簡易檢索 / 詳目顯示

研究生: 柳彥成
Liou, Yan-Cheng
論文名稱: (一) 使用鄰羥基對亞甲基苯醌經由 1,6-膦加成/氧-醯化/威悌反應建構官能化苯并呋喃衍生物 (二) 膦催化之化學選擇性還原/亞硝酸離去/威悌反應建構 3-烯基苯并呋喃衍生物 (三) 亞烷基米氏酸與亞胺葉立德經 (3+2) 環加成/內酯化反應合成高鏡像選擇性之𠳭酮[4,3-b]吡咯啶
I. Synthesis of Functionalized Benzofurans from para-Quinone Methides via Phospha-1,6-Addition/O-Acylation/Wittig Pathway II. Phosphine-catalyzed Chemoselective Reduction/Elimination/Wittig Reaction Sequence for Synthesis of Functionalized 3-Alkenyl Benzofurans III. Enantioselective Construction of Chromeno[4,3-b]pyrrolidines from Meldrum’s Acid Alkylidenes and Azomethide Ylides via the (3+2) Cycloaddition/Lactonization Pathway
指導教授: 林文偉
Lin, Wenwei
口試委員: 林文偉
Lin, Wenwei
張永俊
Jang, Yeong-Jiunn
陳焜銘
Chen, Kwunmin
姚清發
Yao, Ching-Fa
劉維民
Liu, Wei-Min
口試日期: 2022/07/15
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 310
中文關鍵詞: 苯并呋喃膦試劑分子內威悌反應對亞甲基苯醌3-烯基苯并呋喃催化膦威悌反應亞硝酸脫除亞胺葉立德米氏酸不對稱催化𠳭酮[4,3-b]吡咯啶
英文關鍵詞: 1,6-Addition, 2,3-Diarylbenzofuran, Wittig reaction, Catalytic Wittig reaction, Nitrous acid elimination, 3-Alkenylbezofuran, Chromeno[4,3-b]pyrrolidine, Asymmetric catalyst, Azomethide ylide, Meldrum’s acid
研究方法: 實驗設計法行動研究法
DOI URL: http://doi.org/10.6345/NTNU202201092
論文種類: 學術論文
相關次數: 點閱:37下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • (一)穩定的鄰羥基對亞甲基苯醌化合物通過有機膦、醯氯和鹼處理,在無金屬且溫和條件下,有效合成官能化的苯并呋喃。同時,在催化條件下亦證明此一鍋化法之1,6-膦加成/氧-醯化/威悌反應,具有相似的合成官能化苯并呋喃的功效。

    (二)經由使用催化量的膦試劑進行分子內威悌反應,提供在無金屬條件下建構官能化 3-烯基苯并呋喃的有效方法。該一鍋化反應是通過將有機膦進行麥可加成到氧-醯化之硝基苯乙烯而引發,其中膦是通過用苯基矽烷對氧化膦進行化學選擇性還原而生成,從而產生膦葉立德,通過氧-醯化/亞硝酸消除/威悌反應製備多官能化的 3-烯基苯并呋喃衍生物。

    (三)亞烷基米氏酸與亞胺葉立德經由硫脲片段衍生之金雞納鹼催化下,在短時間內進行 (3+2) 環加成/酯交換反應,在短時間內建構優異產率與鏡像選擇性之𠳭酮[4,3-b]吡咯啶衍生物。此外,我們根據實驗結果的發現,提出了催化劑與亞烷基米氏酸活化的反應模型。

    (一)An efficient synthesis of functionalized benzofurans is achieved under mild and metal free conditions from stable para-quinone methides by treatment with phosphine, acyl chloride, and a base. This one-pot phospha-1,6-addition/O-acylation/Wittig reaction is also demonstrated under catalytic conditions with similar efficacy.

    (二)A highly efficient protocol for the synthesis of functionalized 3-alkenyl benzofurans is demonstrated under metal-free conditions using catalytic amount of phosphine proceeding an intramolecular Wittig reaction. This one-pot reaction was initiated by the phospha-Michael addition of phosphine to O-acylated nitrostyrene, in which phosphine was in-situ generated from the chemoselective reduction of phosphine oxide with PhSiH3, would provide the phosphorus ylide to result in the aforementioned multifunctionalized benzofuran via O-acylation/nitrous acid elimination/Wittig reaction.

    (三)A quinine-derived thiourea-catalyzed enantioselective (3+2) cycloaddition/desymmetrization transesterification reaction of Meldrum’s acid alkylidenes with azomethine ylides is realized in minute-scale. The desired chromeno[4,3-b]pyrrolidines were obtained in moderate to excellent yields with excellent stereoselectivities. Moreover, a plausible dual activation catalytic model via the hydrogen bonding interaction of the moiety of catalyst towards Meldrum’s acid alkylidene was proposed according to the findings in this study.

    序章 1 膦試劑用於建構碳-碳單鍵 1 膦試劑用於建構碳-碳雙鍵 2 膦試劑用於進行官能基轉換 3 膦試劑用於合成雜環 5 第一部分 使用鄰羥基對亞甲基苯醌經由 1,6-膦加成/氧-醯化/威悌反應建構官能化苯并呋喃衍生物 9 1-1 前言 9 1-1-1 對亞甲基苯醌之介紹 9 1-1-2 鄰羥基之 p-QMs 用於合成雜環 10 1-1-3 2,3-二芳基苯并呋喃之生物活性 12 1-1-4 2,3-二芳基苯并呋喃之合成方式 12 1-2 研究動機 13 1-3 研究結果與討論 15 1-3-1反應條件優化-膦試劑與溶劑篩選 15 1-3-2反應條件優化-鹼試劑與其當量數及其他條件的篩選 16 1-3-3醯氯取代基效應探討 18 1-3-4 使用催化量的膦試劑進行反應 20 1-3-5反應機構探討 21 1-4結論 26 1-5 光譜解析 26 1-6 實驗部分 31 1-6-1 分析儀器 31 1-6-2 實驗操作步驟 31 1-6-3 光譜數據 32 參考文獻 49 附件一、NMR光譜數據 52 附件二、X-ray 單晶繞射數據 72 附件三 檢查清單 74 第二部分 膦催化之化學選擇性還原/亞硝酸離去/威悌反應建構 3-烯基苯并呋喃衍生物 75 2-1 前言 75 2-1-1 硝基官能團在合成上的應用 75 2-1-2 硝基烷做為拉電子基團及親核性前驅物的應用 76 2-1-3 硝基烯烴的應用 77 2-1-4 硝基化合物在雙鍵建構的應用 78 2-2 研究動機 80 2-3 研究結果與討論 84 2-3-1 反應條件優化-膦試劑當量及反應溫度篩選 84 2-3-2 反應條件優化-溶劑篩選 85 2-3-3 催化膦系統介紹 88 2-3-4 催化膦系統應用於分子內 Wittig 反應之條件優化 90 2-3-5 鄰-羥基硝基苯乙烯於催化型 Wittig 反應之取代基效應探討 93 2-3-6 克級合成 97 2-3-7 反應機構探討 97 2-4結論 101 2-5 光譜解析 102 2-6 實驗部分 106 2-6-1 分析儀器 106 2-6-2 實驗操作步驟 106 2-6-3 光譜數據 110 參考文獻 143 附件一、NMR 光譜數據 145 附件二、 X-ray 單晶繞射數據 187 附件三 檢查清單 189 第三部分 亞烷基米氏酸與亞胺葉立德經 (3+2) 環加成/內酯化反應合成高鏡像選擇性之𠳭酮[4,3-b]吡咯啶 190 3-1 前言 190 3-1-1 有機催化概述 190 3-1-2 Chromenopyrrolidines的介紹 191 3-1-3 1,3-偶極體介紹 192 3-1-4米氏酸介紹 199 3-1-4-1 米氏酸作為試劑 200 3-1-4-2 亞烷基米氏酸在合成上的應用 201 3-2 研究動機 202 3-3 結果與討論 203 3-3-1 反應條件優化-催化劑篩選 203 3-3-2 反應條件優化-溶劑篩選 205 3-3-3 反應條件優化-濃度與催化劑使用量 206 3-3-4 反應條件優化-起始物當量篩選 207 3-3-5 取代基效應探討 209 3-3-6 克級合成 211 3-3-7 118a 之鏡像異構物之合成 212 3-3-8 反應機構探討 212 3-4 未來展望 213 3-5 結論 214 3-6 光譜解析 215 3-7 實驗部分 221 3-7-1 分析儀器 221 3-7-2 實驗操作步驟 222 3-7-3 光譜數據 226 參考文獻 253 附件一、NMR 光譜資料 255 附件二、X-ray 單晶繞射數據 281 附件三、高效液相層析 (HPLC) 數據 282 附件四、檢查清單 309 附件五、博士班期間完成的論文發表 310

    1. (a) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett., 1972, 13, 3769-3772. (b) Eymery, F.; Iorga, B.; Savignac, P. Synthesis 2000, 2000, 185-213. (c) Fu, X.; Loh, W.-T.; Zhang, Y.; Chen, T.; Ma, T.; Liu, H.; Wang, J.; Tan, C.-H. Angew. Chem. Int. Ed. 2009, 48, 7387-7390. (d) Wonneberger, P.; König, N.; Kraft, F. B.; Sárosi, M. B.; Hey-Hawkins, E. Angew. Chem. Int. Ed. 2019, 58, 3208-3211.
    2. Horner, L.; Jurgeleit, W.; Klupfel, K. Liebigs Ann. Chem. 1955, 591, 108−117.
    3. Rauhut, M. M.; Currier, H. U.S. Patent 3074999, 1963; Chem. Abstr. 1963, 58, 66109.
    4. Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815−2816.
    5. Baylis, A. B.; Hillman, M. E. D. German Patent 2155113, 1972; Chem. Abstr. 1972, 77, 34174.
    6. (a) Wittig, G.; Geissler, G. Liebigs Ann. Chem, 1953, 580, 44-57. (b) Wittig, G.; Schöllkopf, U. Chem. Ber. 1954, 97, 1318-1330. (c) Wittig, G.; Haag, W. Chem. Ber. 1955, 88, 1654-1656.
    7. Horner, L.; Hoffmann, H.; Wippel, H. G. Chem. Ber. 1958, 91, 61-63.
    8. Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733-1738.
    9. Staudinger, H.; Meyer, J. Helv. Chim. Acta. 1919, 2, 635-646.
    10. (a) Gololobov, Y. G.; Zhmurova, I. N.; Kasukhin, L. F. Tetrahedron 1981, 37, 437-472. (b) Molina, P., Vilaplana, M. J. Synthesis 1994, 1994, 1197-1218.
    11. Appel, R. Angew. Chem. Int. Ed. 1975, 14, 801-811.
    12. (a) Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380-2382. (b) Mitsunobu, O. Synthesis 1981, 1981, 1-28.
    13. Kao, T.-T.; Syu, S.-E.; Jhang, Y.-W.; Lin, W. Org. Lett. 2010, 12, 3066–3069.
    14. (a) Wang, D.-W.; Syu, S.; Hung, Y.-T.; Chen, P.; Lee, C. J.; Chen, K.-W.; Chen, Y.-J.; Lin, W. Org. Biomol. Chem. 2011, 9, 363-366. (b) Jang, Y.-J.; Syu, S.; Chen, Y.-J.; Yang, M.-C.; Lin, W. Org. Biomol. Chem. 2012, 10, 843-847. (c) Tsai, Y.-L.; Das, U.; Syu, S.; Lee, C.-J.; Lin, W. Eur. J. Org. Chem. 2013, 2013, 4634-4641.
    15. Tsai, Y.-L.; Fan, Y.-S.; Lee, C.-J.; Huang, C.-H.; Das, U.; Lin, W. Chem. Commun. 2013, 49, 10266-10268.
    16. Lee, Y.-T.; Jang, Y.-J.; Syu, S.-e.; Chou, S.-C.; Lee, C.-J.; Lin, W. Chem. Commun. 2012, 48, 8135-8137.
    17. (a) Yang, S.-M.; Wang, C.-Y.; Lin, C.-K.; Karanam, P.; Reddy, G. M.; Tsai, Y.-L.; Lin, W. Angew. Chem. Int. Ed. 2018, 57, 1668-1672. (b) Chen, Y.-R.; Reddy, G. M.; Hong, S.-H.; Wang, Y.-Z.; Yu, J.-K.; Lin, W. Angew. Chem. Int. Ed. 2017, 56, 5106-5110.
    18. Syu, S.-e.; Lee, Y.-T.; Jang, Y.-J.; Lin, W. Org. Lett. 2011, 13, 2970–2973.
    19. Jansen, R.; Gerth, K.; Steinmetz, H.; Reinecke, S.; Kessler, W.; Kirschning, A.; Müller, R. Chem. Eur. J. 2011, 17, 7739-7744.
    20. Takao, K.-i.; Sasaki, T.; Kozaki, T.; Yanagisawa, Y.; Tadano, K.-i.; Kawashima, A.; Shinonaga, H. Org. Lett. 2001, 3, 4291–4294.
    21. Singh, G.; Pandey, R.; Pankhade, Y. A.; Fatma, S.; Anand, R. V. Chem. Rec. 2021, 21, 4150-4173.
    22. Gao, S.; Xu, X.; Yuan, Z.; Zhou, H.; Yao, H.; Lin, A. Eur. J. Org. Chem. 2016, 2016, 3006-3012. (b) Hao, Y.-J.; Hu, X.-S.; Yu, J.-S.; Zhou, F.; Zhou, Y.; Zhou, J. Tetrahedron 2018, 74, 7395-7398. (c) He, F.-S.; Jin, J.-H.; Yang, Z.-T.; Yu, X.; Fossey, J. S.; Deng, W.-P. ACS Catal. 2016, 6, 652-656.
    23. Chu, W.-D.; Zhang, L.-F.; Bao, X.; Zhao, X.-H.; Zeng, C.; Du, J.-Y.; Zhang, G.-B.; Wang, F.-X.; Ma, X.-Y.; Fan, C.-A. Angew. Chem. Int. Ed. 2013, 52, 9229-9233. (b) Ge, L.; Lu, X.; Cheng, C.; Chen, J.; Cao, W.; Wu, X.; Zhao, G. J. Org. Chem. 2016, 81, 9315–9325.
    24. Deng, Y.-H.; Zhang, X.-Z.; Yu, K.-Y.; Yan, X.; Du, J.-Y.; Huang, H.; Fan, C.-A. Chem. Commun. 2016, 52, 4183-4186. (b) Zhao, K.; Zhi, Y.; Wang, A.; Enders, D. ACS Catal. 2016, 6, 657–660.
    25. Reddy, V. R.; Maripally, N.; Mutyala, R.; Nanubolu, J. B.;Chandra, R. Tetrahedron Lett. 2018, 59, 2631-2635.
    26. Lou, Y.; Cao, P.; Jia, T.; Zhang, Y.; Wang, M.; Liao, J. Angew. Chem. Int. Ed. 2015, 54, 12134-12138. (b) Molleti, N.; Kang, J. Y. Org. Lett. 2017, 19, 958–961. (c) López, A.; Parra, A.; Jarava-Barrera, C.; Tortosa, M. Chem. Commun. 2015, 51, 17684-17687. (d) Dong, N.; Zhang, Z.-P.; Xue, X.-S.; Li, X.; Cheng, J.-P. Angew. Chem. Int. Ed. 2016, 55, 1460-1464.
    27. Zhao, K.; Zhi, Y.; Shu, T.; Valkonen, A.; Rissanen, K.; Enders, D. Angew. Chem. Int. Ed. 2016, 128, 12283-12287.
    28. Zhang, L.; Zhou, X.; Li, P.; Liu, Z.; Liu, Y.; Sun, Y.; Li, W. RSC Adv. 2017, 7, 39216-39220. (b) Cao, Z.; Zhou, G.-X.; Ma, C.; Jiang, K.; Mei, G.-J. Synthesis 2018, 50, 1307-1314. (c) Zhang, L.; Liu, Y.; Liu, K.; Liu, Z.; He, N.; Li, W. Org. Biomol. Chem. 2017, 15, 8743-8747. (d) Mei, G.-J.; Xu, S.-L.; Zheng, W.-Q.; Bian, C.-Y.; Shi, F. J. Org. Chem. 2018, 83, 1414–1421. (e) Jiang, X.-L.; Wu, S.-F.; Wang, J.-R.; Mei, G.-J.; Shi, F. Adv. Synth. Catal. 2018, 360, 4225–4235. (f) Huang, H.-M.; Wu, X.-Y.; Leng, B.-R.; Zhu, Y.-L.; Meng, X.-C.; Hong, Y.; Jiang, B.; Wang, D.-C. Org. Chem. Front. 2020, 7, 414–419. (g) Zhang, Z.-P.; Xie, K.-X.; Yang, C.; Li, M.; Li, X. J. Org. Chem. 2018, 83, 364–373.
    29. Liu, Q.; Li, S.; Chen, X.-Y.; Rissanen, K.; Enders, D. Org. Lett. 2018, 20, 3622-3626. (b) Li, W.; Yuan, H.; Liu, Z.; Zhang, Z.; Cheng, Y.; Li, P. Adv. Synth. Catal. 2018, 360, 2460-2464. (c) Zhou, J.; Liang, G.; Hu, X.; Zhou, L.; Zhou, H. Tetrahedron 2018, 74, 1492-1496.
    30. Liu, L.; Yuan, Z.; Pan, R.; Zeng, Y.; Lin, A.; Yao, H.; Huang, Y. Org. Chem. Front. 2018, 5, 623–628.
    31. Chen, X.-M.; Xie, K.-X.; Yue, D.-F.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C. Tetrahedron 2018, 74, 600–605.
    32. Zhi, Y.; Zhao, K.; von Essen, C.; Rissanen, K.; Enders, D. Org. Chem. Front. 2018, 5, 1348–1351.
    33. Singh, G.; Goswami, P.; Sharma, S.; Anand, R. V. J. Org. Chem. 2018, 83, 10546–10554.
    34. Lee, C.-J.; Chang, T.-H.; Yu, J.-K.; Reddy, G. M.; Hsiao, M.-Y.; Lin, W. Org. Lett. 2016, 18, 3758–3761.
    35. Chen, K.-W.; Syu, S.-e.; Jang, Y.-J.; Lin, W. Org. Biomol. Chem. 2011, 9, 2098-2106.

    1. Rode, C. V.; Gupte, S. P.; Chaudhari, R. V.; Pirozhkov, C. D.; Lapidus, A. L. J. Mol. Catal. 1994, 91, 195-206.
    2. Yoshihisa, W.; Yasushi, T.; Ryo, T. Bull. Chem. Soc. Jpn. 1984, 57, 3011-3012.
    3. Hardy, W. B.; Bennett, R. P. Tetrahedron Lett. 1967, 8, 961-962.
    4. Oh, J. S.; Lee, S. M.; Yeo, J. K.; Lee, C. W.; Lee, J. S. Ind. Eng. Chem. Res. 1991, 30, 1456-1461.
    5. Ono, N.; Miyake, H.; Tamura, R.; Kaji, A. Tetrahedron Lett. 1981, 22, 1705-1708.
    6. Osby, J. O.; Ganem, B. Tetrahedron Lett. 1985, 26, 6413-6416.
    7. Ballini, R.; Bosica, G. Tetrahedron 1995, 51, 4213-4222.
    8. Ballini, R.; Petrini, M. Adv. Synth. Catal. 2015, 357, 2371-2402.
    9. Dong, L.; Chen, F.-E. RSC Adv. 2020, 10, 2313-2326.
    10. Alvarez-Casao, Y.; Marques-Lopez, E.; Herrera, R. P. Symmetry 2011, 3, 220-245. (b) Milner, S. E.; Moody, T. S.; Maguire, A. R. Eur. J. Org. Chem. 2012, 2012, 3059-3067.
    11. Berner, Otto M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 2002, 1877-1894. (b) Roca-Lopez, D.; Sadaba, D.; Delso, I.; Herrera, R. P.; Tejero, T.; Merino, P. Tetrahedron: Asymmetry 2010, 21, 2561-2601. (c) Halimehjani, A. Z.; Karimi, N.; Saidi, M. R. Synth. Commun. 2013, 43, 744-748.
    12. Noble, A.; Anderson, J. C. Chem. Rev. 2013, 113, 2887-2939.
    13. Satham, L.; Sankara, C. S.; Namboothiri, I. N. N. Eur. J. Org. Chem. 2020, 2020, 6903-6908.
    14. Ganesh, M.; Namboothiri, I. N. N. Tetrahedron 2007, 63, 11973-11983. (b) Greger, J. G.; Yoon-Miller, S. J. P.; Bechtold, N. R.; Flewelling, S. A.; MacDonald, J. P.; Downey, C. R.; Cohen, E. A.; Pelkey, E. T. J. Org. Chem. 2011, 76, 8203-8214.
    15. Halimehjani, A. Z.; Namboothiri, I. N. N.; Hooshmand, S. E. RSC Adv. 2014, 4, 48022-48084.
    16. Awasthi, C.; Yadav, L. D. S. Synlett 2010, 2010, 1783-1788.
    17. Kuroda, Y.; Imaizumi, K.; Yamada, K.-i.; Yamaoka, Y.; Takasu, K. Tetrahedron Lett. 2013, 54, 4073-4075.
    18. Huang, C.-Y.; Kuo, C.-W.; Kavala, V.; Yao, C.-F. Eur. J. Org. Chem. 2016, 2016, 2720-2734.
    19. Ballini, R.; Palmieri, A. Adv. Synth. Catal. 2019, 361, 5070-5097.
    20. Ballini, R.; Fiorini, D.; Palmieri, A. Tetrahedron Lett. 2005, 46, 1245-1246.
    21. Nair, D. K.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2012, 14, 4580-4583.
    22. Sakiyama, N.; Noguchi, K.; Tanaka, K. Angew. Chem. Int. Ed. 2012, 51, 5976-5980.
    23. Ohno, S.; Qiu, J.; Miyazaki, R.; Aoyama, H.; Murai, K.; Hasegawa, J.-y.; Arisawa, M. Org. Lett. 2019, 21, 8400–8403.
    24. Iqbal, N.; Iqbal, N.; Maiti, D.; Cho, E. J. Angew. Chem. Int. Ed. 2019, 131, 15955-15959.
    25. Ali, M. U.; Fitzpatrick-Lewis, D.; Kenny, M.; Raina, P.; Atkins, D. L.; Soar, J.; Nolan, J.; Ristagno, G.; Sherifali, D. Resuscitation 2018, 132, 63-72.
    26. Liou, Y.-C.; Karanam, P.; Jang, Y.-J.; Lin, W. Org. Lett. 2019, 21, 8008–8012 (b) Yang, S.-M.; Wang, C.-Y.; Lin, C.-K.; Karanam, P.; Reddy, G. M.; Tsai, Y.-L.; Lin, W. Angew. Chem. Int. Ed. 2018, 57, 1668-1672. (c) Fan, Y.-S.; Das, U.; Hsiao, M.-Y.; Liu, M.-H.; Lin, W. J. Org. Chem. 2014, 79, 11567–11582. (d) Lee, Y.-T.; Jang, Y.-J.; Syu, S.-e.; Chou, S.-C.; Lee, C.-J.; Lin. W. Chem. Commun. 2012, 48, 8135-8137.
    27. Kolodiazhnyi, O. I.; Kolodiazhna, O. O. Syn. Commun. 2012, 42, 1637-1649.
    28. Li, S.-N.; Xu, L.-T.; Chen, Y.; Li, J.-L.; He, L. Lett. Org. Chem. 2011, 8, 416-422.
    29. Freeman, A. W.; Urvoy, M.; Criswell, M. E. J. Org. Chem. 2005, 70, 5014–5019.
    30. Creencia, E. C.; Kosaka, M.; Muramatsu, T.; Kobayashi, M.; Iizuka, T.; Horaguchi, T. J. Heterocyclic Chem., 2009, 46, 1309-1317. (b) Balaji, G.; Shim, W. L.; Parameswaran, M.; Valiyaveettil, S. Org. Lett. 2009, 11, 4450–4453.
    31. Carter, M. E.; Nash Jr., J. L.; Drueke Jr., J. W.; Schwietert, J. W.; Butler, G. B. J. Polym. Sci. Polym. Chem. Ed. 1978, 16, 937-959.
    32. Campbell, T. W.; Monagle, J. J. J. Am. Chem. Soc. 1962, 84, 1493.
    33. Marsden, S. P.; McGonagle, A. E.; McKeever-Abbas, B. Org. Lett. 2008, 10, 2589–2591.
    34. O'Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.; Przeworski, K. C.; Chass, G. A. Angew. Chem. Int. Ed. 2009, 48, 6836-6839.
    35. Lee, C.-J.; Chang, T.-H.; Yu, J.-K.; Reddy, G. M.; Hsiao, M.-Y.; Lin, W. Org. Lett. 2016, 18, 3758-3761.
    36. Gao, Y.; Yang, S.; Huo, Y.; Hu, X.-Q. Adv. Synth. Catal. 2020, 362, 3971-3986.
    37. Kodukulla, R. P. K.; Trivedi, G. K.; Vora, J. D.; Mathur, H. H. Syn. Comm. 1994, 24, 819-832.

    1. Vashistha, V. K.; Sethi, S.; Tyagi, I.; Das, D. K. Asian Bio. 2022, 16, 55-69. (b) Boussouar, I.; Chen, Q.; Chen, X.; Zhang, Y.; Zhang, F.; Tian, D.; White, H. S.; Li, H. Anal. Chem. 2017, 89, 1110–1116. (c) Saha, D.; Kharbanda, A.; Yan, W.; Lakkaniga, N. R.; Frett, B.; Li, H.-Y. J. Med. Chem. 2020, 63, 441–469.
    2. Hussain, K.; Patel, P.; Roberts, N. Clin Exp Dermatol, 2022, 47: 667-674. (b) Gao, S.; Wang, S.; Fan, R.; Hu, J. Bio. & Pharm. 2020, 127, 110114-110119.
    3. Yutthalekha, T.; Wattanakit, C.; Lapeyre, V.; Nokbin, S.; Warakulwit, C.; Limtrakul, J.; Kuhn, A. Nat. Commun. 2016, 7, 12678-12685.
    4. Żądło-Dobrowolska, A.; Koszelewski, D.; Paprocki, D.; Madej, A.; Wilk, M.; Ostaszewski, R. ChemCatChem 2017, 9, 3047-3057.
    5. Dondoni, A.; Massi, A. Angew. Chem. Int. Ed. 2008, 47, 4638-4660.
    6. Chekan, J. R.; McKinnie, S. M. K.; Moore, M. L.; Poplawski, S. G.; Michael, T. P.; Moore, B. S. Angew. Chem. Int. Ed. 2019, 58, 8454-8457. (b) Traber, M. G., Vitamin E. Adv. Nut. 2021, 12, 1047-1048.
    7. Haight, A. R.; Bailey, A. E.; Baker, W. S.; Cain, M. H.; Copp, R. R.; DeMattei, J. A.; Ford, K. L.; Henry, R. F.; Hsu, M. C.; Keyes, R. F.; King, S. A.; McLaughlin, M. A.; Melcher, L. M.; Nadler, W. R.; Oliver, P. A.; Parekh, S. I.; Patel, H. H.; Seif, L. S.; Staeger, M. A.; Wayne, G. S.; Wittenberger, S. J.; Zhang, W. Org. Proc. Res. Dev. 2004, 8, 897–902.
    8. Dubuffet, T.; Newman-Tancredi, A.; Cussac, D.; Audinot, V.; Loutz, A.; Millan, M. J.; Lavielle, G. Bio. Med. Chem. Lett. 1999, 9, 2059-2064.
    9. Cao, J.; Liu, J.-Y.; Zhang, Y.-M.; Wang, Z.-Y.; Xu, P.-F. Org. Chem. Front. 2019, 6, 674-678.
    10. Painter, T. O.; Kaszas, K.; Gross, J.; Douglas, J. T.; Day, V. W.; Iadarola, M. J.; Santini, C. Bio. Med. Chem. Lett. 2014, 24, 963-968.
    11. Esteban, F.; Cieślik, W.; Arpa, E. M.; Guerrero-Corella, A.; Díaz-Tendero, S.; Perles, J.; Fernández-Salas, J. A.; Fraile, A.; Alemán, J. ACS Catal. 2018, 8, 3, 1884–1890. (b) Cao, J.; Fang, R.; Liu, J.-Y.; Lu, H.; Luo, Y.-C.; Xu, P.-F. Chem. Eur. J. 2018, 24, 18863-18867.
    12. Breugst, M.; Reissig, H.-U. Angew. Chem. Int. Ed. 2020, 59, 12293-12307.
    13. Yang, Z.-X.; Wei, Y.-Q.; Yang, C.; Li, Y.-F.; Ding, C.-H.; Xu, B. Asian J. Org. Chem. 2022, 11, e202100683. (b) Acharya, A.; Montes, K.; Jeffrey, C. S. Org. Lett. 2016, 18, 6082–6085.
    14. Obydennov, D. L.; Steben’kov, V. D.; Obydennov, K. L.; Usachev, S. A.; Moshkin, V. S.; Sosnovskikh, V. Y. Synthesis 2021, 53, 2621-2631.
    15. Tu, L.; Li, Z.; Feng, T.; Yu, S.; Huang, R.; Li, J.; Wang, W.; Zheng, Y.; Liu, J. J. Org. Chem. 2019, 84, 11161–11169.
    16. Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. J. Org. Chem. 2018, 83, 10959–10973.
    17. Przydacz, A.; Bojanowski, J.; Albrecht, A.; Albrecht, Ł. Org. Biomol. Chem. 2021, 19, 3075-3086.
    18. Chang, G.-H.; Wang, C.-Y.; Madhusudhan Reddy, G.; Tsai, Y.-L.; Lin, W. J. Org. Chem. 2016, 810, 10071–10080.
    19. Yang, S.-M.; Reddy, G. M.; Wang, T.-P.; Yeh, Y.-S.; Wang, M.; Lin, W. Chem. Commun. 2017, 53, 7649-7652.
    20. Yu, J.-K.; Chien, H.-W.; Lin, Y.-J.; Karanam, P.; Chen, Y.-H.; Lin, W. Chem. Commun. 2018, 54, 9921-9924.
    21. Li, T.; Wang, J.; Xu, J.; Jin, J.; Chi, Y. R.; Jin, Z. Org. Lett. 2020, 22, 326–330.
    22. Tian, L.; Xu, G.-Q.; Li, Y.-H.; Liang, Y.-M.; Xu, P.-F. Chem. Commun. 2014, 50, 2428-2430.
    23. Kowalczyk, D.; Albrecht, Ł. J. Org. Chem. 2016, 81, 6800–6807.
    24. Meldrum, A. N. J. Chem. Soc. Trans. 1908, 93, 598-601.
    25. Davidson, D.; Bernhard, S. A., J. Am. Chem. Soc, 1948, 70, 3426–3428.
    26. Pfluger, C. E.; Boyle, P. D. J. Chem. Soc., Perkin Trans. 2, 1985, 1547-1549.
    27. Brosge, F.; Singh, P.; Almqvist, F.; Bolm, C. Org. Biomol. Chem. 2021, 19, 5014-5027.
    28. List, B.; Castello, C. Synlett 2001, 2001, 1687-1689.
    29. Shi, J.; Liu, Y.; Wang, M.; Lin, L.; Liu, X.; Feng, X. Tetrahedron 2011, 67, 1781-1787.
    30. Berini, C.; Sebban, M.; Oulyadi, H.; Sanselme, M.; Levacher, V.; Brière, J.-F. Org. Lett. 2015, 17, 5408–5411.
    31. Belot, V.; Farran, D.; Jean, M.; Albalat, M.; Vanthuyne, N.; Roussel, C. J. Org. Chem. 2017, 82, 10188-10200.
    32. Dumas, A. M.; Seed, A.; Zorzitto, A. K.; Fillion, E. Tetrahedron Lett. 2007, 48, 7072-7074.

    無法下載圖示 本全文未授權公開
    QR CODE