簡易檢索 / 詳目顯示

研究生: 葉仲禹
Yeh, Chung- Yu
論文名稱: 生物微培養器研製及其應用於數位全像顯微活細胞觀測
Development of micro-incubator for living cell observation with digital holographic microscopy
指導教授: 鄭超仁
Cheng, Chau-Jern
口試委員: 杜翰艷
TU, HAN-YEN
賴韻如
Lai, Yun-Ju
鄭超仁
Cheng, Chau-Jern
口試日期: 2022/01/13
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 70
中文關鍵詞: 數位全像術生物微培養器活細胞量測
英文關鍵詞: Digital Holography, Micro-Incubator, Living Cells Measurement
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200304
論文種類: 學術論文
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為研製生物微培養器系統維持生物細胞存活,並運用數位全像顯微鏡(Digital Holography Microscope, DHM)進行長時間(72 hrs.)活細胞量測,為了達到長時間連續觀測活細胞,本論文研製出可以放在顯微系統上的微型生物培養器系統。研製之微型培養器解決了現階段常會遇到實務應用上的問題,例如:溫控加熱不均、體型過大,沒有氣體系統導致能培養的細胞種類有所限制、成本過高等等,此研究運用微型控制器、低電壓電路設計與3D列印的技術,可依照量測系統做客製化設計,且改善製作成本、具有安全性,也能提供多種細胞生長、分裂之環境的生物微培養器,搭配數位全像顯微系統進行長時間的細胞觀測與造影,本研究實驗結果可驗證此系統具實務可行性,並可應用於觀測細胞分裂等結果。

    This study is to develop a biological micro-incubator system to maintain the survival of biological cells and to use Digital Holography Microscope (DHM) for long-term measurement of living cells. The common type of incubator used for human cell culture is carbon dioxide incubator. In order to continuously observe cells, this paper has developed a biological micro-incubator system that can be placed on DHM system. The developed micro-incubator solves the problems often encountered at this stage, such as uneven temperature control and heating, excessive body size, without gas system will limit the types of cells that can be cultured, high cost, etc. Using a micro-controller with low-voltage circuit design and the 3D printing technology has designed a biological micro-incubator that can be customized according to the measurement system and reduce the production cost. Also, it is safe and can provide an environment for a variety of cells to divide, and assist in the use of a digital holographic microscopy system perform long-term cell observations.

    致謝 I 論文摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 生物培養器及其應用 1 1.2 文獻回顧與分析 2 1.2.1 生物微培養器 2 1.2.2 常規細胞量測方式 5 1.2.3 數位全像顯微術 8 1.3 研究動機與目的 12 1.4 論文架構 13 第二章 生物微培養器研製及其活細胞觀測 14 2.1 穿透式數位全像顯微系統細胞量測方式 14 2.1.1 數位全像顯微原理 14 2.1.2 系統架構與性能 16 2.1.3 量測流程 18 2.2 生物微培養器研製 19 2.2.1 生物微培養器結構設計 19 2.2.2 溫度控制電路 23 2.2.3 氣體控制電路 25 2.2.4 生物微培養器整合 28 第三章 生物微培養器測試與規格 31 3.1 溫度穩定度測試 31 3.1.1 溫度感應校正 31 3.1.2 溫度與外加電壓關係實驗 32 3.1.3 恆溫與長時間觀測實驗 36 3.2 氣體濃度測試 37 3.3 生物微培養器參數與規格 40 第四章 實驗結果與討論 44 4.1 生物培養器與量測流程 44 4.2 實驗結果 47 4.2.1 細胞樣品製備 47 4.2.2 大腸癌細胞( SW480 )量測 48 4.2.3 神經母細胞瘤細胞( SH-SY5Y )量測 53 第五章 結論與未來展望 59 參考文獻 60 附錄一 發表論文(OPTIC2020~2021) 64 附錄二 微培養器氣室規格與介面 69 附錄三 微培養器詳細接線圖 70

    [1] S. C. Taylor, B. Hurst, C. L. Charlton, A. Bailey, J. N. Kanji, M. K. McCarthy, T. E. Morrison, L. Huey, K. Annen, M. G. DomBourian, and V. Knight, “A New SARS-CoV-2 Dual-Purpose Serology Test Highly Accurate Infection Tracing and Neutralizing Antibody Response Detection.” J. Clin. Microbiol., 56(4), e02438-20 (2021).
    [2] K, Mahmoud, A. T. Abdulla, P. B. Kwon, K. H. Joo, A. N. Mohammed, “A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus” J. Med. Virol. 92(9), 1665-1670 (2020).
    [3] Incubator: Introduction, Principle, Types, Uses and Keynotes, URL https://universe84a.com/incubator/
    [4] Sifo, Products URL https://www.sifo.com.tw/products_detail/54
    [5] S. R. Heidemann, P. Lamoureux, K. Ngo, M. Reynolds, and R. E. Buxbaum, “Open-dish incubator for live cell imaging with an inverted microscope” BioTechniques, 35, 708-716 (2003)
    [6] J.Y. Cheng, C.J. Hsieh, Y.C. Chuang, and J.R. Hsieh “Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient” Analyst, 130(6), 931-940 (2005)
    [7] C. H. Ou Yang, “Development of Microfluidic Cell Culture Chip” I-Shou University, Submitted to Department of Mechanical and Automation Engineering (2010)
    [8] J. Zhang, A. C. E. Chia, and R. R. LaPierre, “Low resistance indium tin oxide contact to n-GaAs nanowires”, Semicond Sci Technol, 29(5), 054002 (2004)
    [9] M. N. XIE, “The effect of heat treatment on the characteristics of ITO thin films”, National Taiwan Normal University, Department of Mechatronic Engineering (2012)
    [10] B. J. Chen, “A study on temperature control of biochips for live cell culture” St. John’s University, Electronic Engineering (2011)
    [11] ATCC, CCL-228 Product Sheet - SW480, URL ttps://www.atcc.org/products/ccl-228
    [12] ATCC, CRL-2266 Product Sheet - SH-SY5Y, URL https://www.atcc.org/products/ crl-2266
    [13] S. Petronis, M. Stangegaard, C. B. Christensen, and M. Dufva, “Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion” BioTechniques, 40(3), 368-376 (2006)
    [14] C. Picard, V. Hearnden, M. Massignani, S. Achouri, G. Battaglia, S. MacNeil, and A. Donald, “A micro-incubator for cell and tissue imaging” BioTechniques, 48(2), 135-138 (2010)
    [15] Z. Liu, L. Tian, S. Liu, and L. Waller, “Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope” J Biomed Opt, 19(10), 1-5 (2014)
    [16] R. Akashi, A. Hirayama, and D. Koyama, “Quantitative evaluation of the mortality rate of HeLa cells induced by microbubble vibration and collapse under pulsed ultrasound irradiation” Med Phys, 12,100041 (2021)
    [17] S. I. A. Wahab, A. B. Abdul, A. S. Alzubairi, M. M. Elhassan, and S. Mohan, “In Vitro Ultramorphological Assessment of Apoptosis Induced by Zerumbone on HeLa” J. biotechnol. biomed., 769568 (2009)
    [18] D. Gabor, “A New Microscopy Principle, “Nature 161, 777-778 (1948).
    [19] Eltronis, Holograms-What are they and how are they made?, URL https://www.eltronis.com/events/holograms-what-are-they-and-how-are-they-made/
    [20] D. Leseberg and C. Frère, “Computer-generated holograms of 3-D objects composed of tilted planar segments,” Appl. Opt. 27, 3020-3024 (1988).
    [21] J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77 (1967).
    [22] Y. C. Lin, H. C. Chen, H. Y. Tu, C. Y. Liu, and C. J. Cheng, “Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy,” Opt. Lett. 42, 1321-1324 (2017).
    [23] T. Zhang and I. Yamaguchi, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
    [24] E. N. Leith and J. Upatnieks,” Reconstructed Wavefronts and Communication Theory*,” J. Opt. Soc. Am. 52, 1123-1130 (1962).
    [25] G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472-553 (2012).
    [26] H. Guo, and M. Chen, “Multiview connection technique for 360-deg three-dimensional measurement” Opt. Eng., 42(4), 900-905 (2003)
    [27] E. Cuche and P. Marquet and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms” Appl. Opt., 38(34), 6994-7001 (1999)
    [28] Y. Deng, C. H. Huang, B. Vinoth, D. Chu, X.J. Lai, and C. J. Cheng, “A compact synthetic aperture digital holographic microscope with mechanical movement-free beam scanning and optimized active aberration compensation for isotropic resolution enhancement” Opt. Lasers Eng. 134, 106251 (2020)
    [29] X. J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging” Opt. Lett., 43(5), 1143-1146 (2018)
    [30] Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating” Opt. Lett., 26(10), 12620-12631 (2018)
    [31] X. J. Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy” Appl. Opt., 54(1), A51-A58 (2015)
    [32] H. Y. Tu, W. J. Hsiao, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Synthetic aperture common-path digital holographic microscopy with spiral phase filter” J. Opt., 19(6), 065604 (2017)
    [33] Y. C. Lin, and C. J. Cheng, and L. C. Lin, “Tunable time-resolved tick-tock pulsed digital holographic microscopy for ultrafast events” Opt. Lett., 42(11), 2082-2085 (2017)

    無法下載圖示 本全文未授權公開
    QR CODE