簡易檢索 / 詳目顯示

研究生: 林美君
Lin, Mei-Chun
論文名稱: 利用Go-Lab線上探究式平台探討小學生自我調節、自我效能、表情符和領域知識之間的關係
Exploring Relationships among Self-Regulation, Self-Efficacy, Emoji, and Content Knowledge of Elementary School Students via the Go-Lab Platform
指導教授: 張俊彥
Chang, Chun-Yen
口試委員: 黃俊儒
Huang, Chun-Ju
劉湘瑤
Liu, Shiang Yao
葉庭光
Yeh, Ting Kuang
吳昱鋒
Wu, Yu Feng
張俊彥
Chang, Chun-Yen
口試日期: 2022/05/25
學位類別: 博士
Doctor
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 123
中文關鍵詞: Go-Lab自我效能自我調節表情符探究式學習
英文關鍵詞: Go-Lab, Inquiry-Based Learning, Emoji, Self-Efficacy, Self-Regulation
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200770
論文種類: 學術論文
相關次數: 點閱:56下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球許多國家的課程標準中都提到探究式學習的重要性,探究式學習強調讓學生主動參與;然而,根據之前的研究,學生必須在具有充分支持的情況下進行有效的探究式學習,如果沒有適當的支持結構,學生在探究式學習上將面臨挑戰。因此,探究式學習應該要為學習者建立合適的鷹架,以提高學習效率、達成有效學習。過去的研究顯示,具有較高自我調節能力學生,更可能有較高的探究能力;另外,學生的自我效能信念亦會影響他們的學業成績,對自己的能力有高度自信的學生,會願意完成具有挑戰性的任務,流露出較低的焦慮感,也能更準確地自我評估自己的表現。
    本研究旨在探討國小生利用Go-Lab平臺進行探究式學習,對於自我調節、自我效能、表情符,與領域知識之關係。研究者利用Go-Lab平臺的優勢,在探究學習空間中設計「自然與生活科技領域-水溶液的酸鹼度」課程單元活動,其中包含兩個不同版本(結構化、引導式)的學習環境讓學生自行操作,並利用表情符瞭解學生的心情,以探討探究式學習對於自我調節、自我效能、表情符與領域知識之關係。研究方法採用準實驗設計法及問卷調查法,施測對象為小學五年級的學生,研究參與者預計有四個班級,共101位學童。其中兩個班級的學生體驗結構化探究式學習版本,另外兩個班級的學生體驗引導式探究式學習版本,學生須在課程前、後完成領域知識測驗;此外,研究者設計問卷內容,包括:教師對學生自我調節能力的評估、學生對自我調節以及自我效能的自評。學生在完成三項探究任務後及結論部分,都必須分別勾選表情符。研究結果用以瞭解體驗不同版本的學生學習進步情形,以及不同自我調節、自我效能與心情的學生之學習成效。
      研究結果顯示,本研究設計的探究模組有助於學生的領域知識,尤其是低先驗知識的學生。其中,無論高、低自我效能,抑或高、低自我調節能力的學生,在體驗結構化探究學習後皆有顯著進步。引導式探究學習,則適合用在高自我調節能力的學生,但對於探究活動前自我效能較低的學生則沒有明顯的學習助益。此外,本研究亦發現,學生的心情好壞,會影響其領域知識。心情好的學生,領域知識也較佳。相較於引導式探究學習,心情差以及高先驗知識的學生在結構化探究學習中會有較大的進步幅度。結構化的探究式學習亦有助於提高學生的自我效能,進而使學生有較佳的心情。研究結果可作為未來探究教學設計上與實施的參考依據。

    The importance of inquiry-based learning is mentioned in the curriculum standards of many countries around the world. Inquiry-based learning emphasizes the active participation of students; however, according to previous research, students must carry out effective inquiry-based learning with sufficient support. Without a proper support structure, students will face challenges in inquiry-based learning. Therefore, inquiry-based learning should establish a suitable scaffold for learners to improve learning efficiency and achieve effective learning. Past studies have shown that students with higher self-regulation skills are more likely to have higher inquiry skills; in addition, students’ self-efficacy beliefs will also affect their academic performance, and students who are highly confident in their own abilities will be willing to complete Challenging tasks, showing a lower sense of anxiety, but also more accurate self-assessment of their own performance.
    This research aims to explore the relationship between self-regulation, self-efficacy, moods, and learning performance of elementary school students using the Go-Lab platform for inquiry-based learning. Researchers use the advantages of the Go-Lab platform to design the course unit activities of "Science and Technology-pH of Aqueous Solutions" in the exploring learning space , which includes two different versions (structured and open) of the learning environment for students to independently operation, and use smileyometer to understand students' mood, so as to explore the relationship between inquiry-based learning on self-regulation, self-efficacy, moods and learning performance. The research method adopts the quasi-experimental design method and the questionnaire survey method. The test objects are the fifth grade students of the primary school. The research participants are expected to have four classes with a total of 101 schoolchildren. Students in two of the classes experience the structured inquiry-based learning version, and students in the other two classes experience the open inquiry-based learning version. Students are required to complete a domain knowledge test before and after the course; in addition, the researcher designed the content of the questionnaire, including: Teachers' evaluation of students' self-regulation ability, students' self-evaluation of self-regulation and self-efficacy. Students must tick the smileyometer after completing the three inquiry tasks and in the conclusion section. The results of the study were used to understand the learning progress of students who experienced different versions, as well as the learning effectiveness of students with different self-regulation, self-efficacy and moods.
    The results of the study show that the inquiry module designed in this study can help students' learning performance, especially those with low prior knowledge. Among them, students with high and low self-efficacy, or high and low self-regulation ability, have made significant progress after experiencing structured inquiry-based learning version. Open inquiry-based learning version is suitable for students with high self-regulation ability, but there is no obvious learning benefit for students with low self-efficacy before inquiry activities. In addition, this study also found that students' mood will affect their learning performance. Students who are in a good mood also perform better in learning. Compared with the open inquiry-based learning version, students with poor mood and high prior knowledge will have a greater improvement in structured inquiry-based learning. Structured inquiry-based learning version also helps improve students' self-efficacy, which in turn makes students feel better. The research results can be used as a reference for the design and implementation of future inquiry teaching.

    謝辭i 中文摘要ii 英文摘要iv 目 錄vi 表 次viii 圖 次xiii 第壹章 緒論1 第一節 研究背景與動機1 第二節 研究目的與待答問題4 第三節 研究範圍與限制6 第四節 研究方法與流程7 第五節 名詞釋義11 第貳章 文獻探討13 第一節 Go-Lab平臺介紹13 第二節 探究式學習之意涵與模式14 第三節 自我調節的重要性25 第四節 自我效能在個人學習上的貢獻27 第五節 先驗知識與探究式學習的相關研究30 第六節 表情符的功用與涵義32 第參章 研究設計與實施34 第一節 研究對象34 第二節 課程單元與學習環境34 第三節 課程結構37 第四節 研究工具38 第五節 研究流程41 第六節 資料分析42 第肆章 研究結果44 第一節 線上探究式學習對學生領域知識的影響44 第二節 學生的自我調節能力對其領域知識的影響46 第三節 學生的自我效能對其領域知識的影響62 第四節 學生的心情對其領域知識的影響77 第五節 探討學生先驗知識對其學習進步幅度的影響85 第六節 不同探究式版本對學生自我效能的影響95 第七節 不同探究式版本對學生心情的影響95 第八節 學生自我效能與其心情之間的關聯性96 第伍章 討論97 第一節 本研究的探究模組有助於學生的領域知識,能提升成績97 第二節 引導式探究版本較適合高自我調節的學生97 第三節 自我效能前側低的學生,在引導式版本中沒有顯著進步98 第四節 結構化版本適用於所有學生98 第五節 學生心情好壞,會影響其領域知識99 第六節 學生先驗知識高低,會影響其進步幅度100 第七節 結構化探究學習有助於提高學生的自我效能101 第八節 學生的自我效能與心情呈顯著正相關101 第九節 參與結構化探究學習的學生心情顯著較佳101 第陸章 結論與建議103 第一節 結論103 第二節 建議103 參考文獻105 中文部分105 英文部分106 附錄118

    壹、中文部分
    李筠茱(2018)。臺灣教師使用歐盟Go-Lab系統進行線上探究式教學之推展研究。國立國立臺灣師範大學科學教育研究所碩士論文。
    教育部(2008)。國民中小學九年一貫課程綱要修正總綱(97微調課綱、100 學年度實施)。臺北:教育部。
    教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-自然科學領域。臺北:教育部。
    陳欣珏、張俊彥(2019)。網路探究活動對國中高, 低批判思考能力學生之探究能力及演化概念知識的影響。科學教育學刊,27(4),頁229-250。
    隋奇融(2020)。以Go-Lab平台發展與實施科學探究實作評量。國立國立臺灣師範大學科學教育研究所碩士論文。

    貳、英文部分
    AAAS (1990). Science for all Americans: Project 2061. New York: Oxford University Press.
    Abdi, A. (2014). The Effect of Inquiry-Based Learning Method on Students' Academic Achievement in Science Course. Universal journal of educational Research, 2(1), 37-41.
    Aleven, V. A. W. M. M., & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by doing and explaining with a computer-based cognitive tutor. Cognitive Science, 26(2), 147–179.
    Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1–18.
    Al-Qaisy, L. M. (2011). The relation of depression and anxiety in academic achievement among group of university students. International Journal of Psychology and Counselling, 3(5), 96-100.
    Al-Sarray, E. (2019). Engagement and authoring platform for teacher and learner of science, Go-Lab portal for learning at school. Journal Port Science Research, 2(1), 43-53.
    Avsec, S., & Kocijancic, S. (2016). A path model of effective technology-intensive inquiry-based learning. Journal of Educational Technology & Society, 19(1), 308-320.
    Azevedo, R., Johnson, A., Chauncey, A., Graesser, A., Zimmerman, B., & Schunk, D. (2011). Use of hypermedia to assess and convey self-regulated learning. Handbook of Self-Regulation of Learning and Performance, 32, 102-121.
    Azuma, J., & Ebner, M. (2008). A stylistic analysis of graphic emoticons: Can they be candidates for a universal visual language of the future? In J. Luca & E. Weippl (Eds.), Proceedings of EdMedia: World Conference on Educational Media and Technology (pp. 972–979). Vienna, Austria: AACE.
    Bandura, A. (1994). Self-efficacy. In V. S. Ramachaudran (Ed.), Encyclopedia of human behavior (Vol. 4, pp. 71-81). New York: Academic Press. (Reprinted in H. Friedman [Ed.], Encyclopedia of mental health. San Diego: Academic Press, 1998).
    Bandura, A. (1995). Self-efficacy in changing societies. New York:Cambridge University.
    Bandura, A. (1997). Self-Efficacy: The Exercise of Control. W.H. Freeman and Company, New York.
    Bell, R. L., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), 30-33.
    Boekaerts, M., Zeidner, M., & Pintrich, P. R. (Eds.). (1999). Handbook of self-regulation. Elsevier.
    Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain, mind, experience, and school (2nd ed.). Washington, D.C.: National Academy Press.
    Britner, S. L., & Pajares, F. (2006). Sources of science self-efficacy beliefs of middle school students. Journal of Research in Science Teaching, 43(5), 485–499.
    Buchanan, S. M. C., Harlan, M. A., Bruce, C., & Edwards, S. (2016). Inquiry based learning models, information literacy, and student engagement: A literature review. School Libraries Worldwide, 22(2), 23-39.
    Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, Co: BSCS, 5, 88-98.
    Chen, X., Rubin, K. H., & Li, B. S. (1995). Depressed mood in Chinese children: relations with school performance and family environment. Journal of Consulting and Clinical Psychology, 63(6), 938.
    Chiu, J. L., & Linn, M. C. (2011). Knowledge integration and WISE engineering. Journal of Pre-College Engineering Education Research (J-PEER), 1(1), 2.
    Cleary, T. J. (2006). The development and validation of the self-regulation strategy inventory—self-report. Journal of School Psychology, 44(4), 307-322.
    Cleary, T. J. (2011). Emergence of self-regulated learning microanalysis: Historical overview, essential features, and implications for research and practice. In B. J. Zimmerman & D. H. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 329-345). New York, NY: Routledge. Available from http://www.routledge.com
    Cleary, T. J., & Callan, G. L. (2014). Student self-regulated learning in an urban high school: Predictive validity and relations between teacher ratings and student self-reports. Journal of Psychoeducational Assessment, 32(4), 295-305.
    Conole, G., Scanlon, E., Kerawalla, L., Mulholland, P., Anastopoulou, S., & Blake, C. (2008, June). From design to narrative: the development of inquiry-based learning models. Retrieved November 1, 2021, from: https://www.researchgate.net/publication/42797394_From_design_to_narrative_the_development_of_inquiry-based_learning_models
    Cuevas, P., Lee, O., Hart, J., & Deaktor, R. (2005). Improving science inquiry with elementary students of diverse backgrounds. Journal of Research in Science Teaching: the Official Journal of the National Association for Research in Science Teaching, 42(3), 337-357.
    de Jong, T. (2010). Instruction based on computer simulations. In R. E. Mayer, & P. A. Alexander (Eds.), Handbook of research on learning and instruction (pp. 446-466). Routledge.
    de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179-201.
    de Jong, T., Gillet, D., Sotiriou, S., Agogi, E., & Zacharia, Z. (2015). Designing inquiry learning spaces for online labs in the Go-Lab platform. Paper presented at 16th Biennial Conference of the European Association for Research in Learning and Instruction (EARLI) 2015, Limassol, Cyprus.
    de Jong, T., Sotiriou, S., & Gillet, D. (2014). Innovations in STEM education: the Go-Lab federation of online labs. Smart Learning Environments, 1(1), 1-16.
    Dewey, J. (1964a). Progressive organization of subject matter. In R. D. Archambault (Ed.), John Dewey on education: Selected writings (pp. 373-387). Chicago: University of Chicago Press.
    Dewey, J. (1964b). Science as subject matter andasmethod. In R. D. Archambault (Ed.), John Deweyon education: Selected wrirings (pp. 182-1 95). Chicago: University of Chicago Press.
    Dikke, D., & Faltin, N. (2015, July). Go-Lab MOOC–An online course for teacher professional development in the field of Inquiry-based science education. In 7th International Conference on Education and New Learning Technologies. Barcelona, Spain
    Dikke, D., Tsourlidaki, E., Zervas, P., Cao, Y., Faltin, N., Sotiriou, S., & Sampson, D. G. (2014, July). Golabz: Towards a federation of online labs for inquiry-based science education at school. In 6th International Conference on Education and New Learning Technologies (EDULEARN 2014).
    Duffy, T. M., & Raymer, P. L. (2010). A practical guide and a constructivist rationale for inquiry based learning. Educational Technology, 50(4), 3-15.
    Edelson, D. C., Gordin, D. N., & Pea, R. D. (1999). Addressing the challenges of inquiry-based learning through technology and curriculum design. Journal of the Learning Sciences, 8(3-4), 391-450.
    Ernst, D. C., Hodge, A., & Yoshinobu, S. (2017). What is inquiry-based learning. Notices of the AMS, 64(6), 570-574.
    Eysink, T. H., Gersen, L., & Gijlers, H. (2015). Inquiry learning for gifted children. High Ability Studies, 26(1), 63-74.
    Fernandez, F. B. (2017). Action research in the physics classroom: the impact of authentic, inquiry based learning or instruction on the learning of thermal physics. Asia-Pacific Science Education, 3(1), 1-20.
    Friesen, S., & Scott, D. (2013). Inquiry-based learning: A review of the research literature. Retrieved from https://galileo.org/focus-on-inquiry-lit-review.pdf
    Gillet, D., de Jong, T., Sotirou, S., & Salzmann, C. (2013). Personalised learning spaces and federated online labs for stem education at school. In Global Engineering Education Conference (EDUCON), 2013 IEEE (pp. 769-773). IEEE.
    Gobert, J., Slotta, J., Pallant, A., Nagy, S., & Targum, E. (2002). A WISE inquiry project for students’ east-west coast collaboration. American Educational Research Association,1-27
    Gould, M. S., & Shaffer, D. (1985, October). Correspondence of adolescent and parental reports in a child psychiatry clinic. Paper presented at the meeting of the American Academy of Child Psychiatry, San Antonio, TX. doi:10.1016/S0002–7138(09)61093-1
    Govaerts, S., Cao, Y., Vozniuk, A., Holzer, A., Zutin, D. G., Ruiz, E. S. C., Bollen, L., Manske, S., Faltin, N., Salzmann, C., Tsourlidaki, E., & Gillet, D. (2013, Oct.). Towards an online lab portal for inquiry-based stem learning at school. In International Conference on Web-Based Learning (pp. 244-253). Kenting, Taiwan.
    Hadjichambis, A. C., Georgiou, Y., Paraskeva-Hadjichambi, D., Kyza, E. A., & Mappouras, D. (2016). Investigating the effectiveness of an inquiry-based intervention on human reproduction in relation to students’ gender, prior knowledge and motivation for learning in biology. Journal of Biological Education, 50(3), 261-274.
    Hadwin, A. F., Järvelä, S., & Miller, M. (2011). Self-regulated, co-regulated, and socially shared regulation of learning. Handbook of Self-Regulation of Learning and Performance, 30, 65-84.
    Herring, S., & Dainas, A. (2017, January). “Nice picture comment!” Graphicons in Facebook comment threads. In Proceedings of the 50th Hawaii International Conference on System Sciences.
    Heuven, E., Bakker, A. B., Schaufeli, W. B., & Huisman, N. (2006). The role of self-efficacy in performing emotion work. Journal of Vocational Behavior, 69(2), 222-235.
    Ho, H. N. J., Tsai, M. J., Wang, C. Y., & Tsai, C. C. (2014). Prior knowledge and online inquiry-based science reading: Evidence from eye tracking. International Journal of Science and Mathematics Education, 12(3), 525-554.
    Kaiser, I., Mayer, J., & Malai, D. (2018). Self-generation in the context of inquiry-based learning. Frontiers in Psychology, 9, 2440.
    Kamphaus, R. W., & Frick, P. J. (2002). Clinical assessment of child and adolescent personality and behavior. Boston, MA: Pearson.
    Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariable causality. Journal of Research in Science Teaching, 40(9), 898-921.
    Ketelhut, D. J. (2007). The impact of student self-efficacy on scientific inquiry skills: An exploratory investigation in River City, a multi-user virtual environment. Journal of Science Education and Technology, 16(1), 99-111.
    Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86. doi:10.1207/s15326985ep4102_1
    Kuhlthau, C. C. (2010). Guided inquiry: School libraries in the 21st century. School Libraries Worldwide, 16(1), 17-28.
    Kyza, E. A., Golan, R., Reiser, B. J., & Edelson, D. C. (2002). Reflective inquiry: Enabling group self-regulation in inquiry-based science using the progress portfolio tool. In Stahl, G. (Eds.), Computer Support for Collaborative Learning: Foundations for a CSCL Community (pp. 227-236). Boulder, CO, USA: International Society of the Learning Sciences.
    Langbeheim, E., Perl, D., & Yerushalmi, E. (2020). Science Teachers’ Attitudes towards Computational Modeling in the Context of an Inquiry-Based Learning Module. Journal of Science Education and Technology, 29(6), 785-796.
    Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86(3), 681-718.
    Manlove, S., Lazonder, A. W., & de Jong, T. (2009). Trends and issues of regulative support use during inquiry learning: Patterns from three studies. Computers in Human Behavior, 25(4), 795–803.
    Maxwell, D. O., Lambeth, D. T., & Cox, J. T. (2015, June). Effects of using inquiry-based learning on science achievement for fifth-grade students. In Asia-Pacific Forum on Science Learning and Teaching (Vol. 16, No. 1, pp. 1-31). The Education University of Hong Kong, Department of Science and Environmental Studies.
    Mills, N., Pajares, F., & Herron, C. (2007). Self‐efficacy of college intermediate French students: Relation to achievement and motivation. Language Learning, 57(3), 417-442.
    Moore, E. B., Chamberlain, J. M., Parson, R., & Perkins, K. K. (2014). PhET interactive simulations: Transformative tools for teaching chemistry. Journal of Chemical Education, 91(8), 1191-1197.
    Murphy, J. (2017). Make online messaging personal by embracing the nonverbal. Intercom. https://www.intercom.com/blog/online-messaging-personal-embrace-nonverbal/
    National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
    National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.
    Núñez, J. L., & León, J. (2015). Autonomy support in the classroom: A review from self-determination theory. European Psychologist, 20(4), 275–283.
    Panasan, M., & Nuangchalerm, P. (2010). Learning outcomes of project-based and inquiry-based learning activities. Online Submission, 6(2), 252-255.
    Pedaste, M., & Sarapuu, T. (2006). Developing an effective support system for inquiry learning in a web‐based environment. Journal of Computer Assisted Learning, 22(1), 47-62.
    Pedaste, M., Mäeots, M., Leijen, Ä., & Sarapuu, S. (2012). Improving students’ inquiry skills through reflection and self-regulation scaffolds. Technology, Instruction, Cognition and Learning, 9(1-2), 81-95.
    Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47-61.
    Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., Edelson, D., & Soloway, E. (2004). A scaffolding design framework for software to support science inquiry. The Journal of the Learning Sciences, 13(3), 337-386.
    Raes, A., & Schellens, T. (2015). Unraveling the motivational effects and challenges of web-based collaborative inquiry learning across different groups of learners. Educational Technology Research and Development, 63(3), 405-430.
    Raes, A., Schellens, T., De Wever, B., & Benoit, D. F. (2016). Promoting metacognitive regulation through collaborative problem solving on the web: when scripting does not work. Computers in Human Behavior, 58, 325-342.
    Read, J. C. (2008). Validating the Fun Toolkit: an instrument for measuring children’s opinions of technology. Cognition, Technology & Work, 10(2), 119-128.
    Read, J. C., & MacFarlane, S. (2006, June). Using the fun toolkit and other survey methods to gather opinions in child computer interaction. In Proceedings of the 2006 Conference on Interaction Design and Children (pp. 81-88).
    Reid, D. J., Zhang, J., & Chen, Q. (2003). Supporting scientific discovery learning in a simulation environment. Journal of Computer Assisted Learning, 19(1), 9–20.
    Ruiz‐Primo, M. A., Shavelson, R. J., Hamilton, L., & Klein, S. (2002). On the evaluation of systemic science education reform: Searching for instructional sensitivity. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 39(5), 369-393.
    Sattler, J. M. (2008). Assessment of children: Cognitive foundations. San Diego, CA: JM Sattler.
    Saunders-Stewart, K. S. (2008). Students' perceptions of the important outcomes of inquiry-based teaching and learning. Unpublished doctoral dissertation, McGill University, Montreal, Quebec.
    Saunders-Stewart, K. S., Gyles, P. D. T., Shore, B. M., & Bracewell, R. J. (2015). Student outcomes in onquiry: students’ perspectives. Learning Environments Research, 18(2), 289-311.
    Schmidt, H. K., Rothgangel, M., & Grube, D. (2015). Prior knowledge in recalling arguments in bioethical dilemmas. Frontiers in Psychology, 6, 1292.
    Schnaidman, B. (2018). A psychometric study of the Self-Regulation Strategy Inventory–Teacher Rating Scale (Doctoral dissertation, Rutgers University-Graduate School of Applied and Professional Psychology).
    Seibert, J., Heuser, K., Lang, V., Perels, F., Huwer, J., & Kay, C. W. (2021). Multitouch Experiment Instructions to Promote Self-Regulation in Inquiry-Based Learning in School Laboratories. Journal of Chemical Education, 98(5), 1602-1609.
    Sen, C., & Sezen Vekli, G. (2016). The impact of inquiry based instruction on science process skills and self-efficacy perceptions of pre-service science teachers at a university level biology laboratory. Universal Journal of Educational Research, 4(3), 603-612.
    Simonds, V. M., & Whiffen, V. E. (2003). Are gender differences in depression explained by gender differences in co-morbid anxiety?. Journal of Affective Disorders, 77(3), 197-202.
    Sitzmann, T., & Ely, K. (2011). A meta-analysis of self-regulated learning in work-related training and educational attainment: What we know and where we need to go. Psychological Bulletin, 137(3), 421–442.
    Slotta, J. D. (2004). The web-based inquiry science environment (WISE): scaffolding knowledge integration in the science classroom. Internet Environments for Science Education, 35, 203-232.
    Sulistiyo, M. A. S., & Wijaya, A. (2020, July). The effectiveness of inquiry-based learning on computational thinking skills and self-efficacy of high school students. In Journal of Physics: Conference Series (Vol. 1581, No. 1, p. 012046). IOP Publishing.
    Trautmann, N., MaKinster, J., & Avery, L. (2004, April). What makes inquiry so hard? (and why is it worth it?). In Proceedings of the NARST 2004 Annual Meeting. Vancouver, BC, Canada.
    Usher, E. L., & Pajares, F. (2008). Self-efficacy for self-regulated learning: A validation study. Educational and Psychological Measurement, 68(3), 443-463.
    van der Sluis, F., van Dijk, B., & Perloy, B. (2012, August). Measuring fun and enjoyment of children in a museum: Evaluating the Smileyometer. In Proceedings of measuring behavior (pp. 28-31).
    van der Sluis, F., van Dijk, B., & Perloy, B. (2012, August). Measuring fun and enjoyment of children in a museum: Evaluating the Smileyometer. In Proceedings of measuring behavior (pp. 28-31). https://ssrn.com/abstract=2956298
    Vohs, K. D., & Baumeister, R. F. (2004). Understanding self-regulation. Handbook of self-regulation, 19.
    Vourakis, S., Kourkoumelis, C., & Sotiriou, S. (2015). The Interactive “HYPATIA” Tool as a Good Practice Science Education Resource of the “Go-Lab” FP7 European Project. In Conference Proceedings. New Perspectives in Science Education (p. 245). libreriauniversitaria. it Edizioni.
    Wang, J. R., Wang, Y. C., Tai, H. J., & Chen, W. J. (2010). Investigating the effectiveness of inquiry-based instruction on students with different prior knowledge and reading abilities. International Journal of Science and Mathematics Education, 8(5), 801-820.
    Wells, G. (2001). Action, talk, and text: The case for dialogic inquiry. Retrieved November 1, 2021, from: https://www.researchgate.net/publication/241643983_ACTION_TALK_AND_TEXT_THE_CASE_FOR_DIALOGIC_INQUIRY
    White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3-118.
    White, B. Y., & Shimoda, T. A. (1999). Enabling students to construct theories of collaborative inquiry and reflective learning: computer support for metacognitive development. International Journal of Artificial Intelligence in Education, 10, 151-182.
    Winne, P. H., & Jamieson-Noel, D. (2002). Exploring students’ calibration of self- reports about study tactics and achievement. Contemporary Educational Psychology, 27(4), 551-572.
    Winne, P. H., & Perry, N. E. (2000). Measuring self-regulated learning. In M. Boekaerts, P. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 532-568). Orlando, FL: Academic Press. doi:10.1016/ B978-012109890-2/50030-5
    Witt, C., & Ulmer, J. (2010). The impact of inquiry-based learning on the academic achievement of middle school students. In Proceeding of the 29th Annual Western Region AAAE Research Conference (Vol. 269, p. 282).
    Wood, R., & Bandura, A. (1989). Impact of conceptions of ability on self-regulatory mechanisms and complex decision making. Journal of Personality and Social Psychology, 56, 407-415.
    Yantraprakorn, P., Darasawang, P., & Wiriyakarun, P. (2013). Enhancing self-efficacy through scaffolding. Proceedings from FLLT.
    Zimmerman, B. J. (1989). A social cognitive view of self-regulated academic learning. Journal of Educational Psychology, 81(3), 329–339.
    Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. In Handbook of self-regulation (pp. 13-39). Academic Press.
    Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172-223.
    Zulkosky, K. (2009). Self‐efficacy: a concept analysis. In Nursing forum (Vol. 44, No. 2, pp. 93-102). Malden, USA: Blackwell Publishing Inc.

    下載圖示
    QR CODE