簡易檢索 / 詳目顯示

研究生: 鄭元愷
Cheng, Yuan-Kai
論文名稱: AA7075鋁合金與Ti-6Al-4V合金摩擦攪拌銲接微觀組織與機械性質研究
Research on Microstructure and Mechanical Properties of Friction Stir Welding of AA7075 Aluminum Alloy and Ti-6Al-4V Alloy
指導教授: 程金保
Cheng, Chin-Pao
口試委員: 王星豪
Wang, Hsing-Hao
黃智威
Huang, Chih-Wei
程金保
Cheng, Chin-Pao
口試日期: 2021/10/21
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 134
中文關鍵詞: 鋁合金鈦合金摩擦攪拌銲接異質接合
英文關鍵詞: aluminum alloy, titanium alloy, friction stir welding, dissimilar joint
研究方法: 實驗設計法次級資料分析
DOI URL: http://doi.org/10.6345/NTNU202101705
論文種類: 學術論文
相關次數: 點閱:58下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選用Ti-6Al-4V合金與AA7075合金,以FSW進行AA7075/ AA7075、AA7075/ Ti-6Al-4V 同質與異質的接合。找出合適的銲接參數後,對同質銲件施以T6銲後熱處理,比較T6銲後熱處理對機械性質之影響,並對各組銲接條件進行機械性質、微觀組織與電化學抗腐蝕性探討。
    在AA7075/ AA7075同質FSW研究結果顯示,以圓錐攪拌銷可以成功接合的條件需以較高熱量輸入,接合後攪拌區因動態再結晶而產生晶粒細化,而熱影響區則有晶粒粗大化現象,導致銲道附近之硬度下降。同質銲件施以T6銲後熱處理後銲道整體硬度均提升到原有母材硬度,銲件最大抗拉強度達到489.8 MPa,為鋁合金母材強度之82%,但延伸率則至7.3%。而AA7075/ Ti-6Al-4V異質FSW研究結果顯示,若以較高熱量輸入之銲接參數進行接合,將因兩合金之熱膨脹程度不一在銲道產生裂縫。根據EPMA觀察結果顯示,在兩種合金界面出現金屬間化合物(IMC),IMC的厚度與形成的形式隨轉速而改變,無論轉速高低皆在界面處量測到鈦元素擴散至鋁合金,擴散範圍與轉速高低成正比。銲接參數為540 rpm – 60 mm/min時有最高抗拉強度248.44 MPa,為鋁合金母材強度之41%。電化學腐蝕試驗結果顯示,AA7075因FSW後銲道產生晶粒細化效果,導致單位面積下有更多連續晶界存在,引起更多晶界的腐蝕行為,因此抗腐蝕性較母材差。Ti-6Al-4V則因FSW攪拌棒肩部接觸之銲道表面晶粒尺寸較母材區域小,有更多鈍化膜成核點的形成,因此其抗腐蝕性優於其母材。

    In this research, friction stir welding (FSW) are conducted using Ti-6Al-4V alloy and AA7075 alloy, joints AA7075 to AA7075 and dissimilar joints AA7075 to Ti-6Al-4V. Apply T6 post-weld heat treatment to similar weldments, and compare the effect of T6 post-weld heat treatment on mechanical properties. Discuss that the mechanical properties and microstructure are affected by welding parameterrs.
    The results of the same joints show that welding conditions with higher heat input are required. After joining, the stirring zone produces grain refinement due to dynamic recrystallization, while the heat-affected zone has grain coarsening, which causes the hardness near the weld bead to decrease. The maximum tensile strength of the weld bead after PWHT reaches 489.8 MPa, which is 82% of the strength of the aluminum alloy base metal, but the best elongation is only 7.3%.
    The results of the dissimilar joints show that if welding parameters with higher heat input are used for joining, cracks will occur in the weld bead due to the difference in the degree of thermal expansion of the two alloys. According to the EPMA results, the intermetallic compound (IMC) appears at the interface of the two alloys and the titanium element diffuses into the aluminum alloy. The thickness and form of the IMC and the diffusion range of the titanium element change with the rotation speed. When the welding parameters are 540 rpm-60 mm/min, the highest tensile strength is 248.44 MPa, which is 41% of the strength of the aluminum alloy base material.
    Electrochemical corrosion test results show that FSW weld bead of AA7075 has a grain refinement effect, resulting in more continuous grain boundaries, causing more grain boundary corrosion behavior. FSW weld bead of Ti-6Al-4V has more passivation film nucleation points on the grain boundary due to grain refinement. So it has better corrosion resistance.

    摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 文獻探討 5 2.1 鋁合金特性 5 2.1.1 鋁合金簡介 5 2.1.2 鋁合金種類 5 2.1.3 7xxx系鋁合金簡介 9 2.1.4 7xxx系鋁合金析出機制 9 2.1.5 鋁合金之熱處理 11 2.2 鈦及鈦合金特性 20 2.2.1 鈦及鈦合金簡介 20 2.2.2 鈦及鈦合金特性 21 2.3 摩擦攪拌銲接 27 2.3.1 摩擦攪拌銲接簡介 27 2.3.2 摩擦攪拌銲接原理 29 2.3.3 摩擦攪拌銲接組織特性 30 2.3.4 摩擦攪拌銲接參數 32 2.4 鋁合金與鈦合金摩擦攪拌異質接合 40 第三章 實驗方法與步驟 52 3.1 實驗流程 52 3.2 實驗材料 53 3.3 銲接製程參數 53 3.3.1 AA7075-T6同質銲接製程參數 54 3.3.2 AA7075-T6 & Ti-6Al-4V異質銲接製程參數 54 3.4 熱處理參數 57 3.5 銲接特性分析 59 3.5.1 金相顯微組織觀察 59 3.5.2 元素分析 60 3.5.3 微硬度試驗 61 3.5.4 拉伸試驗 63 3.5.5 電化學抗腐蝕性測試 64 第四章 結果與討論 66 4.1 AA7075-T6同質摩擦攪拌銲接 66 4.1.1 銲道形貌與金相組織 66 4.1.2 銲道截面微硬度分析 73 4.1.3 銲道拉伸試驗分析 76 4.1.4 銲後熱處理對機械性質之影響 79 4.2 AA7075-T6與Ti-6Al-4V異質摩擦攪拌銲接 88 4.2.1 銲道形貌與金相組織 88 4.2.2 銲道元素分析 101 4.2.3 銲道截面微硬度分析 109 4.2.4 銲道拉伸試驗分析 112 4.3 同質與異質摩擦攪拌銲接抗腐蝕能力 118 4.3.1 同質FSW抗腐蝕性 118 4.3.2 異質FSW抗腐蝕性 119 第五章 結論 125 參考文獻 127

    1. N. E. Prasad, R. J. H. Wanhill, Aerospace materials and material technologies volume 1: aerospace materials, Indian Institute of Metals Series, Springer Nature, UK, 2017.
    2. I. Inagaki, T. Takechi, Y. Shirai, N. Ariyasu, “Application and features of titanium for the aerospace industry”, Nippon Steel & Sumitomo Metal Technical Report, 106, 22-27, 2014.
    3. S. Pantelakis, K. Tserpes, Revolutionizing aircraft materials and processes, Springer Nature Switzerland AG, UK, 2020.
    4. A. Fuji, K. Ameyama, T.H. North, “Influence of silicon in aluminium on the mechanical properties of titanium/aluminium friction joints”, Journal of Materials Science, 30, 5185-5191, 1995.
    5. W. Aiping, S. Zhihua, N. Kazuhiro, L. Jinsun, Z. Li, “Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061”, Materials and Design, 71, 85–92, 2015.
    6. B. Majumdar, R. Galun, A. Weisheit, B. L. Mordike, “Formation of a crack-free joint between Ti alloy and Al alloy by using a high-power CO2 laser”, Journal of Materials Science, 3, 2, 6191–6200, 1997.
    7. I. Peter , M. Rosso, “Study of 7075 aluminium alloy joints”, The Scientific Bulletin of Valahia University-Materials And Mechanics, Vol.15, No.13, 7-11, 2017.
    8. D. Jacquina, G. Guillemot, “A review of microstructural changes occurring during FSW in aluminium alloys and their modelling”, Journal of Materials Processing Technology, 288, 2021.
    9. T. Captain, Aerospace & Defense Sector Need for Innovation, “In titanium USA 2018 proceedings”, Titanium USA 2018, 4, Las Vegas, USA, Oct. 7-10, 2018.
    10. H. Seiner, “Engines: challenges ahead”, Titanium USA 2018, 7, Las Vegas, USA, Oct. 7-10, 2018.
    11. T. Viguier, “Titanium’s evolving role in modern aircraft engines”, 8-9, Las Vegas, USA, Oct. 7-10, 2018.
    12. P. Jiang, R. Chen, “Research on interfacial layer of laser-welded aluminum to titanium”, Materials Characterization, 154, 264-268, 2019.
    13. M. I. Karpov, V. P. Korzhov, I. S. Zheltyakova, “Layer structure of a refractory multilayer ti/al composite after pressure diffusion welding”, Metal Science and Heat Treatment, 58, 2016, 3–6.
    14. 羅建明,莊凱迪,黃宇謙,“109年臺灣沿岸地區金屬材料腐蝕環境研究調查”,交通部運輸研究所,台北,2021。
    15. R. Winston, E. Ghali, Aluminum and Aluminum Alloys, Uhlig's Corrosion Handbook, John Wiley & Sons, Inc., New Jersey, Mar. 28,2011.
    16. T. Dursuna, C. Soutisb, “Recent developments in advanced aircraft aluminium alloys”, Materials & Design, 56, 862-871, 2014.
    17. https://www.aluminum.org/resources/industry-standards/aluminum-alloys-101
    18. The Aluminum Association, International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys [Online], Available: https://www.aluminum.org/sites/default/files/Teal%20Sheet.pdf[2021,May 12]
    19. Japanese Industrial Standards Committee, Standards Board, Technical Committee on Non-Ferrous Metals, JIS H 5202: 2010 Aluminium Alloy Castings, Japan Standard Association, Japan, Mar. 23,2010.
    20. A. Azarniya, A. K. Taheri, K. K. Taherib, “Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective”, Journal of Alloys and Compounds, 781, 945-983, 2019.
    21. 楊智綱,“高強度航空用7000 系鋁合金機械性質、抗應力腐蝕破壞性及銲接熱影響區特性之研究”,國立中央大學機械工程研究所,博士論文,2001。
    22. L. K. Berg, J. Gjqnnes, V. Hansen, X. Z. LI, M. Knutson-Wedel, G. Waterloo, D.Schryvers, L. R. Wallenberg, “GP-Zones in Al–Zn–Mg alloys and their role in artificial aging”, Acta Materialia, 49, 3443-3451, 2001.
    23. T. H. Sanders, E. A. Starke, “Relationship of microstructure to monotonic and cyclic straining of two age hardening aluminum alloys”, Metallurgical and Materials Transactions A, 7, 1407-1418, 1976.
    24. L. Christodoulou, H. M. Flower, “Hydrogen embrittlement and trapping in Al-6%Zn-3%Mg”, Acta Metallurgica, 28, 481-487, 1980.
    25. G. W. Lorimer, R. B. Nicholson, “Further results on the nucleation of precipitates in the Al-Zn-Mg system”, Acta Metallurgica, 14, 1009-1013, 1966.
    26. J. Lendvai, “Precipitation and strengthening in aluminium alloys”, Mater. Sci. Forum., 222, 217, 43-56, 1996.
    27. H. Loffler, I. Kovacs, J. Lendvai, “Review decomposition processes in Al-Zn-Mg alloys”, Journal of Materials Science, 18, 7-8, 2215-2240, 1983.
    28. G. Dlubek, R. Krause, O. Brummer, F. Plazaola, “Study of formation and reversion of Guinier-Preston zones in Al-4.5at % Zn- x – at % Mg alloys by positrons”, Journal of Materials Science, 21, 853-858, 1986.
    29. X. Z. Li, V. Hansen, J. Gjqnnes, L. R. Wallenberg, “HREM study and structuremodeling of the ƞ' phase, the hardening precipitates in commercial Al-Zn-Mgalloys”, Acta Materialia, 47, 9, 2651-2659, 1999.
    30. M. Conserva, E. D. Russo, O. Caloni, “Comparison of the Influence of chrominum and zirconium on the quench sensitivity of Al-Zn-Mg-Cu alloys”, Metallurgical Transactions, 12, 1227-1232, 1971.
    31. 張進春,“航太用高強度鋁合金銲接熱裂性與異質銲接銲後熱處理之研究”,國立交通大學機械工程研究所,博士論文,2002。
    32. D. R. Askeland,材料科學與工程,上卷,陳皇均,曉園出版社,臺北,1986。
    33. C. H. Gür, I. Yildiz, “Determining the impact toughness of age-hardened 2024 Al-alloy by nondestructive measurements”, Proc. of the 16th World Conference on NDT, Montreal, Canada, 2004.
    34. K. Sindo. Welding metallurgy, John Wiley & Sons, Inc., New Jersey, 1987.
    35. I.J. Polmear, “Aluminium alloys – a century of age hardening”, Materials Forum, 28, 1-14, 2004.
    36. G. Lütjering, J. C. Williams, Titanium, second ed., Springer, New York, 2007.
    37. L.H. Wu, D. Wang, B.L. Xiao, Z.Y. Ma, “Tool wear and its effect on microstructure and properties of friction stir processed Tie6Ale4V”, Materials Chemistry and Physics, 146, 512-522, 2014.
    38. 李丕耀,“高比強度鈦合金抗彈特性研究”,台灣金屬熱處理協會2008年度研究成果論文發表會,台南,臺灣,2008年12月。
    39. C. Leyens, M. Peters, Titanium and Titanium alloys funsamental and application, John Wiley & Sons, Inc., New Jersey, Oct. 2003.
    40. 陳俊偉,“熱處理對Ti-6Al-4V銲件機械性質及微觀結構影響”,國防大學中正理工學院兵器系統工程研究所,碩士論文,2012。
    41. J. Barksdale, Titanium, Ronald Press Company, USA, 1966.
    42. R. I. Jaffee, “The physical metallurgy of titanium alloy”, Progress in Metal Physics, 7, 65-163, 1958.
    43. W. F. Smith, Structure and Properties of Engineering Alloy, McGraw-Hill, USA, 1993.
    44. 賴耿陽,金屬鈦理論與應用,復漢出版社,臺灣,1980。
    45. P. J. Bania, “Beta titanium alloys and their role in the titanium industry”, JOM, 46, 7, 16-19, 1994.
    46. 張喜燕,鈦合金及應用,化學工業出版社,中國,2005。
    47. J. B. Borradaile, R H. Jeal, “Mechanical properties of titanium alloys”, Titanium'80 Science and Technology, 141-152, Kyoto, Japan, 1980.
    48. R. R. Boyer, “Titanium for aerospace: rationale and applications”, Advanced Performance Materials, 2, 349-368, 1995.
    49. R. S. Mishraa, Z. Y. Mab, “Friction stir welding and processing”, Materials Science and Engineering: R: Reports, 50, 1–2, 1-78, 2005.
    50. S. Kang, J. Kim, Y. Jang, K. Lee, “Welding deformation analysis, using an inherent strain method for friction stir welded electric vehicle aluminum battery housing”, Considering Productivity, Applied Sciences, Vol.9, No.18, 3848-3863, 2019.
    51. 曾秉鈞,曾光宏,「摩擦攪拌銲接之原理及其應用」,銲接與切割,16,3,52-58,2006。
    52. K. Singh, G. Singh, H. Singh, “Review on friction stir welding of magnesium alloys”, Journal of Magnesium and Alloys, 6, 399–416, 2018.
    53. B. L. Matthieu, S. Aude, “Avoiding abnormal grain growth in thick 7XXX aluminium alloy friction stir welds during T6 post heat treatments”, Materials Science & Engineering A, 807, 2021.
    54. C. G. Rhodes, M. W. Mahoney, W. H. Bingel, R. A. Spurling, C. C. Bampton, “Effects of friction stir welding on microstructure of 7075 aluminum”, Scripta Materialia, 36, 1, 69-75, 1997.
    55. 張維麟,“6061鋁合金及其顆粒強化銲道之摩擦攪拌銲接研究”,國立中正大學機械工程研究所,碩士論文,2005。
    56. T. Khaled, “An outsider looks at friction stir welding”, ANM-112N-05-06, July 2005.
    57. K. Elangovan,V. Balasubramanian, M. Valliappan, “Effect of tool pin profile and tool rotational speed on mechanical properties of friction stir welded aa6061 aluminium alloy”, Materials and Manufacturing Processes, 23, 3, 251-260, 2008.
    58. G. J. Fernandez, L. E. Murr, “Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359 + 20% SiC metal-matrix composite”, Materials Characterization, 52, 1, 65-75, 2004.
    59. Y. H. Zhao, S. B. Lin, L. Wu, F. X. Qu, “The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy”, Materials Letters, 59, 23, 2948-2952, 2005.
    60. H. Fujii, L. Cui, M. Maeda, K. Nogi, “Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys”, Materials Science and Engineering: A, 419, 1–2, 25-31, 2006.
    61. K. Elangovan, V. Balasubramanian, “Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy”, Journal of Materials Processing Technology, 200, 1–3, 163-175, 2008.
    62. G. N. Melhem, Aerospace Fasteners: Use in Structural Applications, 3, Encyclopedia of Aluminum and Its Alloys, G. E. Totten, M. Tiryakioğlu, O. Kessler, Routledge Handbooks Online, UK, 2018.
    63. X. Xue, X. Wu, J. Liao, “Hot-cracking susceptibility and shear fracture behavior of dissimilar Ti6Al4V/AA6060 alloys in pulsed Nd:YAG laser welding”, Chinese Journal of Aeronautics, 34, 4, 375-386, 2021.
    64. Y. Chen, Q. Ni, L. M. Ke, “Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys”, Transactions of Nonferrous Metals Society of China, 22, 2, 299-304, 2012.
    65. M. Yu, H. Zhao, Z. Jiang, Z. Zhang, F. Xu, L. Zhoua, X. Songab, “Influence of welding parameters on interface evolution and mechanical properties of FSW Al/Ti lap joints”, Journal of Materials Science & Technology, 35, 8, 1543-1554, 2019.
    66. Y. Yin, T. A. Shehabeldeen, X. Ji, X. Shen, Z. Zhang, J. Zhou, “Investigation of the microstructure, mechanical properties and fracture mechanisms of dissimilar friction stir welded aluminium/titanium joints”, Journal of Materials Research and Technology, 11, 507-518, 2021.
    67. U. Dressler, G. Biallas, U. A. Mercado, “Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3”, Materials Science and Engineering: A, 526, 1–2, 113-117, 2009.
    68. M. B. Lezaack, A. Simar, “Avoiding abnormal grain growth in thick 7XXX aluminium alloy friction stir welds during T6 post heat treatments”, Materials Science and Engineering: A, 807, 2021.
    69. K. S. A. Kumar, K. B. Yogesha, “Experimental investigations to find the effect of post weld heat treatment (PWHT) on the microstructure and mechanical properties of FSW dissimilar joints of AA2024-T351 and AA7075-T651”, Materials Today: Proceedings, 2021.
    70. 大瑞化學工業有限公司,腐蝕電化學分析[Online],Available: http://www.dzc.com.tw/tw_images/overview/5.pdf [2021,Oct. 3].
    71. P. Prabhuraj, S. Rajakumar, “Experimental investigation on corrosion behavior of friction stir welded AA7075-T651 aluminium alloy under 3.5% wt NaCl environment”, Materials Today: Proceedings, 45, 5878-5885, 2021.
    72. M. Navaser, M. Atapour, “Effect of friction stir processing on pitting corrosion andintergranular attack of 7075 aluminum alloy”, Journal of Materials Science&Technology, 33, 155-165, 2017.
    73. A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, Y.T. Zhu,” Corrosion resistance of ultra fine-grained Ti”, Scripta Materialia, 51, 225–229, 2004.

    下載圖示
    QR CODE