簡易檢索 / 詳目顯示

研究生: 周奕呈
Chou, Yi-Cheng
論文名稱: 跑步生物力學轉折點速度與無氧閾值速度之關聯
The relationship between running biomechanical parameters with anaerobic threshold speed
指導教授: 相子元
Shiang, Tzyy-Yuang
口試委員: 相子元
Shiang, Tzyy-Yuang
王鶴森
Wang, Ho-Seng
林淵翔
Lin, Yuan-Hsiang
口試日期: 2022/07/14
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 54
中文關鍵詞: 穿戴式裝置長跑運動運動表
英文關鍵詞: Wearable Device, Long-Distance Running, Athletic Performance
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201117
論文種類: 學術論文
相關次數: 點閱:44下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前言:無氧閾值速度 (velocity at anaerobic threshold, VAT) 對長跑運動而言是一項重要的
    參數,它與耐力型競賽表現有著高度相關。然而,少有研究以生物力學的角度,針對跑
    者達到無氧閾值時的動作機轉進行探討。目的:探討生物力學參數隨速度的變化轉折點
    與無氧閾值速度的關聯。方法:招募 15 名男性業餘跑者,進行跑步機速度漸增測試,
    並以氣體分析儀量測受試者的無氧閾值速度。同時在跑者身體四個位置(雙腿脛骨、薦椎
    以及胸椎)配戴慣性感測器,分別量測軀幹旋轉角速度、質心垂直加速度、騰空時間、觸
    地時間、步頻以及脛骨加速度峰值等運動學參數。透過 D-max 數學模型計算各項參數隨
    速度變化下的轉折點,進而得到該運動學參數的轉折點速度(Velocity at Biomechanical
    Deflection Point, VDBP)。接著以皮爾森積差相關觀察各 VDBP 與 VAT)的相關性,最後以逐
    步迴歸分析法得出迴歸方程式以估計無氧閾值速度。結果:除質心垂直加速度峰值轉折
    點速度之外,其餘參數皆與 VAT呈中度相關(r = .54~.66),而逐步迴歸分析所得出的推估
    方程式為: VAT = -11.282+0.75*軀幹旋轉旋轉角速度峰值轉折點速度+1.113*脛骨加速度
    峰值轉折點速度 (R2 = 0.67, r = .85, bias ±1.95 SD = ±2.22 km/hr,結論:跑者的 VBDP 可反
    映 VAT 的優劣,且透過多項參數進行逐步迴歸分析,對比於單一 VBDP ,能更好地解釋與
    推估 VAT,提升未來應用於提升跑者表現的可能性。

    Background: Velocity at anaerobic threshold VAT is an important parameter for long-distance
    running, which is highly correlated with endurance competition performance. However, few
    studies have explored the running mechanism of runners when they reach the anaerobic
    threshold from the perspective of biomechanics. Purpose: To explore the relationship
    between biomechanical deflection point and anaerobic threshold velocity. Method: Fifteen
    male amateur runners were recruited to perform an incremental speed test. VAT were measured
    by gas analysis system. 4 Inertial Measurement Units IMUs were placed on the runner's
    body(both shank、sacrum and thoracic spine), in order to measure Angular Velocity of Thorax
    Rotation AVTR, Trunk Vertical Acceleration TVA, Flight Time FT, Contact Time CT, Cadance
    CAD, and Peak Tibial Acceleration PTA respectively. DMAX method were used to calculate the
    velocity at biomechanical deflection point VDBP. The correlation between VAT and VBDP were
    analysed through Pearson correlation coefficient(r). Stepwise regression analysis was used to
    build the regression equation in order to predict VAT. Result: Except for VACOM- VBDP , all other
    VBDP were moderately correlated with VAT (r = .55~.66), and the estimation equation obtained
    by stepwise regression analysis was: VAT=-11.282+0.75*VAVTR-DP + 1.113*VPTA-DP , correlation:
    r=.85, error: ±2.22km/hr. Conclusion: VBDP can reflect VAT, and through the stepwise
    regression analysis, it could more accurately estimate VAT compare to a single VBDP, which also
    iii
    enhance future possibility of application, in order to improve the performence of distance
    runners .

    目 次 摘要 i Abstract ii 目 次 iv 表 次 vi 圖 次 vii 第壹章 緒論 1 第一節 研究背景 1 第二節 研究問題 2 第三節 研究目的 2 第四節 研究假設 3 第五節 研究之重要性 3 第貳章 文獻探討 4 第一節 無氧閾值的定義與量測方式 4 第二節 無氧閾值速度對長跑的重要性 10 第三節 生物力學指標與無氧閾值的關聯 12 第四節 文獻探討總結 17 第參章 研究方法 18 第一節 實驗參與者 18 第三節 實驗步驟與設備 19 第四節 資料處理 24 第五節 統計分析 32 第肆章 研究結果 33 第一節 各項運動學參數之轉折點變化 33 第二節 生物力學轉折點速度與無氧閾值速度之相關性 35 第三節 各運動學轉折點速度與無氧閾值速度之差異與誤差 37 第四節 運動學轉折點速度之逐步迴歸分析 40 第伍章 討論 42 第一節 跑者的生物力學參數隨速度提升會出現轉折點 42 第二節 生物力學轉折點速度與無氧閾值速度呈中度相關 42 第三節 生物力學轉折點速度與無氧閾值速度之落差 43 第四節 生物力學轉折點速度可預測無氧閾值速度 44 第五節 運動學參數轉折點對跑者的獨立意義 45 第陸章 結論 48 參考文獻 49   表 次 表1 不同無氧閾值量測指標的差異 8 表 2 無氧閾值量測方式之變化趨勢 9 表 3 不同生物力學參數隨速度遞增所呈現的變化趨勢 13 表 4 受試者身體測量與運動能力數值 18 表 5 運動學參數與其轉折點速度之中英文名稱、縮寫對照表 31 表 6 VAT與各項VBDP之相關性 35 表 7 VAT與各項VBDP 之描述統計 37 表 8 VAT 與六項VBDP之間的事後成對比較差異 38 圖 次 圖1 換氣閾值 5 圖2 乳酸閾值 5 圖 3 無氧閾值量測方式之變化趨勢 10 圖 4 實驗發想流程 17 圖 5 實驗流程 19 圖 6 h/p/cosmos Quasar Germany跑步機 20 圖 7 Polar 心率帶(Polar H10 -Polar Electro Oy, Kempele, Finland) 21 圖 8 氣體分析儀 (Cortex METALYZER® 3B Germany) 21 圖 9慣性感測器(Blue Trident -Vicon Motion Systems Ltd, Oxford, UK) 22 圖 10 IMU 配戴位置示意圖 22 圖 11 實驗情境圖 23 圖 12 V-slope method 24 圖 13 觸地時間、騰空時間之訊號分析 25 圖 14 脛骨峰值加速度之訊號分析 26 圖 15 質心垂直加速度峰值之訊號分析 27 圖 16 軀幹旋轉角速度峰值之訊號分析 28 圖 17 跑者步頻之訊號分析 29 圖 18 以騰空時間計算的生物力學轉折點速度 30 圖 19 各項力學參數之數值隨速度之變化 34 圖 20 各項力學參數轉折點速度與無氧閾值速度的散佈圖 36 圖 21 VFT-DP 與VAT 之誤差 39 圖 22 運動學轉折點速度對無氧閾值速度之逐步迴歸方程式 40 圖 23 迴歸方程式-無氧閾值關係圖 40 圖 24 迴歸公式的推估值與實際無氧閾值速度之誤差 41 圖 25 VPTA-DP、VTVA-DP以及VCAD-DP 與VAT 的偏差趨勢圖 44

    Afroundeh, R., Hofmann, P., Esmaeilzadeh, S., Narimani, M., & Pesola, A. (2021). Agreement between heart rate deflection point and maximal lactate steady state in young adults with different body masses. Physiology International,108 (1) , 137-150.

    Aunola, S., & Rusko, H. (1984). Reproducibility of aerobic and anaerobic thresholds in 20–50 year old men. European Journal of Applied Physiology and Occupational Physiology, 53(3), 260-266.

    Beckers, P. J., Possemiers, N. M., Van Craenenbroeck, E. M., Van Berendoncks, A. M., Wuyts, K., Vrints, C. J., & Conraads, V. M. (2012). Comparison of three methods to identify the anaerobic threshold during maximal exercise testing in patients with chronic heart failure. American Journal of Physical Medicine&Rehabilitation, 91(2), 148-155.

    Beck, O. N. A., Eric N, Grabowski, Alena M. (2018). Step time asymmetry increases metabolic energy expenditure during running. European Journal of Applied Physiology, 118(10), 2147-2154.

    Billat, V. L., Demarle, A., Slawinski, J., Paiva, M., & Koralsztein, J. P. (2001). Physical and training characteristics of top-class marathon runners. Medicine & Science in Sports & Exercise, 33, 2089-2097.

    Bunc, V., Hofmann, P., Leitner, H., & Gaisl, G. (1995). Verification of the heart rate threshold. European Journal of Applied Physiology and Occupational Physiology, 70(3), 263-269.

    Cheng, B., Kuipers, H., Snyder, A., Keizer, H., Jeukendrup, A., & Hesselink, M. (1992). A new approach for the determination of ventilatory and lactate thresholds. International Journal of Sports Medicine, 13(07), 518-522.

    Conconi, F., Ferrari, M., Ziglio, P. G., Droghetti, P., & Codeca, L. (1982). Determination of the anaerobic threshold by a noninvasive field test in runners. Journal of Applied Physiology, 52(4), 869-873.

    Da Rosa, R. G., Oliveira, H. B., Gomeñuka, N. A., Masiero, M. P. B., Da Silva, E. S., Zanardi, A. P. J., .Peyré-Tartaruga, L. A. (2019). Landing-takeoff asymmetries applied to running mechanics: a new perspective for performance. Frontiers in Physiology, 10, 415.

    Da Silva, D., Peserico, C., & Machado, F. (2014). Relationship between heart rate deflection point determined by Dmax method and 10-km running performance in endurance recreationally-trained female runners. The Journal of Sports Medicine Physical Fitness, 55(10) , 1064-1071.

    de Aguiar, R. A., Turnes, T., de Oliveira Cruz, R. S., & Caputo, F. (2012). VO2 responses to running speeds above intermittent critical speed. International Journal of Sports Medicine, 33(11), 892-897

    de Lucas, R. D. D., Naiandra Junior, Rubens B de Souza, Kristopher M Guglielmo, Luiz Guilherme A. (2012). Is the critical running speed related to the intermittent maximal lactate steady state? Journal of Sports Science Medicine, 11(1) , 89.

    Faude, O. K., Wilfried Meyer, Tim. (2009). Lactate threshold concepts. Sports Medicine, 39 (6) , 469-490.

    Fell, J. W. (2008). The modified D-max is a valid lactate threshold measurement in veteran cyclists. Journal of Science and Medicine in Sport, 11(5) , 460-463.

    Fida, B., Bibbo, D., Bernabucci, I., Proto, A., Conforto, S., & Schmid, M. (2015). Real time event-based segmentation to classify locomotion activities through a single inertial sensor. Paper presented at the Proceedings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare.

    Fisher, D., Louw, Q., Cockcroft, J., & Tawa, N. (2018). Three-dimensional kinematics of the thorax during over-ground running. Journal of Bodywork and Movement Therapies, 22(2) , 300-307.

    Folland, J. P. A., Sam J Black, Matthew I Handsaker, Joseph C Forrester, Stephanie E. (2017). Running technique is an important component of running economy and performance. Medicine Science in Sports and Exercise, 49(7) , 1412.

    Fontecchio, T., & Savilonis, B. (2012). Gait analysis and spinal rotation. Paper presented at the 2012 38th Annual Northeast Bioengineering Conference (NEBEC) .

    Foster, C., & Lucia, A. (2007). Running economy. Sports Medicine, 37(4), 316-319.

    Gouwanda, D., & Senanayake, S. A. (2011). Identifying gait asymmetry using gyroscopes—A cross-correlation and Normalized Symmetry Index approach. Journal of Biomechanics, 44(5), 972-978.

    Ghosh, A. K. (2004). Anaerobic threshold: its concept and role in endurance sport. The Malaysian Journal of Medical Sciences, 11(1) , 24.

    Hierholzer, K. M. (2020). The Effects of Increasing Running Speed on vGRF and Asymmetry. East Tennessee State University,

    Hill, D., Ferguson, CS. (1999). A physiological description of critical velocity. European Journal of Applied Physiology Occupational Physiology, 79(3) , 290-293.

    Hordyk, K. C., & Hsieh, C. (2020). The Effect Of Trunk Rotation On Lower Limb Kinematics During Running–Preliminary Study. ISBS Proceedings Archive, 38(1), 212.

    Hollmann, W. (2001). 42 years ago—development of the concepts of ventilatory and lactate threshold. Sports Medicine, 31(5) , 315-320.

    Jones, A. M., Kirby, B. S., Clark, I. E., Rice, H. M., Fulkerson, E., Wylie, L. J., Wilkins, B. W. (2021). Physiological demands of running at 2-hour marathon race pace. Journal of Applied Physiology, 130(2) , 369-379.

    Kaneko, M., Matsumoto, M., Ito, A., & Fuchimoto, T. (1987). Optimum step frequency in constant speed running. Biomechanics XB, 6, 803-807.

    Kyröläinen , H., Komi, P. V., & Belli, A. (1999). Changes in muscle activity patterns and kinetics with increasing running speed. The Journal of Strength & Conditioning Research, 13(4), 400-406.

    Levett, D. Z. H., Jack, S., Swart, M., Carlisle, J., Wilson, J., Snowden, C., ... & Grocott, M. P. W. (2018). Perioperative cardiopulmonary exercise testing (CPET): consensus clinical guidelines on indications, organization, conduct, and physiological interpretation. British Journal of Anaesthesia, 120(3), 484-500.

    Li, S. N., Peeling, P., Hansen, C., Van Alsenoy, K., Ryu, J. H., & Girard, O. (2021). Detecting mechanical breakpoints during treadmill-based graded exercise test: Relationships to ventilatory thresholds. European Journal of Sport Science, 1-10

    Maffulli, N., Capasso, G., & Lancia, A. (1991). Anaerobic threshold and performance in middle and long distance running. The Journal Of Sports Medicine And Physical Fitness, 31, 332-338.

    McLellan, T. M., & Cheung, K. S. (1992). A comparative evaluation of the individual anaerobic threshold and the critical power. Medicine and Science in Sports and Exercise, 24(5), 543-550.

    Nummela, A., Keränen, T., & Mikkelsson, L. O. (2007). Factors related to top running speed and economy. International Journal of Sports Medicine, 28(08), 655-661.

    Okano, A. H., Altimari, L. R., Simões, H. G., Moraes, A. C. D., Nakamura, F. Y., Cyrino, E. S., & Burini, R. C. (2006). Comparison between anaerobic threshold determined by ventilatory variables and blood lactate response in cyclists. Revista Brasileira de Medicina do Esporte, 12, 39-44.

    Peserico, C. S., da Silva, D. F., & Machado, F. A. (2014). Heart rate deflection point determined by Dmax method is reliable in recreationally-trained runners. Arch Med Deporte, 33 (3) (168-174) .

    Pennington, C., & Kinesiology, M. S. (2015). The exercise effect on the anaerobic threshold in response to graded exercise. International Journal of Health Sciences, 3(1), 225-234.

    Pohl, M. B., Mullineaux, D. R., Milner, C. E., Hamill, J., & Davis, I. S. (2008). Biomechanical predictors of retrospective tibial stress fractures in runners. Journal of Biomechanics, 41 (6) , 1160-1165.

    Poole, D. C. R., Harry B Brooks, George A Gladden, L Bruce. (2021). The anaerobic threshold: 50+ years of controversy. The Journal of Physiology, 599 (3) , 737-767.

    Ramos-Campo, D. J., Rubio-Arias, J. A., Ávila-Gandía, V., Marín-Pagán, C., Luque, A., & Alcaraz, P. E. (2017). Heart rate variability to assess ventilatory thresholds in professional basketball players. Journal of sport and health science, 6(4), 468-473.

    Santos-Concejero, J., Granados, C., Irazusta, J., Bidaurrazaga-Letona, I., Zabala-Lili, J., Tam, N., & Gil, S. M. (2013). Differences in ground contact time explain the less efficient running economy in North African runners. Biology of Sport, 30(3), 181.

    Sales, M. M., Campbell, C. S. G., Morais, P. K., Ernesto, C., Soares-Caldeira, L. F., Russo, P., ... & Simões, H. G. (2011). Noninvasive method to estimate anaerobic threshold in individuals with type 2 diabetes. Diabetology & Metabolic Syndrome, 3(1), 1-8.

    Siahkouhian, M. M., A. (2013). Advanced methodological approach in determination of the heart rate deflection point: S. Dmax versus L. Dmax methods. Sports Med Phys Fitness, 53 (1) , 27-33.

    Smyth, B., Muniz-Pumares, Daniel. (2020). Calculation of critical speed from raw training data in recreational marathon runners. Science in Sports Exercise, 52 (12) , 2637.

    Tanaka, K., Matsuura, YOSHIYUKI. (1984). Marathon performance, anaerobic threshold, and onset of blood lactate accumulation. Journal of Applied Physiology, 57 (3) , 640-643.

    Tenforde, A. S., Hayano, T., Jamison, S. T., Outerleys, J., & Davis, I. S. (2020). Tibial acceleration measured from wearable sensors is associated with loading rates in injured runners. Pm&r, 12(7) , 679-684.

    Tikkanen, O., Hu, M., Vilavuo, T., Tolvanen, P., Cheng, S., & Finni, T. (2012). Ventilatory threshold during incremental running can be estimated using EMG shorts. Physiological Measurement, 33(4), 603.

    Tokmakidis, S. P., & Leger, L. (1987). External validity of the conconi's heart rate anaerobic threshold as compared to the lactate threshold: Univ.

    Ueda,T.,Hobara,H.,Kobayashi,Y.,Heldoorn,T.Mochimaru,M.,&Mizoguchi,H.(2016). Comparison of 3 methods for computing loading rate during running. International Journal of Sports Medicine, 37(13) , 1087-1090.

    Van den Berghe, P., Six, J., Gerlo, J., Leman, M., & De Clercq, D. (2019). Validity and reliability of peak tibial accelerations as real-time measure of impact loading during over-ground rearfoot running at different speeds. Journal of Biomechanics, 86, 238-242.

    Vanhoy, R. A. (2012). A comparison of two different treadmill protocols in measuring maximal oxygen consumption in highly trained distance runners (Doctoral dissertation, University of North Carolina at Chapel Hill).

    Wasserman, K., & McIlroy, M. B. (1964). Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. The American Journal of Cardiology, 14 (6) , 844-852.

    Weston, S. B., & Gabbett, T. J. (2001). Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise. Journal of Science and Medicine in Sport, 4(3), 357-366.

    下載圖示
    QR CODE