簡易檢索 / 詳目顯示

研究生: 李瑞鴻
Li, Ruei-Hong
論文名稱: 急性同步健身運動對認知彈性之影響:事件關聯電位研究
The Effect of Acute Concurrent Exercise on Cognitive Flexibility: An ERP Study
指導教授: 張育愷
Chang, Yu-Kai
口試委員: 廖翊宏
Liao, Yi-Hung
洪聰敏
Hung, Tsung-Min
張育愷
Chang, Yu-Kai
口試日期: 2022/07/01
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 102
中文關鍵詞: 同步訓練執行功能轉換P3乳酸中介
英文關鍵詞: concurrent training, executive function, shifting, P3, lactate, mediation
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200806
論文種類: 學術論文
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:認知彈性對於個人生活扮演不可或缺之角色,急性有氧和阻力健身運動已被認為是促進認知彈性和增加大腦相關P3振幅之有效方法,鑑於美國運動醫學會建議該兩種健身運動型態之諸多優勢和參與之必要性,故探討結合有氧和阻力健身運動型態之急性同步健身運動對於認知彈性和P3振幅之影響,成為一項值得探究之議題。此外,急性健身運動誘發乳酸濃度之提升,可能與認知表現之增進產生關聯。然而,過去研究尚未探討乳酸在急性同步健身運動與認知彈性之中介效果。因此,本研究之目的為探討急性同步健身運動對認知彈性、P3振幅和乳酸之影響,並與有氧健身運動進行比較。此外,亦測量乳酸在急性健身運動與認知彈性和P3振幅之中介效果。
    方法:本研究招募78位年輕成年人 (平均年齡:22.82 ± 1.80歲),隨機分派至同步健身運動組 (concurrent exercise, CE)、有氧健身運動組 (aerobic exercise, AE) 和閱讀控制組 (reading control, RC)。CE組介入12分鐘中等強度有氧健身運動和約13分鐘中等強度阻力健身運動。AE組介入25分鐘中等強度有氧健身運動。運動組皆於運動前暖身5分鐘、運動後緩和5分鐘。RC組介入35分鐘雜誌閱讀。各組皆於介入前和後測量認知彈性和P3振幅,並於介入前、中和後測量指尖乳酸濃度。
    結果:相較於RC組,CE和AE組在所有認知彈性情境存在顯著較短之反應時間,而準確率皆無顯著差異。相較於RC組,CE組在異質情境、AE組在轉換情境有較高之P3振幅。CE組較AE組和RC組、AE組較RC組有顯著較高之乳酸濃度。乳酸在組別與異質和轉換情境反應時間之間接效果達顯著,而同質和非轉換情境則未達顯著。乳酸在組別對於所有認知彈性情境P3振幅之間接效果皆未達顯著。
    結論:本研究延伸過去之研究並指出,急性同步健身運動能夠增進認知彈性,且該效益與急性有氧健身運動相似。急性同步和有氧健身運動皆能夠增加注意力資源招募和投入於較高認知要求之情境。乳酸扮演急性健身運動和認知彈性間之中介角色,且急性同步健身運動較急性有氧健身運動存在更高之中介效果,該結果可能源於急性同步健身運動誘發之較高乳酸所致。急性健身運動和P3振幅之中介變項仍需進一步探究。

    Background: Cognitive flexibility plays a critical role in daily life, both acute aerobic (AE) and resistance exercise (RE) have been recognized as effective ways to increase cognitive flexibility and brain-related P3 amplitudes. Given that the American College of Sports Medicine recommends the many benefits of both AE and RE, and both are necessary to participate, investigating the effects of acute concurrent exercise (CE; defined as combining both aerobic and resistance exercise) on cognitive flexibility and P3 amplitude becomes an issue worth to be explored. In addition, exercise-induced lactate may be associated with the improvement of cognitive performance. However, no study examined the mediating effect of lactate between acute exercise and cognitive flexibility. Therefore, the purpose of this study was to investigate the effects of acute CE on cognitive flexibility, P3 amplitudes, and lactate, compared with AE. Additionally, the mediation of lactate between acute exercise and both cognitive flexibility and P3 amplitudes has also been examined.
    Methods: 78 young adults (mean age 22.82 ± 1.80 years) were recruited and randomly assigned to CE, AE, and reading control (RC) groups. Group CE finished 12-minutes of AE and about 13-minutes of RE at moderate intensity. Group AE finished 25-minutes of moderate AE. Both exercise groups were asked to warm up for 5-minutes before exercise and cool down for 5-minutes after exercise. Group RC finished 35 minutes of magazine reading. Cognitive flexibility and P3 amplitudes were measured before and after intervention in each group, and lactate was measured before, during, and after an intervention.
    Results: Compared with the group RC, the response time of both group CE and AE were significantly shorter in all cognitive flexibility conditions. There was no significant difference in the accuracy among groups. Compared with group RC, P3 amplitudes of group CE were higher in the heterogeneous condition, and P3 amplitudes of group AE were significantly higher in the switch condition. Lactate of group CE was significantly larger than group AE and RC. Group AE significantly released larger lactate than group RC. The indirect effects of lactate were significant between groups and cognitive flexibility in both heterogeneous and switch conditions, but not in the homogeneous and non-switch conditions. The indirect effects of lactate between groups and P3 amplitudes were not significant in all cognitive flexibility conditions.
    Conclusion: The present study expands the existing literature by demonstrating that acute CE has a positive effect on cognitive flexibility, and the benefit is similar to acute AE. Both acute CE and AE can recruit and distribute more attentional resources into higher cognitive-demand conditions. Lactate plays a mediating role between acute exercise and cognitive flexibility, and the mediating effect of acute CE is higher than acute AE which may cause by a higher lactate concentration of acute CE. The mediator between acute exercise and P3 amplitudes needs to be further clarified.

    謝辭 i 中文摘要 ii 英文摘要 iv 目次 vi 圖次 ix 表次 x 第壹章 緒論 1 第一節 問題背景 1 第二節 研究目的 4 第三節 研究假設 5 第四節 操作性名詞定義解釋 5 第貳章 文獻探討 7 第一節 認知彈性 7 第二節 急性健身運動與認知彈性 11 第三節 急性同步健身運動與認知彈性 17 第四節 急性健身運動、認知彈性與事件關聯電位 18 第五節 文獻總結 20 第參章 研究方法 22 第一節 研究架構 22 第二節 研究對象 23 第三節 研究流程 24 第四節 實驗介入 26 第五節 研究工具 27 第六節 資料處理 33 第七節 統計分析 35 第肆章 研究結果 38 第一節 研究參與者個人變項 38 第二節 急性健身運動對認知彈性之影響 41 第三節 急性健身運動對P3振幅之影響 46 第四節 急性健身運動對乳酸之影響 51 第五節 乳酸在急性健身運動對認知彈性之中介效果 54 第六節 乳酸在急性健身運動對P3振幅之中介效果 62 第伍章 討論 71 第一節 主要結果 71 第二節 急性健身運動對認知彈性之影響 73 第三節 急性健身運動對P3振幅之影響 77 第四節 急性健身運動對乳酸之影響 81 第五節 乳酸在急性健身運動對認知彈性之中介效果 82 第六節 乳酸在急性健身運動對P3振幅之中介效果 84 第七節 研究優勢與限制 84 第陸章 結論與建議 86 參考文獻 87

    李瑞鴻、吳治翰、蔡書涵、吳聰義、張怡潔、張育愷 (2021)。急性健身運動、肥胖與執行功能之回顧。臺灣運動心理學報,21(1),73–96。https://doi.org/10.6497/bsept.202103_21(1).0004
    衛生福利部國民健康署 (2012)。IPAQ台灣活動量調查短版問卷。衛生福利部國民健康署。取自https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=876&pid=4900
    衛生福利部國民健康署 (2018)。全民身體活動指引。衛生福利部國民健康署。
    Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, 16(1), 17–42. https://doi.org/10.1007/s11065-006-9002-x
    American College of Sports Medicine. (2022). ACSM's Guidelines for Exercise Testing and Prescription (G. Liguori, Ed. 11th ed.). Wolters Kluwer. https://shop.lww.com/ACSM-s-Guidelines-for-Exercise-Testing-and-Prescription/p/9781975150181
    Aron, A. R., & Poldrack, R. A. (2006). Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. Journal of Neuroscience, 26(9), 2424–2433. https://doi.org/10.1523/JNEUROSCI.4682-05.2006
    Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8(4), 170–177. https://doi.org/10.1016/j.tics.2004.02.010
    Bae, S., & Masaki, H. (2019). Effects of acute aerobic exercise on cognitive flexibility required during task-switching paradigm. Frontiers in Human Neuroscience, 13, 260. https://doi.org/10.3389/fnhum.2019.00260
    Beekley, M. D., Brechue, W. F., deHoyos, D. V., Garzarella, L., Werber-Zion, G., & Pollock, M. L. (2004). Cross-validation of the YMCA submaximal cycle ergometer test to predict VO2max. Research Quarterly for Exercise and Sport, 75(3), 337–342. https://doi.org/10.1080/02701367.2004.10609165
    Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research. Brain Research Reviews, 42(1), 33–84. https://doi.org/10.1016/s0165-0173(03)00143-7
    Bredin, S. S., Gledhill, N., Jamnik, V. K., & Warburton, D. E. (2013). PAR-Q+ and ePARmed-X+: New risk stratification and physical activity clearance strategy for physicians and patients alike. Canadian Family Physician 59(3), 273–277.
    Brog, G. A. V. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377–381. https://journals.lww.com/acsm-msse/Fulltext/1982/05000/Psychophysical_bases_of_perceived_exertion.12.aspx
    Brush, C. J., Olson, R. L., Ehmann, P. J., Osovsky, S., & Alderman, B. L. (2016). Dose-response and time course effects of acute resistance exercise on executive function. Journal of Sport and Exercise Psychology, 38(4), 396–408. https://doi.org/10.1123/jsep.2016-0027
    Buckworth, J., & Dishman, R. K. (2002). Exercise Psychology. Human Kinetics.
    Burnley, M., Doust, J. H., & Jones, A. M. (2006). Time required for the restoration of normal heavy exercise V̇o2 kinetics following prior heavy exercise. Journal of Applied Physiology, 101(5), 1320–1327. https://doi.org/10.1152/japplphysiol.00475.2006
    Ceravolo, R., Pagni, C., Tognoni, G., & Bonuccelli, U. (2012). The epidemiology and clinical manifestations of dysexecutive syndrome in Parkinson’s disease. Frontiers in Neurology, 3, 159. https://doi.org/10.3389/fneur.2012.00159
    Chamberlain, S. R., Solly, J. E., Hook, R. W., Vaghi, M. M., & Robbins, T. W. (2021). Cognitive inflexibility in OCD and related disorders. Current Topics in Behavioral Neurosciences, 49, 125–145. https://doi.org/10.1007/7854_2020_198
    Chang, Y. K., Chu, C. H., Wang, C. C., Wang, Y. C., Song, T. F., Tsai, C. L., & Etnier, J. L. (2015). Dose–response relation between exercise duration and cognition. Medicine & Science in Sports & Exercise, 47(1), 159–165. https://doi.org/10.1249/mss.0000000000000383
    Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101. https://doi.org/10.1016/j.brainres.2012.02.068
    Chang, Y. K., Pesce, C., Chiang, Y. T., Kuo, C. Y., & Fong, D. Y. (2015). Antecedent acute cycling exercise affects attention control: An ERP study using attention network test. Frontiers in Human Neuroscience, 9, 156. https://doi.org/10.3389/fnhum.2015.00156
    Chen, Q., Yang, W., Li, W., Wei, D., Li, H., Lei, Q., Zhang, Q., & Qiu, J. (2014). Association of creative achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state functional connectivity study. Neuroimage, 102, 474–483. https://doi.org/10.1016/j.neuroimage.2014.08.008
    Chu, C. H., Alderman, B. L., Wei, G. X., & Chang, Y. K. (2015). Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task. Journal of Sport and Health Science, 4(1), 73–81. https://doi.org/10.1016/j.jshs.2014.12.002
    Church, T. S., Blair, S. N., Cocreham, S., Johannsen, N., Johnson, W., Kramer, K., Mikus, C. R., Myers, V., Nauta, M., Rodarte, R. Q., Sparks, L., Thompson, A., & Earnest, C. P. (2010). Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: A randomized controlled trial. JAMA, 304(20), 2253–2262. https://doi.org/10.1001/jama.2010.1710
    Colé, P., Duncan, L. G., & Blaye, A. (2014). Cognitive flexibility predicts early reading skills. Frontiers in Psychology, 5, 565. https://doi.org/10.3389/fpsyg.2014.00565
    Copeland, J. L., Consitt, L. A., & Tremblay, M. S. (2002). Hormonal responses to endurance and resistance exercise in females aged 19-69 years. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 57(4), B158–165. https://doi.org/10.1093/gerona/57.4.b158
    Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755
    Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464–472. https://doi.org/10.1016/j.tins.2007.06.011
    Dajani, D. R., & Uddin, L. Q. (2015). Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends in Neurosciences, 38(9), 571–578. https://doi.org/10.1016/j.tins.2015.07.003
    Davis, J. C., Marra, C. A., Najafzadeh, M., & Liu-Ambrose, T. (2010). The independent contribution of executive functions to health related quality of life in older women. BMC Geriatrics, 10(1), 1–8. https://doi.org/10.1186/1471-2318-10-16
    Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168. https://doi.org/10.1146/annurev-psych-113011-143750
    Dimeo, F., Fetscher, S., Lange, W., Mertelsmann, R., & Keul, J. (1997). Effects of aerobic exercise on the physical performance and incidence of treatment-related complications after high-dose chemotherapy. Blood, 90(9), 3390–3394. https://doi.org/10.1182/blood.V90.9.3390
    Dinoff, A., Herrmann, N., Swardfager, W., & Lanctôt, K. L. (2017). The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: A meta-analysis. European Journal of Neuroscience, 46(1), 1635–1646. https://doi.org/10.1111/ejn.13603
    Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J., & Yves von Cramon, D. (2000). Prefrontal cortex activation in task switching: An event-related fMRI study. Cognitive Brain Research, 9(1), 103–109. https://doi.org/10.1016/S0926-6410(99)00029-4
    Eklund, D., Schumann, M., Kraemer, W. J., Izquierdo, M., Taipale, R. S., & Häkkinen, K. (2016). Acute endocrine and force responses and long-term adaptations to same-session combined strength and endurance training in women. Journal of Strength and Conditioning Research, 30(1), 164–175. https://doi.org/10.1519/JSC.0000000000001022
    El Haj, M., Antoine, P., & Kapogiannis, D. (2015). Flexibility decline contributes to similarity of past and future thinking in Alzheimer's disease. Hippocampus, 25(11), 1447–1455. https://doi.org/10.1002/hipo.22465
    El Hayek, L., Khalifeh, M., Zibara, V., Abi Assaad, R., Emmanuel, N., Karnib, N., El-Ghandour, R., Nasrallah, P., Bilen, M., Ibrahim, P., Younes, J., Abou Haidar, E., Barmo, N., Jabre, V., Stephan, J. S., & Sleiman, S. F. (2019). Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). Journal of Neuroscience, 39(13), 2369–2382. https://doi.org/10.1523/jneurosci.1661-18.2019
    Elkington, T. J., Cassar, S., Nelson, A. R., & Levinger, I. (2017). Psychological responses to acute aerobic, resistance, or combined exercise in healthy and overweight individuals: A systematic review. Clinical Medicine Insights: Cardiology, 11, 1179546817701725. https://doi.org/10.1177/1179546817701725
    Feng, X., Perceval, G. J., Feng, W., & Feng, C. (2020). High cognitive flexibility learners perform better in probabilistic rule learning. Frontiers in Psychology, 11, 415. https://doi.org/10.3389/fpsyg.2020.00415
    Fitts, P. M. (1992). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 121(3), 262–269. https://doi.org/10.1037//0096-3445.121.3.262
    Fox, J., Rioux, B. V., Goulet, E. D. B., Johanssen, N. M., Swift, D. L., Bouchard, D. R., Loewen, H., & Sénéchal, M. (2018). Effect of an acute exercise bout on immediate post-exercise irisin concentration in adults: A meta-analysis. Scandinavian Journal of Medicine and Science in Sports, 28(1), 16–28. https://doi.org/10.1111/sms.12904
    Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186–204. https://doi.org/10.1016/j.cortex.2016.04.023
    Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, D. C., & Swain, D. P. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine & Science in Sports & Exercise, 43(7), 1334–1359. https://doi.org/10.1249/MSS.0b013e318213fefb
    Gargiulo, A. T., Li, X., & Grafe, L. A. (2020). Assessment of stress effects on cognitive flexibility using an operant strategy shifting paradigm. Journal of Visualized Experiments(159). https://doi.org/10.3791/61228
    Gold, S. M., Schulz, K. H., Hartmann, S., Mladek, M., Lang, U. E., Hellweg, R., Reer, R., Braumann, K. M., & Heesen, C. (2003). Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. Journal of Neuroimmunology, 138(1-2), 99–105. https://doi.org/10.1016/s0165-5728(03)00121-8
    Grant, S. J., Aston-Jones, G., & Redmond, D. E. (1988). Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Research Bulletin, 21(3), 401–410. https://doi.org/10.1016/0361-9230(88)90152-9
    Gruner, P., & Pittenger, C. (2017). Cognitive inflexibility in obsessive-compulsive disorder. Neuroscience, 345, 243–255. https://doi.org/10.1016/j.neuroscience.2016.07.030
    Hagströmer, M., Oja, P., & Sjöström, M. (2006). The International Physical Activity Questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutrition, 9(6), 755–762. https://doi.org/10.1079/phn2005898
    Häkkinen, K., Alen, M., Kraemer, W. J., Gorostiaga, E., Izquierdo, M., Rusko, H., Mikkola, J., Häkkinen, A., Valkeinen, H., Kaarakainen, E., Romu, S., Erola, V., Ahtiainen, J., & Paavolainen, L. (2003). Neuromuscular adaptations during concurrent strength and endurance training versus strength training. European Journal of Applied Physiology, 89(1), 42–52. https://doi.org/10.1007/s00421-002-0751-9
    Hale, B. S., Koch, K. R., & Raglin, J. S. (2002). State anxiety responses to 60 minutes of cross training. British Journal of Sports Medicine, 36(2), 105−107. https://doi.org/10.1136/bjsm.36.2.105
    Hashimoto, T., Tsukamoto, H., Ando, S., & Ogoh, S. (2021). Effect of exercise on brain health: The potential role of lactate as a myokine. Metabolites, 11(12), 813. https://doi.org/10.3390/metabo11120813
    Hashimoto, T., Tsukamoto, H., Takenaka, S., Olesen, N. D., Petersen, L. G., Sørensen, H., Nielsen, H. B., Secher, N. H., & Ogoh, S. (2018). Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. FASEB Journal, 32(3), 1417–1427. https://doi.org/10.1096/fj.201700381RR
    Hayes, A. F. (2022). Introduction to Mediation, Moderation, and Conditional Process Analysis, Third Edition: A Regression-Based Approach (3rd ed.). Guilford Publications.
    Hayes, A. F., & Preacher, K. J. (2014). Statistical mediation analysis with a multicategorical independent variable. British Journal of Mathematical and Statistical Psychology, 67(3), 451–470. https://doi.org/10.1111/bmsp.12028
    Hill, S. K., Reilly, J. L., Ragozzino, M. E., Rubin, L. H., Bishop, J. R., Gur, R. C., Gershon, E. S., Tamminga, C. A., Pearlson, G. D., Keshavan, M. S., Keefe, R. S. E., & Sweeney, J. A. (2014). Regressing to prior response preference after set switching implicates striatal dysfunction across psychotic disorders: Findings from the B-SNIP Study. Schizophrenia Bulletin, 41(4), 940–950. https://doi.org/10.1093/schbul/sbu130
    Hortobágyi, T., Katch, F. I., & Lachance, P. F. (1991). Effects of simultaneous training for strength and endurance on upper and lower body strength and running performance. Journal of Sports Medicine and Physical Fitness, 31(1), 20–30.
    Hsieh, S.-S., Huang, C.-J., Wu, C.-T., Chang, Y.-K., & Hung, T.-M. (2018). Acute exercise facilitates the N450 inhibition marker and P3 attention marker during Stroop test in young and older adults. Journal of Clinical Medicine, 7(11), 391. https://doi.org/10.3390/jcm7110391
    Hsieh, S. S., Chang, Y. K., Hung, T. M., & Fang, C. L. (2016). The effects of acute resistance exercise on young and older males' working memory. Psychology of Sport and Exercise, 22, 286–293. https://doi.org/10.1016/j.psychsport.2015.09.004
    Jones, T. W., Howatson, G., Russell, M., & French, D. N. (2017). Effects of strength and endurance exercise order on endocrine responses to concurrent training. European Journal of Sport Science, 17(3), 326–334. https://doi.org/10.1080/17461391.2016.1236148
    Kao, S. C., Cadenas-Sanchez, C., Shigeta, T. T., Walk, A. M., Chang, Y. K., Pontifex, M. B., & Hillman, C. H. (2020). A systematic review of physical activity and cardiorespiratory fitness on P3b. Psychophysiology, 57(7), e13425. https://doi.org/10.1111/psyp.13425
    Kao, S. C., Wang, C. H., & Hillman, C. H. (2020). Acute effects of aerobic exercise on response variability and neuroelectric indices during a serial n-back task. Brain and Cognition, 138, 105508. https://doi.org/10.1016/j.bandc.2019.105508
    Kemppainen, J., Aalto, S., Fujimoto, T., Kalliokoski, K. K., Långsjö, J., Oikonen, V., Rinne, J., Nuutila, P., & Knuuti, J. (2005). High intensity exercise decreases global brain glucose uptake in humans. Journal of Physiology, 568(Pt 1), 323–332. https://doi.org/10.1113/jphysiol.2005.091355
    Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2022). Physiology of Sport and Exercise (8th ed.). Human Kinetics.
    Khan, N. A., Raine, L. B., Drollette, E. S., Scudder, M. R., & Hillman, C. H. (2015). The relation of saturated fats and dietary cholesterol to childhood cognitive flexibility. Appetite, 93, 51–56. https://doi.org/10.1016/j.appet.2015.04.012
    Kim, C., Cilles, S. E., Johnson, N. F., & Gold, B. T. (2012). Domain general and domain preferential brain regions associated with different types of task switching: A meta‐analysis. Human Brain Mapping, 33(1), 130–142. https://doi.org/10.1002/hbm.21199
    Knaepen, K., Goekint, M., Heyman, E. M., & Meeusen, R. (2010). Neuroplasticity — Exercise-induced response of peripheral brain-derived neurotrophic factor: A systematic review of experimental studies in human subjects. Sports Medicine, 40(9), 765–801. https://doi.org/10.2165/11534530-000000000-00000
    Kraemer, W. J., Ratamess, N. A., & French, D. N. (2002). Resistance training for health and performance. Current Sports Medicine Reports, 1(3), 165–171. https://doi.org/10.1249/00149619-200206000-00007
    Kredlow, M. A., Capozzoli, M. C., Hearon, B. A., Calkins, A. W., & Otto, M. W. (2015). The effects of physical activity on sleep: A meta-analytic review. Journal of Behavioral Medicine, 38(3), 427–449. https://doi.org/10.1152/jappl.1990.68.1.260
    Kujach, S., Olek, R. A., Byun, K., Suwabe, K., Sitek, E. J., Ziemann, E., Laskowski, R., & Soya, H. (2019). Acute sprint interval exercise increases both cognitive functions and peripheral neurotrophic factors in humans: The possible involvement of lactate. Frontiers in Neuroscience, 13, 1455. https://doi.org/10.3389/fnins.2019.01455
    Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12–24. https://doi.org/10.1016/j.brainres.2010.03.091
    Lee, J. K., & Orsillo, S. M. (2014). Investigating cognitive flexibility as a potential mechanism of mindfulness in Generalized Anxiety Disorder. Journal of Behavior Therapy and Experimental Psychiatry, 45(1), 208–216. https://doi.org/10.1016/j.jbtep.2013.10.008
    Levy, B. J., & Wagner, A. D. (2011). Cognitive control and right ventrolateral prefrontal cortex: Reflexive reorienting, motor inhibition, and action updating. Annals of the New York academy of sciences, 1224(1), 40–62. https://doi.org/10.1111/j.1749-6632.2011.05958.x
    Liao, Y., Shonkoff, E. T., & Dunton, G. F. (2015). The acute relationships between affect, physical feeling states, and physical activity in daily life: A review of current evidence. Frontiers in Psychology, 6, 1975–1975. https://doi.org/10.3389/fpsyg.2015.01975
    Liu, H., Funkhouser, C. J., Langenecker, S. A., & Shankman, S. A. (2021). Set Shifting and Inhibition Deficits as Potential Endophenotypes for Depression. Psychiatry Research, 300, 113931. https://doi.org/10.1016/j.psychres.2021.113931
    Luck, S. J. (2014). An Introduction to the Event-related Potential Technique. A Bradford Book.
    Ludyga, S., Gerber, M., Brand, S., Holsboer-Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology, 53(11), 1611–1626. https://doi.org/10.1111/psyp.12736
    MacNeil, L. G., Glover, E., Bergstra, T. G., Safdar, A., & Tarnopolsky, M. A. (2014). The order of exercise during concurrent training for rehabilitation does not alter acute genetic expression, mitochondrial enzyme activity or improvements in muscle function. PLoS One, 9(10), e109189. https://doi.org/10.1371/journal.pone.0109189
    Magistretti, P. J., & Allaman, I. (2018). Lactate in the brain: From metabolic end-product to signalling molecule. Nature Reviews Neuroscience, 19(4), 235–249. https://doi.org/10.1038/nrn.2018.19
    Mărcuş, O., Stanciu, O., MacLeod, C., Liebregts, H., & Visu-Petra, L. (2016). A FISTful of emotion: Individual differences in trait anxiety and cognitive-affective flexibility during preadolescence. Journal of Abnormal Child Psychology, 44(7), 1231–1242. https://doi.org/10.1007/s10802-015-0110-z
    Menêses, A. L., Forjaz, C. L., de Lima, P. F., Batista, R. M., Monteiro Mde, F., & Ritti-Dias, R. M. (2015). Influence of endurance and resistance exercise order on the postexercise hemodynamic responses in hypertensive women. Journal of Strength and Conditioning Research, 29(3), 612–618. https://doi.org/10.1519/JSC.0000000000000676
    Miller, H. L., Ragozzino, M. E., Cook, E. H., Sweeney, J. A., & Mosconi, M. W. (2015). Cognitive Set Shifting Deficits and Their Relationship to Repetitive Behaviors in Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 45(3), 805–815. https://doi.org/10.1007/s10803-014-2244-1
    Minnock, D., Annibalini, G., Le Roux, C. W., Contarelli, S., Krause, M., Saltarelli, R., Valli, G., Stocchi, V., Barbieri, E., & De Vito, G. (2020). Effects of acute aerobic, resistance and combined exercises on 24-h glucose variability and skeletal muscle signalling responses in type 1 diabetics. European Journal of Applied Physiology, 120(12), 2677–2691. https://doi.org/10.1007/s00421-020-04491-6
    Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). Theunity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734
    Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140. https://doi.org/10.1016/s1364-6613(03)00028-7
    Moore, D., Jung, M., Hillman, C. H., Kang, M., & Loprinzi, P. D. (2022). Interrelationships between exercise, functional connectivity, and cognition among healthy adults: A systematic review. Psychophysiology, 59(6), e14014. https://doi.org/10.1111/psyp.14014
    Naderi, A., Shaabani, F., Esmaeili, A., Salman, Z., Borella, E., & Degens, H. (2019). Effects of low and moderate acute resistance exercise on executive function in community-living older adults. Sport, Exercise, and Performance Psychology, 8(1), 106–122. https://doi.org/10.1037/spy0000135
    Narang, B. J., Atkinson, G., Gonzalez, J. T., & Betts, J. A. (2020). Tool to explore discrete-time data: The time series response analyser. International Journal of Sport Nutrition and Exercise Metabolism, 30(5), 374–381. https://doi.org/10.1123/ijsnem.2020-0150
    National Strength and Conditioning Association. (2016). Essentials of Strength Training and Conditioning (G. G. Haff & N. T. Triplett, Eds. 4ed ed.). Human Kinetics. https://www.nsca.com/store/product-detail/INV/9781718210868/9781718210868
    Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241–268. https://doi.org/10.3758/s13415-011-0083-5
    Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus–Norepinephrine system. Psychological Bulletin, 131(4), 510–532. https://doi.org/10.1037/0033-2909.131.4.510
    Oberste, M., Bloch, W., Hübner, S. T., & Zimmer, P. (2016). Reported effects of acute aerobic exercise on subsequent higher cognitive performances remain if tested against an instructed self-myofascial release training control group? A randomized controlled trial. PLoS One, 11(12), e0167818. https://doi.org/10.1371/journal.pone.0167818
    Oberste, M., Sharma, S., Bloch, W., & Zimmer, P. (2021). Acute exercise-induced set shifting benefits in healthy adults and its moderators: A systematic review and meta-analysis. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.528352
    Pescatello, L. S., Franklin, B. A., Fagard, R., Farquhar, W. B., Kelley, G. A., & Ray, C. A. (2004). American College of Sports Medicine position stand. Exercise and hypertension. Medicine & Science in Sports & Exercise, 36(3), 533–553. https://doi.org/10.1249/01.mss.0000115224.88514.3a
    Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019
    Pontifex, M. B., Hillman, C. H., Fernhall, B., Thompson, K. M., & Valentini, T. A. (2009). The effect of acute aerobic and resistance exercise on working memory. Medicine & Science in Sports & Exercise, 41(4), 927–934. https://doi.org/10.1249/MSS.0b013e3181907d69
    Pontifex, M. B., Miskovic, V., & Laszlo, S. (2017). Evaluating the efficacy of fully automated approaches for the selection of eyeblink ICA components. Psychophysiology, 54(5), 780–791. https://doi.org/10.1111/psyp.12827
    Proia, P., Di Liegro, C. M., Schiera, G., Fricano, A., & Di Liegro, I. (2016). Lactate as a Metabolite and a Regulator in the Central Nervous System. International Journal of Molecular Sciences, 17(9), 1450. https://doi.org/10.3390/ijms17091450
    Quistorff, B., Secher, N. H., & Van Lieshout, J. J. (2008). Lactate fuels the human brain during exercise. FASEB Journal, 22(10), 3443–3449. https://doi.org/10.1096/fj.08-106104
    Reed, J., & Ones, D. S. (2006). The effect of acute aerobic exercise on positive activated affect: A meta-analysis. Psychology of Sport and Exercise, 7(5), 477–514. https://doi.org/10.1016/j.psychsport.2005.11.003
    Rognmo, Ø., Moholdt, T., Bakken, H., Hole, T., Mølstad, P., Myhr, N. E., Grimsmo, J., & Wisløff, U. (2012). Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation, 126(12), 1436–1440. https://doi.org/10.1161/CIRCULATIONAHA.112.123117
    Ryan, J. J., & Lopez, S. J. (2001). Wechsler Adult Intelligence Scale-III. In W. I. Dorfman & M. Hersen (Eds.), Understanding Psychological Assessment (pp. 19–42). Springer US. https://doi.org/10.1007/978-1-4615-1185-4_2
    Sale, D. G., MacDougall, J. D., Jacobs, I., & Garner, S. (1990). Interaction between concurrent strength and endurance training. Journal of Applied Physiology, 68(1), 260–270.
    Schumann, M., & Rønnestad, B. (2019). Concurrent Aerobic and Strength Training: Scientific Basics and Practical Applications. Springer.
    Sebastian, A., Jung, P., Neuhoff, J., Wibral, M., Fox, P. T., Lieb, K., Fries, P., Eickhoff, S. B., Tüscher, O., & Mobascher, A. (2016). Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: A combined task-specific and coordinate-based meta-analytic fMRI study. Brain Structure and Function, 221(3), 1635–1651. https://doi.org/10.1007/s00429-015-0994-y
    Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007
    Smilios, I., Pilianidis, T., Karamouzis, M., Parlavantzas, A., & Tokmakidis, S. P. (2007). Hormonal responses after a strength endurance resistance exercise protocol in young and elderly males. International Journal of Sports Medicine, 28(5), 401–406. https://doi.org/10.1055/s-2006-924366
    Soltani, M., & Knight, R. T. (2000). Neural origins of the P300. Critical Reviews in Neurobiology, 14(3-4), 199–224. https://doi.org/10.1615/CritRevNeurobiol.v14.i3-4.20
    Song, T. F., Chu, C. H., Nien, J. T., Li, R. H., Wang, H. Y., Chen, A. G., Chang, Y. C., Yang, K. T., & Chang, Y. K. (2022). The association of obesity and cardiorespiratory fitness in relation to cognitive flexibility: An event-related potential study. Frontiers in Human Neuroscience, 16, 862801. https://doi.org/10.3389/fnhum.2022.862801
    Sparks, L. M., Johannsen, N. M., Church, T. S., Earnest, C. P., Moonen-Kornips, E., Moro, C., Hesselink, M. K., Smith, S. R., & Schrauwen, P. (2013). Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes. Journal of Clinical Endocrinology and Metabolism, 98(4), 1694–1702. https://doi.org/10.1210/jc.2012-3874
    Stange, J. P., Alloy, L. B., & Fresco, D. M. (2017). Inflexibility as a vulnerability to depression: A systematic qualitative review. Clinical Psychology: Science and Practice, 24(3), 245. https://doi.org/10.1111/cpsp.12201
    Stratton, G., Jones, M., Fox, K. R., Tolfrey, K., Harris, J., Maffulli, N., Lee, M., & Frostick, S. P. (2004). BASES position statement on guidelines for resistance exercise in young people. Journal of Sports Sciences, 22(4), 383–390. https://doi.org/10.1080/02640410310001641629
    Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153–156. https://doi.org/10.1016/s0735-1097(00)01054-8
    Thomason, M. E., Race, E., Burrows, B., Whitfield-Gabrieli, S., Glover, G. H., & Gabrieli, J. D. E. (2009). Development of spatial and verbal working memory capacity in the human brain. Journal of Cognitive Neuroscience, 21(2), 316–332. https://doi.org/10.1162/jocn.2008.21028
    Tian, S., Mou, H., Fang, Q., Zhang, X., Meng, F., & Qiu, F. (2021). Comparison of the sustainability effects of high-intensity interval exercise and moderate-intensity continuous exercise on cognitive flexibility. International Journal of Environmental Research and Public Health, 18(18), 9631. https://doi.org/10.3390/ijerph18189631
    Tsai, C. L., Chen, F. C., Pan, C. Y., Wang, C. H., Huang, T. H., & Chen, T. C. (2014). Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology, 41, 121–131. https://doi.org/10.1016/j.psyneuen.2013.12.014
    Tsai, C. L., Pan, C. Y., Chen, F. C., Wang, C. H., & Chou, F. Y. (2016). Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness. Experimental Physiology, 101(7), 836–850. https://doi.org/10.1113/ep085682
    Tsai, C. L., Wang, C. H., Pan, C. Y., Chen, F. C., Huang, T. H., & Chou, F. Y. (2014). Executive function and endocrinological responses to acute resistance exercise. Frontiers in Behavioral Neuroscience, 8, 262. https://doi.org/10.3389/fnbeh.2014.00262
    Tsuchiya, Y., Ando, D., Takamatsu, K., & Goto, K. (2015). Resistance exercise induces a greater irisin response than endurance exercise. Metabolism, 64(9), 1042–1050. https://doi.org/10.1016/j.metabol.2015.05.010
    U.S. Department of Health and Human Services. (2018). Physical Activity Guidelines for Americans, 2nd edition. (2nd ed.). U.S. Department of Health and Human Services.
    Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16(1), 55–61. https://doi.org/10.1038/nrn3857
    van Hall, G. (2010). Lactate kinetics in human tissues at rest and during exercise. Acta Physiologica, 199(4), 499–508. https://doi.org/10.1111/j.1748-1716.2010.02122.x
    Verdejo-Garcia, A., Clark, L., Verdejo-Román, J., Albein-Urios, N., Martinez-Gonzalez, J. M., Gutierrez, B., & Soriano-Mas, C. (2015). Neural substrates of cognitive flexibility in cocaine and gambling addictions. British Journal of Psychiatry, 207(2), 158–164. https://doi.org/10.1192/bjp.bp.114.152223
    Wang, C. C., Alderman, B., Wu, C. H., Chi, L., Chen, S. R., Chu, I. H., & Chang, Y. K. (2019). Effects of acute aerobic and resistance exercise on cognitive function and salivary cortisol responses. Journal of Sport and Exercise Psychology, 41(2), 73–81. https://doi.org/10.1123/jsep.2018-0244
    Waxenbaum, J. A., Reddy, V., & Varacallo, M. (2022). Anatomy, Autonomic Nervous System. In StatPearls. StatPearls Publishing, StatPearls Publishing LLC.
    Wen, H. J., & Tsai, C. L. (2020). Effects of acute aerobic exercise combined with resistance exercise on neurocognitive performance in obese women. Brain Sciences, 10(11), 767. https://doi.org/10.3390/brainsci10110767
    Weng, T. B., Pierce, G. L., Darling, W. G., & Voss, M. W. (2015). Differential effects of acute exercise on distinct aspects of executive function. Medicine & Science in Sports & Exercise, 47(7), 1460–1469. https://doi.org/10.1249/mss.0000000000000542
    Wilke, J., Giesche, F., Klier, K., Vogt, L., Herrmann, E., & Banzer, W. (2019). Acute effects of resistance exercise on cognitive function in healthy adults: A systematic review with multilevel meta-analysis. Sports Medicine, 49(6), 905–916. https://doi.org/10.1007/s40279-019-01085-x
    Wu, C. H., Karageorghis, C. I., Wang, C. C., Chu, C. H., Kao, S. C., Hung, T. M., & Chang, Y. K. (2019). Effects of acute aerobic and resistance exercise on executive function: An ERP study. Journal of Science and Medicine in Sport, 22(12), 1367–1372. https://doi.org/10.1016/j.jsams.2019.07.009
    Wu, C. H., Nien, J. T., Lin, C. Y., Li, R. H., Chu, C. H., Kao, S. C., & Chang, Y. K. (2022). Cardiorespiratory fitness is associated with sustained neurocognitive function during a prolonged inhibitory control task in young adults: An ERP study. Psychophysiology, e14086. https://doi.org/10.1111/psyp.14086
    Yeniad, N., Malda, M., Mesman, J., van Ijzendoorn, M. H., & Pieper, S. (2013). Shifting ability predicts math and reading performance in children: A meta-analytical study. Learning and Individual Differences, 23, 1–9. https://doi.org/10.1016/j.lindif.2012.10.004

    無法下載圖示 電子全文延後公開
    2025/08/30
    QR CODE