簡易檢索 / 詳目顯示

研究生: 蔡承樺
Tsai, Cheng-Hua
論文名稱: 應用多期數值地形模型於海崖侵蝕之研究-以臺東成功海岸為例
Using multi-period DTMs on sea cliff erosion, Chenggong, Taitung
指導教授: 沈淑敏
Shen, Su-Min
口試委員: 莊昀叡 謝有忠 沈淑敏
口試日期: 2021/08/06
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 135
中文關鍵詞: 海崖後退無人機攝影測量數值地形模型逐步回歸八邊溪
英文關鍵詞: Seacliff retreat, UAV photogrammetry, DTM,, Stepwise Regression, Babian Coast
研究方法: 調查研究田野調查法
DOI URL: http://doi.org/10.6345/NTNU202101439
論文種類: 學術論文
相關次數: 點閱:78下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來無人飛行載具(Unmanned Aerial Vehicle,簡稱無人機、UAV)與相關軟硬體發展快速,已成為環境監測與科學研究的重要工作。本研究之目的為探討簡易UAV拍攝的影像和所產製的DEM,可如何偵測地形起伏較大之海崖的侵蝕後退歷程,並評估結合其他測量方法的海崖後退量作業模式。研究樣區為臺東縣成功鎮八邊溪口的海岸,長約2公里,過去一百年來海崖持續侵蝕後退。
    本研究自多期圖資影像擷取崖線、濱線、海崖形態、海灘形態、海灘粒徑、人為活動等因子,包含(1)自行以簡易空拍機搭配RTK拍攝產製之3期影像與DTM(精度3公分),2018至2020年;(2)UAV產製之正射影像,2013年;(3)航空攝影測量產製之海岸像片地形圖(比例尺1:1000),1986年。此外,採用其他計畫之LiDAR-DEM(0.2x0.2公尺)與影像(2020年)為各期圖資套疊的基準。
    根據多期圖資的套疊比對,本研究測得八邊溪口的海崖在1986-2020年(34年)間崖頂最大後退量可達34公尺,後退量空間差異很大,整體而言崖頂後退與崖底呈現水平後退的模式,該段期間曾經歷多次大颱風事件。在2013-2020年(7年)期間,本段海崖變化很有限,只判釋出4處上邊坡崩落,該段期間幾乎沒有颱風巨浪記錄。逐步迴歸分析亦確認,類似本海岸之窄灘、弱岩特性的海崖後退,主要受控於極端事件的發生與否。
    本研究呈現了低成本的簡易空拍機容易在短時間內多次作業,又具有低高度、多角度拍攝的彈性,由此獲得的高解析度影像與3D模型,可判釋海崖頂的確切位置與坡面的細微地形變化,而有助於推知海崖後退歷程。若結合RTK測得之地面控制點或以既有之高成本、高空間精度LiDAR-DEM為基準,則可解決海岸研究常見之控制點分布不佳的問題,而測得海崖或海灘的量體變化。本研究發展的海崖研究可操作模式,對地形起伏大的海岸環境而言特別重要。

    In recent years, the use of UAV (Unmanned Aerial Vehicle) and relevant software have increased and become crucial in environmental monitoring and scientific research. The purpose of this research is to explore how the images taken by a simple UAV and the generated DEM can detect the erosion and retreat process of sea cliffs with large undulations, and evaluate the operation mode of sea cliff retreat combined with other measurement methods. The study sample area is at Babian Coast, Taitung. The coast is about 2 kilometers long. The sea cliffs in that area have been eroding in the past 100 years.
    The main method of this research is to extract cliff lines, coastlines, and factors such as sea cliff shape, beach shape, beach particle size, human activities, etc. from multi-phase data images, including (1) self-use of a simple aerial camera with RTK filming products Phase 3 images and DTM (accuracy 3 cm), 2018 to 2020; (2) Orthographic images produced by UAV, 2013; (3) Orthophoto Base Map in the coastal area produced by photogrammetry (scale 1: 1000), 1986. In addition, the LiDAR-DEM (0.2x0.2m) and images (2020) of other projects are used as the basis in each phase.
    According to the overlap comparison of multiple maps, this study has measured that the maximum retreat of the cliff top of the Babian Coast Sea Cliff from 1986 to 2020 (34 years) can reach 34 meters. This area underwent many typhoons during this period, and the amount of retreat varied greatly in space. On the whole, the retreat of the clifftop and the bottom of the cliff present a horizontal retreat pattern. From 2013 to 2020 (7 years), there was almost no record of typhoons and huge waves during this period. The sea cliff changes in this section were very limited, only 4 upper slopes were found to have been released. The stepwise regression analysis also confirmed that the retreat of sea cliffs, which are similar to the narrow beaches and weak rocks on the coast, is mainly controlled by the occurrence of extreme events and is sporadic.
    This research shows that the simple aerial camera is easy to operate multiple times in a short time, and has the flexibility of low-altitude and multi-angle shooting. The high-resolution images and 3D models obtained from this can be judged as the top of the sea cliff. The exact location and subtle topographical changes of the slope are valuable for inferring the retreat process of the sea cliff. If combined with control points measured by RTK or based on the existing high-cost, high-spatial accuracy LiDAR-DEM, the amount of Body change of sea cliffs or beaches can be measured, and the problem of poor distribution of control points common in coastal research can be solved. The operational model of sea cliff research developed in this research is especially noteworthy for coastal environments with wide undulations.

    第一章 緒論 1 第一節 研究動機與目的 1 第二節 文獻回顧 3 第三節 研究區概況 10 第四節 研究方法與流程 18 第二章 數值地表模型建置結果 37 第一節 數值地表模型的建置結果 37 第二節 UAV影像拍攝於海崖地形監測的可用性 45 第三節小結 50 第三章 八邊溪口數十年與數年尺度的海崖後退量 55 第一節 數年尺度的海崖後退 55 第二節 數十年尺度的海崖後退 62 第三節小結 69 第四章 八邊海崖後退的主控因素探討 71 第一節逐步迴歸分析結果 71 第二節 海崖後退的因子討論 71 第三節 小結 84 第五章 結論 85 參考文獻 87 附錄一 其他剖線 92 附錄二 海崖後退因子之調查成果 116 附錄三 逐步迴歸分析 121

    王星為、江晉霆、彭德熙、鄭鈺雯、余翠紋、陳立邦、謝有忠、費立沅、張國楨(2019)。Riegl VUX-1 無人機光達點雲資料處理及精度評估。中國土木水利工程學刊,40(1),29-39。
    石再添(1980)。臺灣西部海岸線的演變及海埔地的開發。地理研究報告,6,1-36。
    石再添、鄧國雄、許民陽、楊貴三(1988)。臺灣花東海岸海階的地形學研究。師大地理研究報告,14。
    江昭蓉(2018)。擺動的吉貝沙嘴-應用無人機監測沙岸地形變遷(碩士論文)。國立彰化師範大學,彰化縣。
    沈淑敏(1997)。圖像資料在討論花東地區海岸地形變遷上的應用。地圖:中華民國地圖學會會刊,8,219-232。
    郭金棟(1990)。台灣海岸地形變化及其未來之間發利用。行政院科技顧問組委託計劃,成功大學水利及海洋工程研究所,臺南市。
    許民陽(1994)。花東海岸的海蝕後退形態及速率的初步推估。台灣之第四紀第五次研討會論文集,中國地質學會第四紀研究會,35-38。
    許民陽、沈淑敏(1995)。花東海岸海崖後退機制—成崖物質與風暴激浪特性的初步探討。國立臺灣大學地理學系地理學報,19,71-99。
    許民陽(1996)。花東海岸不同地質區海岸後退特性的差異。中日地形聯合大會論文集,師大地理系,100-113。
    許民陽、高慶珍、高鵬飛、鄭紹龍(1998)。花東海岸後退的研究-長濱以南至台東段。國立臺灣大學地理學系地理學報,25,83-110。
    許民陽(1998)。颱風對花東海岸地質環境的影響。地質,經濟部中央地質調查所,18(1),1-16。
    許民陽(1999)。花東海岸的侵蝕後退研究。水利工程,土木技術(2),3,64-89。
    陳文山(1988)。臺灣海岸山脈沈積盆地之演化及其在地體構造上之意義(博士論文)。國立臺灣大學地質研究所。臺北市。
    陳文俊、郭金棟(2005)。台東海岸線變遷分析。第27屆海洋工程研討會論文集,中興大學。臺中市。
    傅安明(1990)。臺灣地區地理資訊系統GIS基本資料庫之建立:臺灣地區主題圖專集。行政院農業委員會,臺北市。
    張憲國、陳蔚瑋(2005)。以衛星影像探討外傘頂洲的海灘變遷。第27屆海洋工程研討會論文集,中興大學。臺中市。
    劉平妹、王鑫、許民陽(1990)。台灣海岸地區之地形演變。臺灣大學地質系,行政院科技顧問組委託計劃。
    蔣士朋(2017)。UAV影像應用於沙灘地形測繪之研究。國立臺灣海洋大學碩士論文。
    鄭雅云(2018)。無人飛行載具應用於海岸灘線量測之可行性研究(碩士論文)。國立成功大學。台南市。
    謝孟龍(1990)。台灣花東海岸晚第四紀沈積層海階地形暨新構造運動研究。國立臺灣大學碩士論文。
    謝孟龍、劉平妹(2010)。花東海岸全新世地殼上升速率的再檢討。經濟部中央地質調查所彙刊,23,165-199。
    謝雨生、鄭宜仲(1993)。多元迴歸分析的假定與實例檢討-多元線性重合現象的診斷與處理。農業推廣學報,10,189-213。
    經濟部水利署第八河川局(2018)。台東海岸防護整合規劃。
    Agüera-Vega, F., Carvajal-Ramírez, F., & Martínez-Carricondo, P. (2017). Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement, 98, 221-227.
    Allison, R. J. (1989). Rates and mechanismus of change in hard rock coastal cliffs. Zeitschrift für Geomorphologie. Supplementband, 73, 125-138.
    Arkin, Y., & Michaeli, L. (1985). Short-and long-term erosional processes affecting the stability of the Mediterranean coastal cliffs of Israel. Engineering Geology, 21(1-2), 153-174.
    Bird, E. C. F. (1969). Coasts (No. 551.457 B).
    Carter, C. H., & Guy Jr, D. E. (1988). Coastal erosion: processes, timing and magnitudes at the bluff toe. Marine geology, 84(1-2), 1-17.
    Casella, E., Rovere, A., Pedroncini, A., Stark, C. P., Casella, M., Ferrari, M., & Firpo, M. (2016). Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo-Marine Letters, 36(2), 151-163.
    Chen, W. S., Yang, C. Y., Chen, S. T., & Huang, Y. C. (2020). New insights into Holocene marine terrace development caused by seismic and aseismic faulting in the Coastal Range, eastern Taiwan. Quaternary Science Reviews, 240, 106369.
    Dias, J. A., & Neal, W. J. (1992). Sea cliff retreat in southern Portugal: profiles, processes, and problems. Journal of Coastal Research, 641-654.
    Gonçalves, J. A., & Henriques, R. (2015). UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 101-111.
    Hsieh, M. L., Liew, P. M., & Hsu, M. Y. (2004). Holocene tectonic uplift on the Hua-tung coast, eastern Taiwan. Quaternary International, 115, 47-70.
    Jones, J. R., Cameron, B., & Fisher, J. J. (1993). Analysis of cliff retreat and shoreline erosion: Thompson Island, Massachusetts, USA. Journal of Coastal Research, 87-96.
    Kuhn, G. G., & Shepard, F. P. (2018). Beach processes and sea cliff erosion in San Diego County, California. In CRC Handbook of Coastal Processes and Erosion (pp. 267-284). CRC Press.
    Komar, P. D., & Shih, S. M. (1993). Cliff erosion along the Oregon coast: A tectonic-sea level imprint plus local controls by beach processes. Journal of Coastal Research, 747-765.
    Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., & Gabbianelli, G. (2013). Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote sensing, 5(12), 6880-6898.
    Philpott, K. L. (1984). Comparison of cohesive coasts and beach coasts. Proc. Coastal Eng. Canada, 309-338.
    Robinson, L. A. (1977). Marine erosive processes at the cliff foot. Marine Geology, 23(3), 257-271.
    Sunamura, T., & Komar, P. D. (1983). CRC Handbook of Coastal Processes and Erosion.
    Shih, S. M. (1992). Processes of sea-cliff erosion on the Oregon coast: from neotectonics to wave run-up.
    Shen, S. M. (2001). Geomorphological and tectonic controls on coastal erosion, Huatung, eastern Taiwan. University of London, University College London (United Kingdom).
    Strecha, C., Küng, O., & Fua, P. (2012). Automatic mapping from ultra-light UAV imagery . In Proceedings of the EuroCOW 2012, Barcelona, Spain, 8–10 February 2012.
    Turner, I. L., Harley, M. D., & Drummond, C. D. (2016). UAVs for coastal surveying. Coastal Engineering, 114, 19-24.
    Williams, A. T., Davies, P., & Bomboe, P. (1993). Geometrical simulation studies of coastal cliff failures in Liassic strata, South Wales, UK. Earth Surface Processes and Landforms, 18(8), 703-720.
    Yamanouchi, J.(1977) A geomorphological study about the coastal cliff retreat along the southwest coast of the Atsumipeninsula, central Japan, Science Report, Faculty Education, Gunma University. Vo1. 26, 95-128.
    Young, A. P., Flick, R. E., Gutierrez, R., & Guza, R. T. (2009). Comparison of short-term seacliff retreat measurement methods in Del Mar, California. Geomorphology, 112(3-4), 318-323.
    Zenkovich, V. P.(1967) Processes of Coastal Development. New York: Wiley Interscience, 738.

    下載圖示
    QR CODE