簡易檢索 / 詳目顯示

研究生: 喻威翔
Yu, Wei-Siang
論文名稱: 初探多元解題教學情境下高中生的數學創造力與創造歷程
Exploring Senior Secondary Students’Mathematical Creativity and Creative Process through Multiple-Solution Problem Solving
指導教授: 方素琦
Fang, Su-Chi
口試委員: 林志鴻
Lin, Chih-Hung
劉宣谷
Liu, Hsuan-Ku
方素琦
Fang, Su-Chi
口試日期: 2022/07/22
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 107
中文關鍵詞: 數學創造力格式塔模型大衛創造模型多元解題任務
英文關鍵詞: mathematical creativity, Gestalt model, David’s create process model, multiple solution task
研究方法: 準實驗設計法深度訪談法
DOI URL: http://doi.org/10.6345/NTNU202201079
論文種類: 學術論文
相關次數: 點閱:78下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討在多元解題教學的情境之下高中生在幾何證明題、幾何問題與代數問題的數學創造力表現,以及學生在面對多元解題任務時的創造歷程。為探討此研究問題,研究者以提升數學創造力的五項原則作為課程架構,搭配多元解題任務作為教學工具,發展出多元解題教學法。研究樣本為某公立高中二年級理組資優班學生,共29位學生完整參與研究。學生數學創造力的評分架構為參照Leikin (2013) 的評分方式,透過數學思維形式的流暢性、變通性與原創性來評估學生的數學創造力表現。學生創造歷程的分析則是參照格式塔模型以及大衛創造模型建立多元解題情境創造模型剖析學生在嘗試解題時的思考過程。
    研究結果發現:(1) 學生在經過多元解題教學法的介入後,依照前測結果將全班學生分為多解組與少解組,發現在證明題與幾何問題中,有較高比例的少解組學生後測的流暢性分數提升,而在代數問題中,少解組學生的流暢性分數則是以不變的比例為最高,顯示多元解題教學法對於證明題與幾何問題有提升流暢性的效果,對於代數問題的效果則較不明顯;(2) 學生在經過多元解題教學法的介入後,三種題型的變通性分數皆提升,顯示多元解題教學法能夠有效幫助學生寫出差異程度更大的解法;(3) 學生在經過多元解題教學法的介入後,證明題的原創性分數有所提升,而幾何問題與代數問題的原創性分數發生下降,同時發現解法種類的得分情形出現『去極端化』的現象,顯示鮮少有學生能產生特異且稀有的解法;(4) 學生創造歷程的分析結果顯示獲得高創造力得分解法的思考歷程並沒有特定的模式,但是有較高比例的解法未包含準備期,顯示對於複雜度較高的問題,若解題時先設定好一個主要概念來切入問題,接著再針對後續搭配的概念進行發散性思考,亦能達到提升創造力得分的效果。

    This study aims to explore senior secondary students’ mathematical creativity and their creative process through multiple-solution problem solving in geometric proofs, geometry, and algebra. To achieve this aim, the present research developed an instructional module based on the Five Overarching Principles to Maximize Creativity and included a series of multiple solution tasks . A total of 29 eleventh graders from a public senior high school in Kaohsiung participated in the study. The study used the framework established by Leikin (2013) to evaluate the students’ mathematical creativity including fluency, flexibility, and originality. Regarding creative process, the study modified the Gestalt model and David’s creative process model to develop the Creation Model for Multiple-Solution Problem Solving to analyze the students’ thinking process when solving mathematical problems with multiple solutions.
    Compared to the pre-test, the results show that: (1) the students’ fluency in mathematical creativity was facilitated in geometric proof and geometric problems, but not in algebra problems; (2) the students’ flexibility was enhanced in all of the types of mathematical problems, which indicated that multiple solution tasks promoted students to generate distinct solutions; (3) While the students’ originality was improved in geometric proof problems, the scores decreased in geometric and algebra problems. It was also found that few students were able to generate rare solutions; (4) The analysis of the students’ creative processes of higher creativity scores showed no specific thinking patterns. However, a relatively high proportion of the creative processes with higher creativity scores did not start from the preparation stage. It seems that the preparation may not be necessary for complex problems. It is likely that the initial selection of a key concept and the use of diverse thinking played an important role in advancing mathematical creativity.

    第壹章       緒論 1 第一節       研究背景與動機 1 第二節       研究目的與研究問題 2 第三節       名詞釋義 3 第貳章       文獻探討 5 第一節       數學創造力 5 第二節       多元解題任務 19 第三節       多元解題的學習理論基礎 24 第四節       多元解題任務教學 28 第參章       研究設計 31 第一節       研究流程 31 第二節       研究對象與情境 32 第三節       研究工具與資料搜集 32 第四節       教學設計與實施 35 第五節       資料分析 41 第肆章       研究結果 48 第一節       學生在多元解題教學法前後的流暢性表現 48 第二節       學生在多元解題教學法前後的變通性表現 52 第三節       學生在多元解題教學法前後的原創性表現 57 第四節       學生在進行多元解題任務時的創造歷程 61 第伍章       綜合討論 75 第一節       數學創造力表現 75 第二節       創造歷程 78 第三節       學生對多元解題教學課程經驗的回饋 79 第陸章       結論與建議 80 第一節       結論 80 第二節       建議 83 參考文獻 84 附錄 89

    林碧珍(2020)。學生在臆測任務課堂表現的數學創造力評量。科學教育學刊。 28(S),429-455。
    陳正曄(2020)。在數學臆測教學下學生數學創造力的展現(碩士論文)。取自臺灣博碩士論文系統。
    劉宣谷(2015)。數學創造力的文獻回顧與探究。臺灣數學教育期刊。2(1),23-40。
    Anderson, J. (2009). Mathematics curriculum development and the role of problem solving. ACSA Conference.
    Ball, D. L., & Bass, H. (2002). Toward a practice-based theory of mathematical knowledge for teaching. Proceedings of the 2002 annual meeting of the Canadian Mathematics Education Study Group.
    Bergqvist, E. (2007). Types of reasoning required in university exams in mathematics. The Journal of Mathematical Behavior, 26(4), 348-370.
    Chamberlin, S. A., & Moon, S. M. (2005). Model-eliciting activities as a tool to develop and identify creatively gifted mathematicians. Journal of Secondary Gifted Education, 17(1), 37-47.
    Charles, R. I., & Lester, F. K. (1982). Teaching problem solving: What, why & how. Dale Seymour Publications Palo Alto, CA.
    Christensen, B. T. (2005). Creative cognition: Analogy and incubation. Psykologisk Institut, Aarhus Universitet.
    Christou, C., Mousoulides, N., Pittalis, M., & Pitta-Pantazi, D. (2004). Proofs through exploration in dynamic geometry environments. International Journal of Science and Mathematics Education, 2(3), 339-352.
    Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. Handbook of research on mathematics teaching and learning, 420-464.
    Council, N. R. (2012). Education for life and work: Developing transferable knowledge and skills in the 21st century. National Academies Press.
    Dhombres, J. (1993). Is one proof enough? Travels with a mathematician of the baroque period. Educational Studies in Mathematics, 24(4), 401-419.
    Dodds, R. A., Ward, T. B., & Smith, S. M. (2004). A review of experimental research on incubation in problem solving and creativity. Unpublished doctoral thesis (Texas A&M University).
    Fisher, P. H., Dobbs-Oates, J., Doctoroff, G. L., & Arnold, D. H. (2012). Early math interest and the development of math skills. Journal of Educational Psychology, 104(3), 673.
    Gray, E., Pinto, M., Pitta, D., & Tall, D. (1999). Knowledge construction and diverging thinking in elementary & advanced mathematics. Educational Studies in Mathematics, 38(1), 111-133.
    Große, C. S., & Renkl, A. (2006). Effects of multiple solution methods in mathematics learning. Learning and Instruction, 16(2), 122-138.
    Guberman, R., & Leikin, R. (2013). Interesting and difficult mathematical problems: changing teachers’ views by employing multiple-solution tasks. Journal of Mathematics Teacher Education, 16(1), 33-56.
    Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.
    Haavold, P. Ø., & Birkeland, A. (2017). Contradictory concepts of creativity in mathematics teacher education. Creative Contradictions in Education, 181-199.
    Hadamard, J. (1954). An essay on the psychology of invention in the mathematical field. Courier Corporation.
    Haylock, D. W. (1987). A framework for assessing mathematical creativity in school chilren. Educational Studies in Mathematics, 18(1), 59-74.
    Heinze, A., Reiss, K., & Franziska, R. (2005). Mathematics achievement and interest in mathematics from a differential perspective. ZDM, 37(3), 212-220.
    Jackson, P. W., & Messick, S. (1965). The person, the product, and the response: conceptual problems in the assessment of creativity, Journal of personality.
    Jensen, L. R. (1973). The relationships among mathematical creativity, numerical aptitude and mathematical achievement. The University of Texas at Austin.
    Köller, O., Baumert, J., & Schnabel, K. (2001). Does interest matter? The relationship between academic interest and achievement in mathematics. Journal for Research in Mathematics Education, 448-470.
    Krapp, A. (2005). Basic needs and the development of interest and intrinsic motivational orientations. Learning and Instruction, 15(5), 381-395.
    Lawson, M. J., & Chinnappan, M. (2000). Knowledge connectedness in geometry problem solving. Journal for Research in Mathematics Education, 31(1), 26-43.
    Lehrer, R., & Chazan, D. (2012). Designing learning environments for developing understanding of geometry and space. Routledge.
    Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. Creativity in mathematics and the education of gifted students, 129-145.
    Leikin, R., Berman, A., & Koichu, B. (2009). Creativity in mathematics and the education of gifted students, Brill.
    Leikin, R., & Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: What makes the difference? ZDM, 45(2), 183-197.
    Leikin, R., Levav-Waynberg, A., Gurevich, I., & Mednikov, L. (2006). Implementation of Multiple Solution Connecting Tasks: Do Students' Attitudes Support Teachers' Reluctance? Focus on learning problems in mathematics, 28(1), 1.
    Levav-Waynberg, A., & Leikin, R. (2012). The role of multiple solution tasks in developing knowledge and creativity in geometry. The Journal of Mathematical Behavior, 31(1), 73-90.
    Loomis, E. S. (1968). The pythagorean proposition. National Council of Teachers of Mathematics.
    Muldner, K., & Burleson, W. (2015). Utilizing sensor data to model students’ creativity in a digital environment. Computers in Human Behavior, 42, 127-137.
    Neubrand, M. (1998). General tendencies in the development of geometry teaching in the past two decades. Perspectives on the teaching of geometry for the 21st century, 226-228.
    Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-regulated learning. International journal of educational research, 31(6), 459-470.
    Polya, G., & To, S. I. (1973). A New Aspect of Mathematical Method. Princeton University Press.
    Ryan, R. M., & Deci, E. L. (1895). Self-determination theory: Basic psychological needs in motivation, development, and wellness. Guilford Publications.
    Schindler, M., & Lilienthal, A. (2018). Eye-tracking for studying mathematical difficulties: also in inclusive settings. Paper presented at the Annual Meeting of the International Group for the Psychology of Mathematics Education (PME-42), Umeå, Sweden, July 3-8, 2018.
    Schindler, M., & Lilienthal, A. J. (2019). Students’ Creative Process in Mathematics: Insights from Eye-Tracking-Stimulated Recall Interview on Students’ Work on Multiple Solution Tasks. International Journal of Science and Mathematics Education, 1-22.
    Schoenfeld, A. H. (1983). Problem Solving in the Mathematics Curriculum. A Report, Recommendations, and an Annotated Bibliography. MAA Notes, Number 1.
    Schukajlow, S., & Krug, A. (2014). Do multiple solutions matter? Prompting multiple solutions, interest, competence, and autonomy. Journal for Research in Mathematics Education, 45(4), 497-533.
    Schukajlow, S., Krug, A., & Rakoczy, K. (2015). Effects of prompting multiple solutions for modelling problems on students’ performance. Educational Studies in Mathematics, 89(3), 393-417.
    Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Müller, M., & Messner, R. (2012). Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations. Educational Studies in Mathematics, 79(2), 215-237.
    Seifert, C.M., Meyer, D.E., Davidson, N., Patalano, A.L., & Yaniv, I. (1995). Demystification of cognitive insight: Opportunistic assimilation and the prepared-mind perspective. In R.J. Sternberg & J.E. Davidson (Eds.), The nature of insight , 65-124.
    Silver, E. A. (1987). Foundations of cognitive theory and research for mathematics problem-solving instruction. Cognitive science and mathematics education, 33-60.
    Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM, 29(3), 75-80.
    Sio, U. N., & Ormerod, T. C. (2009). Does incubation enhance problem solving? A meta-analytic review. Psychological bulletin, 135(1), 94.
    Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? Journal of Secondary Gifted Education, 17(1), 20-36.
    Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and instruction, 2(1), 59-89.
    Torbeyns, J., De Smedt, B., Ghesquière, P., & Verschaffel, L. (2009). Jump or compensate? Strategy flexibility in the number domain up to 100. ZDM, 41(5), 581-590.
    Wallas, G. (1926). The art of thought. Selections in P. E. Vernon (Ed., 1970), Creativity, Middlesex, England: Penguin, 91-97.

    下載圖示
    QR CODE