteomics 2014, 1–12.
    [7] M. Chetty and A. Ngom, “Domain -Domain Interaction Identific Ation with a Feature Selection Approach,” in Pattern Recognition in Bioinformatics, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008, 178–186.
    [8] Xu, Z.; Cetin, B.; Anger, M.; Cho, U. S.; Helmhart, W.; Nasmyth, K.; Xu, W. Structure and Function of the PP2A-Shugoshin Interaction. Molecular Cell 2009, 35 (4), 426–441.
    [9] Acuner Ozbabacan, S. E.; Engin, H. B.; Gursoy, A.; Keskin, O. Transient Protein-Protein Interactions. Protein Engineering Design and Selection 2011, 24 (9), 635–648.
    [10] Hu, H.-Y.; Chen, C.-F. Artificial Supersecondary Structures Based on Aromatic Oligoamides. In Protein Supersecondary Structures; Methods in Molecular Biology, 2012; 932, 219–234.
    [11] Tsai, C.-Y.; Salawu, E. O.; Li, H.; Lin, G.-Y.; Kuo, T.-Y.; Voon, L.; Sharma, A.; Hu, K.-D.; Cheng, Y.-Y.; Sahoo, S.; Stuart, L.; Chen, C.-W.; Chang, Y.-Y.; Lu, Y.-L.; Ke, X.; Wu, C.-C.; Lan, C.-Y.; Fu, H.-W.; Yang, L.-W. Secondary Structure Motifs Made Searchable to Facilitate the Functional Peptide Design; Bioinformatics, 2019.
    [12] L.-H. Wang, C.-J. Yen, T.-N. Li, S. Elowe, W.-C. Wang, and L. H.-C. Wang, “Sgo1 is a potential therapeutic target for hepatocellular carcinoma,” Oncotarget, 2015 6-(4), 2023–2033.
    [13] Mehta, G.; Anbalagan, G. K.; Bharati, A. P.; Gadre, P.; Ghosh, S. K. An Interplay between Shugoshin and Spo13 for Centromeric Cohesin Protection and Sister Kinetochore Mono-Orientation during Meiosis I in Saccharomyces Cerevisiae. Current Genetics 2018, 64 (5), 1141–1152.
    [14] Kato, A.; Miyazaki, M.; Ambiru, S.; Yoshitomi, H.; Ito, H.; Nakagawa, K.; Shimizu, H.; Yokosuka, O.; Nakajima, N. Multidrug Resistance Gene (MDR-1) Expression as a Useful Prognostic Factor in Patients with Human Hepatocellular Carcinoma after Surgical Resection. Journal of. Surgical. Oncology. 2001, 78 (2), 110–115.
    [15] Zhu, A. X. Systemic Therapy of Advanced Hepatocellular Carcinoma: How Hopeful Should We Be? The Oncologist 2006, 11 (7), 790–800.
    [16] Clarke, A.; Orr-Weaver, T. L. Sister Chromatid Cohesion at the Centromere: Confrontation between Kinases and Phosphatases? Developmental Cell 2006, 10 (5), 544–547.
    [17] Boavida, A.; Santos, D.; Mahtab, M.; Pisani, F. M. Functional Coupling between DNA Replication and Sister Chromatid Cohesion Establishment. International Journal of Molecular Sciences, 2021, 22 (6), 2810.
    [18] Gao, Y.; Sirinakis, G.; Zhang, Y. Highly Anisotropic Stability and Folding Kinetics of a Single Coiled Coil Protein under Mechanical Tension. Journal of the American. Chemical Society. 2011, 133 (32), 12749–12757.
    [19] van Ginkel, J.; Filius, M.; Szczepaniak, M.; Tulinski, P.; Meyer, A. S.; Joo, C. Single-Molecule Peptide Fingerprinting. Proceedings of the National Academy of Sciences of the USA 2018, 115 (13), 3338–3343.
    [20] Duff, Jr., M. R.; Grubbs, J.; Howell, E. E. Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity. Journal of Visualized Experiments 2011, No. 55, 2796.
    [21] 伍秀菁, 林美吟, and 汪若文, 化學分析儀器. 新竹市: 行政院國家科學委員會精密儀器發展中心, 1998.
    [22] Nguyen, H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15 (5), 10481–10510.
    [23] Williams, B. A. R.; Chaput, J. C. Synthesis of Peptide‐Oligonucleotide Conjugates Using a Heterobifunctional Crosslinker. Current Protocols in Nucleic Acid Chemistry 2010, 42 (1).
    [24] Lavigne, J.-P.; Espinal, P.; Dunyach-Remy, C.; Messad, N.; Pantel, A.; Sotto, A. Mass Spectrometry: A Revolution in Clinical Microbiology? Clinical Chemistry and Laboratory Medicine 2013, 51 (2).
    [25] Schuler, B.; Hofmann, H. Single-Molecule Spectroscopy of Protein Folding Dynamics—Expanding Scope and Timescales. Current Opinion in Structural Biology 2013, 23 (1), 36–47.
    [26] Skruzny; Pohl; Abella. FRET Microscopy in Yeast. Biosensors 2019, 9 (4), 122.
    [27] Ishikawa-Ankerhold, H. C.; Ankerhold, R.; Drummen, G. P. C. Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012, 17 (4), 4047–4132.
    [28] Martin‐Fernandez, M. L.; Tynan, C. J.; Webb, S. E. D. A ‘Pocket Guide’ to Total Internal Reflection Fluorescence. Journal of Microscopy 2013, 252 (1), 16–22.
    [29] 李以仁; 許顥頤; 秦志皞; 吳佳諭. 單分子螢光共振能量轉移光譜簡介. 化學 2015, 73 (4), 303–312.
    [30] 黃子芸。利用單分子技術研究小腦失調症第31型特殊連續TGGAA重複序列結構動態學。碩士學位論文。台中:國立中興大學基因體暨生物資訊學研究所。2016.
    [31] Roy, R.; Hohng, S.; Ha, T. A Practical Guide to Single-Molecule FRET. Nature Methods 2008, 5 (6), 507–516
    [32] Chen, W.; Possemato, R.; Campbell, K. T.; Plattner, C. A.; Pallas, D. C.; Hahn, W. C. Identification of Specific PP2A Complexes Involved in Human Cell Transformation. Cancer Cell 2004, 5 (2), 127–136.

    下載圖示
    QR CODE