簡易檢索 / 詳目顯示

研究生: 黃崚瑋
Huang, Leng-Wei
論文名稱: JQ3模型在二維正方晶格及蜂巢晶格上之有限溫度的量子臨界性
Quantum criticality at finite temperature for two-dimensional JQ3 models on the square and the honeycomb lattices
指導教授: 江府峻
Jiang, Fu-Jiun
口試委員: 陳永忠
Chen, Yung-Chung
陳柏中
Chen, Po-Chung
江府峻
Jiang, Fu-Jiun
張明哲
Chang, Ming-Che
江佩勳
Jiang, Pei-hsun
口試日期: 2022/06/30
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 46
中文關鍵詞: 量子臨界性蒙地卡羅
英文關鍵詞: JQ3 models
研究方法: 實驗設計法理論計算數值分析
DOI URL: http://doi.org/10.6345/NTNU202200823
論文種類: 學術論文
相關次數: 點閱:40下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們在有限溫度的二維反鐵磁量子海森堡JQ3模型下,設定J鍵、Q鍵兩種晶格鍵結交互作用,利用第一原理蒙地卡羅模擬,在Q鍵強度與J鍵強度比值Q/J為臨界狀態(Q/J)_c及不同的系統溫度之下,計算系統各物理量,以得到系統普適常數(S(π,π))/(χ_s T) 、 (χ_u c^2)/T 、 (ρ_s L)/c對系統溫度T倒數(β)的變化,以此探討當物理系統從Néel 相變至 Valence-bond solid的物理性質。我們所研究的JQ3模型共有三種,其中兩種:正方晶格平行Q鍵模型及蜂巢Q鍵模型在文獻中屬於二階相變,另一種正方晶格斜排Q鍵屬於一階相變。從前兩種模型的模擬結果,我們得到相當足夠且與過去文獻一致的證俱,並且可支持該兩種模型的相變為連續性相變,另外對比這三種模型的結果,我們也得到可提供當JQ3模型物理系統在臨界相變時,系統屬於一階相變或二階相變的判斷標準。
    本論文部分章節已發表於 Chinese Journal of Physics 77 (2022) 1598–1609.

    In order to study the Quantum phase transition from the Néel phase to the valence-bond solid, we study with 2D-antiferromagnetic Quantum Heisenberg JQ3 model at finite temperature by the first principles Quantum Monte Carlo simulation. We calculate the universal Quantities (S(π,π))/(χ_s T) 、 (χ_u c^2)/T 、 (ρ_s L)/c and consider these Quantities as functions of the inverse temperature(β).The simulations are conducted at the critical points (Q/J)_c. Three types of JQ3 models, namely the square-ladder model, the honeycomb, and the square-stagger models are studied. In the literature, the first two models are known to have second order phase transition, and the last one is likely to have a first order phase transition.
    The results shown in our study provide numerical evidence to support the outcomes established in literature. Moreover, our results can be a criterion to distinguish second order phase transitions from first order phase transitions for the exotic criticalities of JQ-type models.

    ChapterI.序論1 ChapterII.理論及方法4 II.1.相變4 II.1.A.一階相變4 II.1.B.二階相變4 II.2.臨界現象6 II.3.量子相變(Quantum phase transition)7 II.4.量子臨界狀態7 II.5.量子海森堡模型(Quantum Heisenberg model)8 II.6.Stochastic Series Expansion Methods9 II.7.蒙地卡羅及演算法10 II.7.A.蒙地卡羅(Monte Carlo)10 II.7.B.演算法-Diagonal Update12 II.7.C.演算法-Loop-update13 II.7.D.演算法-Adjusting the cut-off and Process14 ChapterIII.微觀模型及計算物理量17 III.1.JQ3正方晶格模型17 III.2.JQ3蜂巢晶格(Honeycomb)21 III.3.JQ3Diagonal update及Loop-update23 III.4.計算的物理量26 ChapterIV.計算數值結果27 IV.1.(S(π,π))/(χ_sT)正方晶格Q鍵27 IV.2.(S(π,π))/(χ_sT)蜂巢晶格Q鍵29 IV.3.自旋波速c31 IV.4.(χ_uc^2)/T33 IV.5.(ρ_sL)/c36 ChapterV.結論39 參考文獻41

    [1] Sandvik, A. W. (2007). Evidence for deconfined Quantum criticality in a two-dimensional Heisenberg model with four-spin interactions. Physical review letters, 98(22), 227202.
    [2] Lou, J., Sandvik, A. W., & Kawashima, N. (2009). Antiferromagnetic to valence-bond-solid transitions in two-dimensional SU (N) Heisenberg models with multispin interactions. Physical Review B, 80(18), 180414.
    [3] Sen, A., & Sandvik, A. W. (2010). Example of a first-order Néel to valence-bond-solid transition in two dimensions. Physical Review B, 82(17), 174428.
    [4] V.L. Ginzburg, L.D. Landau, Zh. Eksp. Teor. Fiz. 20, (1950) 1064. English Translation in: L. D. LandAu, Pergamon Press, Oxford, 1965, p. 546.
    [5] Senthil, T., Vishwanath, A., Balents, L., Sachdev, S., & Fisher, M. P. (2004). Deconfined Quantum critical points. Science, 303(5663), 1490-1494.
    [6] Senthil, T., Balents, L., Sachdev, S., Vishwanath, A., & Fisher, M. P. (2004). Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm. Physical Review B, 70(14), 144407.
    [7] Shao, H., Guo, W., & Sandvik, A. W. (2016). Quantum criticality with two length scales. Science, 352(6282), 213-216.
    [8] Sandvik, A. W., & Zhao, B. (2020). Consistent scaling exponents at the deconfined Quantum-critical point. Chinese Physics Letters, 37(5), 057502.
    [9] Harada, K., Suzuki, T., Okubo, T., Matsuo, H., Lou, J., Watanabe, H., ... & Kawashima, N. (2013). Possibility of deconfined criticality in SU (N) Heisenberg models at small N. Physical Review B, 88(22), 220408.
    [10] Kuklov, A. B., Prokof’Ev, N. V., Svistunov, B. V., & Troyer, M. (2006). Deconfined criticality, runaway flow in the two-component scalar electrodynamics and weak first-order superfluid-solid transitions. Annals of Physics, 321(7), 1602-1621.
    [11] Melko, R. G., & Kaul, R. K. (2008). Scaling in the fan of an unconventional Quantum critical point. Physical review letters, 100(1), 017203.
    [12] Jiang, F. J., Nyfeler, M., Chandrasekharan, S., & Wiese, U. J. (2008). From an antiferromagnet to a valence bond solid: evidence for a first-order phase transition. Journal of Statistical Mechanics: Theory and Experiment, 2008(02), P02009.
    [13] Kuklov, A. B., Matsumoto, M., Prokof’Ev, N. V., Svistunov, B. V., & Troyer, M. (2008). Deconfined criticality: Generic first-order transition in the SU (2) symmetry case. Physical review letters, 101(5), 050405.
    [14] Sandvik, A. W. (2010). Continuous Quantum phase transition between an antiferromagnet and a valence-bond solid in two dimensions: Evidence for logarithmic corrections to scaling. Physical review letters, 104(17), 177201.
    [15] Chen, K., Huang, Y., Deng, Y., Kuklov, A. B., Prokof’ev, N. V., & Svistunov, B. V. (2013). Deconfined criticality flow in the Heisenberg model with ring-exchange interactions. Physical review letters, 110(18), 185701.
    [16] Iino, S., Morita, S., Kawashima, N., & Sandvik, A. W. (2019). Detecting signals of weakly first-order phase transitions in two-dimensional Potts models. Journal of the Physical Society of Japan, 88(3), 034006.
    [17] Mermin, N. D., & Wagner, H. (1966). Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Physical Review Letters, 17(22), 1133.
    [18] Hohenberg, P. C. (1967). Existence of long-range order in one and two dimensions. Physical Review, 158(2), 383.
    [19] Coleman, S. (1973). There are no Goldstone bosons in two dimensions. Communications in Mathematical Physics, 31(4), 259-264.
    [20] Gelfert, A., & Nolting, W. (2001). The absence of finite-temperature phase transitions in low-dimensional many-body models: a survey and new results. Journal of Physics: Condensed Matter, 13(27), R505.
    [21] Chubukov, A. V., Sachdev, S., & Ye, J. (1994). Theory of two-dimensional Quantum Heisenberg antiferromagnets with a nearly critical ground state. Physical Review B, 49(17), 11919.
    [22] Sen, A., Suwa, H., & Sandvik, A. W. (2015). Velocity of excitations in ordered, disordered, and critical antiferromagnets. Physical Review B, 92(19), 195145.
    [23] Kaul, R. K., & Melko, R. G. (2008). Large-N estimates of universal amplitudes of the C P N− 1 theory and comparison with a S= 1 2 square-lattice model with competing four-spin interactions. Physical Review B, 78(1), 014417.
    [24] Jaeger, G. (1998). The Ehrenfest classification of phase transitions: introduction and evolution. Archive for history of exact sciences, 53(1), 51-81.
    [25] Atkins, P., & De Paula, J. (2011). Physical chemistry for the life sciences. Oxford University Press, USA.
    [26] Pujari, S., Damle, K., & Alet, F. (2013). Néel-state to valence-bond-solid transition on the honeycomb lattice: evidence for deconfined criticality. Physical Review Letters, 111(8), 087203.
    [27] Chubukov, A. V., & Sachdev, S. (1993). Universal magnetic properties of La 2− δ Sr δ CuO 4 at intermediate temperatures. Physical review letters, 71(1), 169.
    [28] Chubukov, A. V., & Sachdev, S. (1993). Universal Magnetic Properties of La 2− δ Sr δ Cu O 4 at Intermediate Temperatures. Physical Review Letters, 71(16), 2680.
    [29] Sandvik, A. W., Chubukov, A. V., & Sachdev, S. (1995). Quantum critical behavior in a two-layer antiferromagnet. Physical Review B, 51(22), 16483.
    [30] Troyer, M., Kontani, H., & Ueda, K. (1996). Phase Diagram of Depleted Heisenberg Model for Ca V 4 O 9. Physical review letters, 76(20), 3822.
    [31] Troyer, M., Imada, M., & Ueda, K. (1997). Critical exponents of the Quantum phase transition in a planar antiferromagnet. Journal of the Physical Society of Japan, 66(10), 2957-2960.
    [ 32] Kim, J. K., & Troyer, M. (1998). Low temperature behavior and crossovers of the square lattice Quantum Heisenberg antiferromagnet. Physical review letters, 80(12), 2705.
    [33] Kim, Y. J., Birgeneau, R. J., Kastner, M. A., Lee, Y. S., Endoh, Y., Shirane, G., & Yamada, K. (1999). Quantum Monte Carlo study of weakly coupled spin ladders. Physical Review B, 60(5), 3294.
    [34] Kim, Y. J., & Birgeneau, R. J. (2000). Monte Carlo study of the S= 1 2 and S= 1 Heisenberg antiferromagnet on a spatially anisotropic square lattice. Physical Review B, 62(10), 6378.
    [35] Sandvik, A. W., Kotov, V. N., & Sushkov, O. P. (2011). Thermodynamics of a gas of deconfined bosonic spinons in two dimensions. Physical Review Letters, 106(20), 207203.
    [36] Tan, D. R., & Jiang, F. J. (2018). Universal Quantum criticality at finite temperature for two-dimensional disordered and clean dimerized spin-1 2 antiferromagnets. Physical Review B, 98(24), 245111.
    [37] Kaul, R. K., & Sachdev, S. (2008). Quantum criticality of U (1) gauge theories with fermionic and bosonic matter in two spatial dimensions. Physical Review B, 77(15), 155105.
    [38] Kardar, M. (2007). Statistical physics of fields. Cambridge University Press.
    [39] Campostrini, M., Hasenbusch, M., Pelissetto, A., Rossi, P., & Vicari, E. (2001). Critical behavior of the three-dimensional XY universality class. Physical Review B, 63(21), 214503.
    [40] Holm, C., & Janke, W. (1993). Critical exponents of the classical three-dimensional Heisenberg model: A single-cluster Monte Carlo study. Physical Review B, 48(2), 936.
    [ 41] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi. Precision islands in the ising and o(n ) models. Journal of High Energy Physics, 2016(8):36, Aug 2016.
    [ 42] Kroese, D. P., Brereton, T., Taimre, T., & Botev, Z. I. (2014). Why the Monte Carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics, 6(6), 386-392.
    [43] Metropolis, N. THE BEGINNING ofthe MONTE CARLO METHOD.
    [44] Gubernatis, J., Kawashima, N., & Werner, P. (2016). Quantum Monte Carlo Methods. Cambridge University Press.
    [45] Chen, N., & Hong, L. J. (2007, December). Monte Carlo simulation in financial engineering. In 2007 Winter Simulation Conference (pp. 919-931). IEEE.
    [46] Gong, Q., Midlam-Mohler, S., Marano, V., & Rizzoni, G. (2012). Virtual PHEV fleet study based on Monte Carlo simulation. International journal of vehicle design, 58(2-4), 266-290.
    [47] Li, C., Mao, S. F., Zou, Y. B., Li, Y. G., Zhang, P., Li, H. M., & Ding, Z. J. (2018). A Monte Carlo modeling on charging effect for structures with arbitrary geometries. Journal of Physics D: Applied Physics, 51(16), 165301.
    [48] Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to MCMC for machine learning. Machine learning, 50(1), 5-43.
    [49] Elwart, L., Emerson, N., Enders, C., Fumia, D., & Murphy, K. (2006). Increasing Access to Restraining Orders for Low-Income Victims of Domestic Violence: A Cost-Benefit Analysis of the Proposed Domestic Abuse Grant Program. Madison, State Bar Association of Wisconsin.
    [50] Sawilowsky, S. S. (2003). You think you’ve got trivials?. Journal of Modern Applied Statistical Methods, 2(1), 21.
    [51] Sandvik, A. W. (2019). Stochastic series expansion methods. arXiv preprint arXiv:1909.10591.
    [52] Sandvik, A. W. (1999). Stochastic series expansion method with operator-loop update. Physical Review B, 59(22), R14157.
    [53] Sandvik, A. W. (2010, November). Computational studies of Quantum spin systems. In AIP Conference Proceedings (Vol. 1297, No. 1, pp. 135-338). American Institute of Physics.
    [54] Jiang, F. J. (2011). Method of calculating the spin-wave velocity of spin-1 2 antiferromagnets with O (N) symmetry in a Monte Carlo simulation. Physical Review B, 83(2), 024419.
    [55] Hasenfratz, P., & Niedermayer, F. (1993). Finite size and temperature effects in the AF Heisenberg model. Zeitschrift für Physik B Condensed Matter, 92(1), 91-112.
    [56] Peng, J. H., Huang, L. W., Tan, D. R., & Jiang, F. J. (2020). Validity of the Harris criterion for two-dimensional Quantum spin systems with Quenched disorder. Physical Review B, 101(17), 174404.

    下載圖示
    QR CODE