簡易檢索 / 詳目顯示

研究生: 羅泓昇
Luo, Hong-Sheng
論文名稱: 邏輯演繹序列串聯質譜法應用於N-聚醣的結構鑑定
Logically Derived Sequence Tandem Mass Spectrometry for Structural Determination of N-Glycans
指導教授: 倪其焜
Ni, Chi-Kung
陳頌方
Chen, Sung-Fang
口試委員: 倪其焜
Ni, Chi-Kung
陳頌方
Chen, Sung-Fang
林震煌
Lin, Cheng-Huang
口試日期: 2022/07/20
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 222
中文關鍵詞: N-聚醣結構邏輯演繹序列串聯質譜法碰撞誘導解離豆子
英文關鍵詞: N-glycans, structure, logically derived sequence tandem mass spectrometry, collision-induced dissociation, beans, meat
研究方法: 實驗設計法比較研究
DOI URL: http://doi.org/10.6345/NTNU202201234
論文種類: 學術論文
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 1.1 碳水化合物的介紹 1 1.2 N-聚醣 3 1.3 生物合成路徑(biosynthetic pathway )4 1.4 研究背景及動機 5 第二章 實驗方法 7 2.1 實驗藥品、器材與儀器設備 7 2.1.1 實驗藥品 7 2.1.2 實驗儀器 7 2.2 研究流程 8 2.3 實驗步驟 9 2.3.1 從醣蛋白上釋放N-聚醣 9 2.3.2 酸沉澱法 11 2.3.3 乙醇沉澱法 12 2.3.4 固相萃取法(SPE,Solid-Phase Extraction) 12 2.3.5 粒徑篩析層析法(size exclusion chromatography, SEC) 12 2.3.6 二維層析法(Two-dimensional chromatography) 13 2.3.7 親水性液相層析 14 2.3.8 黑豆中Man5GlcNAc2的分離 21 2.3.9 黑豆中Man6GlcNAc2的分離 25 第三章 邏輯演繹序列串聯質譜法 29 第四章 從黑豆中萃取並鑑定高甘露N-聚醣的結構 32 4.1 黑豆中Man5GlcNAc2的異構物一 33 4.1.1 黑豆中Man5GlcNAc2的異構物二 34 4.1.2 黑豆中Man5GlcNAc2的異構物三 35 4.1.3 黑豆中Man5GlcNAc2的異構物四 36 4.1.4 黑豆中Man6GlcNAc2的異構物一 38 4.1.5 黑豆中Man6GlcNAc2的異構物二 40 4.1.6 黑豆中Man6GlcNAc2的異構物三 41 第五章 透過比對數據庫鑑定N-聚醣 43 5.1 各種豆子中高甘露N-聚醣的比較 43 5.2 不同方法處理的紅豆 48 5.3 各種肉類中高甘露N-聚醣的比較 53 5.4 樣品的LC-MS圖譜和高甘露醣數據庫進行比較 57 5.4.1 各種豆類中的Man5GlcNAc2與數據庫進行比較 58 第六章 結論 107 參考文獻 108 附錄A 112

    1. Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H., Essentials of Glycobiology [internet]. 2015.
    2. Domon, B.; Costello, C. E., A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate journal 1988, 5 (4), 397-409.
    3. Shental-Bechor, D.; Levy, Y., Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proceedings of the National Academy of Sciences 2008, 105 (24), 8256-8261.
    4. Bertozzi, C. R.; Kiessling; L, L., Chemical glycobiology. Science 2001, 291 (5512), 2357-2364.
    5. Strasser, R.; Seifert, G.; Doblin, M. S.; Johnson, K. L.; Ruprecht, C.; Pfrengle, F.; Bacic, A.; Estevez, J. M., Cracking the “Sugar Code”: A snapshot of N-and O-glycosylation pathways and functions in plants cells. Frontiers in Plant Science 2021, 12.
    6. Aebi, M.; Bernasconi, R.; Clerc, S.; Molinari, M., N-glycan structures: recognition and processing in the ER. Trends in biochemical sciences 2010, 35 (2), 74-82.
    7. Prien, J. M.; Ashline, D. J.; Lapadula, A. J.; Zhang, H.; Reinhold, V. N., The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. Journal of the American Society for Mass Spectrometry 2008, 20 (4), 539-556.
    8. Live, D. H.; Kumar, R. A.; Beebe, X.; Danishefsky, S. J., Conformational influences of glycosylation of a peptide: a possible model for the effect of glycosylation on the rate of protein folding. Proceedings of the National Academy of Sciences 1996, 93 (23), 12759-12761.
    9. Duus, J. Ø.; Gotfredsen, C. H.; Bock, K., Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chemical reviews 2000, 100 (12), 4589-4614.
    10. Zaia, J., Mass spectrometry of oligosaccharides. Mass spectrometry reviews 2004, 23 (3), 161-227.
    11. Dell, A.; Morris, H. R., Glycoprotein structure determination by mass spectrometry. Science 2001, 291 (5512), 2351-2356.
    12. Stephens, E.; Maslen, S. L.; Green, L. G.; Williams, D. H., Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. Analytical chemistry 2004, 76 (8), 2343-2354.
    13. Viseux, N.; de Hoffmann, E.; Domon, B., Structural assignment of permethylated oligosaccharide subunits using sequential tandem mass spectrometry. Analytical chemistry 1998, 70 (23), 4951-4959.
    14. Li, D.; Her, G., Structural analysis of chromophore‐labeled disaccharides and oligosaccharides by electrospray ionization mass spectrometry and high‐performance liquid chromatography/electrospray ionization mass spectrometry. Journal of mass spectrometry 1998, 33 (7), 644-652.
    15. Hsu, H. C.; Liew, C. Y.; Huang, S.-P.; Tsai, S.-T.; Ni, C.-K., Simple approach for de novo structural identification of mannose trisaccharides. Journal of The American Society for Mass Spectrometry 2017, 29 (3), 470-480.
    16. Hsu, H. C.; Liew, C. Y.; Huang, S.-P.; Tsai, S.-T.; Ni, C.-K., Simple method for de novo structural determination of underivatised glucose oligosaccharides. Scientific reports 2018, 8 (1), 1-12.
    17. Tsai, S. T.; Liew, C. Y.; Hsu, C.; Huang, S. P.; Weng, W. C.; Kuo, Y. H.; Ni, C. K., Automatic full glycan structural determination through logically derived sequence tandem mass spectrometry. ChemBioChem 2019, 20 (18), 2351-2359.
    18. Hsu, H. C.; Huang, S.-P.; Liew, C. Y.; Tsai, S.-T.; Ni, C.-K., De novo structural determination of mannose oligosaccharides by using a logically derived sequence for tandem mass spectrometry. Analytical and bioanalytical chemistry 2019, 411 (15), 3241-3255.
    19. Huang, S.-P.; Hsu, H. C.; Liew, C. Y.; Tsai, S.-T.; Ni, C.-K., Logically derived sequence tandem mass spectrometry for structural determination of Galactose oligosaccharides. Glycoconjugate Journal 2021, 38 (2), 177-189.
    20. Huang, S. P.; Hsu, H. C.; Liew, C. Y.; Tsai, S. T.; Ni, C. K., Logically derived sequence tandem mass spectrometry for structural determination of Galactose oligosaccharides. Glycoconj J 2021, 38 (2), 177-189.
    21. Liew, C. Y.; Yen, C.-C.; Chen, J.-L.; Tsai, S.-T.; Pawar, S.; Wu, C.-Y.; Ni, C.-K., Structural identification of N-glycan isomers using logically derived sequence tandem mass spectrometry. Communications Chemistry 2021, 4 (1).
    22. Ni, C.-K.; Hsu, H. C.; Liew, C. Y.; Huang, S.-P.; Tsai, S.-T., Modern Mass Spectrometry Techniques for Oligosaccharide Structure Determination: Logically Derived Sequence Tandem Mass Spectrometry for Automatic Oligosaccharide Structural Determination. In Comprehensive Glycoscience, 2021; pp 309-339.
    23. Sathe, S. K.; Deshpande, S.; Salunkhe, D.; Rackis, J. J., Dry beans of phaseolus. A review. Part 1. Chemical composition: Proteins. Critical Reviews in Food Science & Nutrition 1984, 20 (1), 1-46.
    24. Wilson, I. B.; Zeleny, R.; Kolarich, D.; Staudacher, E.; Stroop, C. J.; Kamerling, J. P.; Altmann, F., Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core α1, 3‐linked fucose and xylose substitutions. Glycobiology 2001, 11 (4), 261-274.
    25. Shi, Z.; Yin, B.; Li, Y.; Zhou, G.; Li, C.; Xu, X.; Luo, X.; Zhang, X.; Qi, J.; Voglmeir, J.; Liu, L., N-Glycan Profile as a Tool in Qualitative and Quantitative Analysis of Meat Adulteration. J Agric Food Chem 2019, 67 (37), 10543-10551.
    26. Tarentino, A. L.; Gomez, C. M.; Plummer Jr, T. H., Deglycosylation of asparagine-linked glycans by peptide: N-glycosidase F. Biochemistry 1985, 24 (17), 4665-4671.
    27. Wang, C.; Yang, M.; Gao, X.; Li, C.; Zou, Z.; Han, J.; Huang, L.; Wang, Z., The ammonia-catalyzed release of glycoprotein N-glycans. Glycoconjugate Journal 2018, 35 (4), 411-420.
    28. Yang, M.; Wei, M.; Wang, C.; Lu, Y.; Jin, W.; Gao, X.; Li, C.; Wang, L.; Huang, L.; Wang, Z., Separation and preparation of N-glycans based on ammonia-catalyzed release method. Glycoconj J 2020, 37 (2), 165-174.
    29. Hernández-Hernández, A.; Rodríguez-Navarro, A. B.; Gómez-Morales, J.; Jiménez-López, C.; Nys, Y.; García-Ruiz, J. M., Influence of model globular proteins with different isoelectric points on the precipitation of calcium carbonate. Crystal Growth and Design 2008, 8 (5), 1495-1502.
    30. Rothstein, F., Differential precipitation of proteins: science and technology. Protein purification process engineering 2019, 115-208.
    31. Yoshikawa, H.; Hirano, A.; Arakawa, T.; Shiraki, K., Mechanistic insights into protein precipitation by alcohol. International journal of biological macromolecules 2012, 50 (3), 865-871.
    32. Zellner, M.; Winkler, W.; Hayden, H.; Diestinger, M.; Eliasen, M.; Gesslbauer, B.; Miller, I.; Chang, M.; Kungl, A.; Roth, E., Quantitative validation of different protein precipitation methods in proteome analysis of blood platelets. Electrophoresis 2005, 26 (12), 2481-2489.
    33. Simpson, N. J., Solid-phase extraction: principles, techniques, and applications. CRC press: 2000.
    34. Thurman, E. M.; Mills, M. S., Solid-phase extraction: principles and practice. Wiley New York: 1998; Vol. 16.
    35. Sun, T.; Chance, R. R.; Graessley, W. W.; Lohse, D. J., A study of the separation principle in size exclusion chromatography. Macromolecules 2004, 37 (11), 4304-4312.
    36. Wuhrer, M.; de Boer, A. R.; Deelder, A. M., Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass spectrometry reviews 2009, 28 (2), 192-206.
    37. Buszewski, B.; Noga, S., Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Analytical and bioanalytical chemistry 2012, 402 (1), 231-247.
    38. Boersema, P. J.; Mohammed, S.; Heck, A. J., Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Analytical and bioanalytical chemistry 2008, 391 (1), 151-159.
    39. Young, C.; Condina, M. R.; Briggs, M. T.; Moh, E. S.; Kaur, G.; Oehler, M. K.; Hoffmann, P., In-house packed porous graphitic carbon columns for liquid chromatography-mass spectrometry analysis of N-glycans. Frontiers in chemistry 2021, 9, 388.
    40. She, Y.-M.; Tam, R. Y.; Li, X.; Rosu-Myles, M.; Sauvé, S., Resolving isomeric structures of native glycans by nanoflow porous graphitized carbon chromatography–mass spectrometry. Analytical chemistry 2020, 92 (20), 14038-14046.
    41. West, C.; Elfakir, C.; Lafosse, M., Porous graphitic carbon: a versatile stationary phase for liquid chromatography. Journal of chromatography A 2010, 1217 (19), 3201-3216.
    42. Chen, J.-L.; Nguan, H. S.; Hsu, P.-J.; Tsai, S.-T.; Liew, C. Y.; Kuo, J.-L.; Hu, W.-P.; Ni, C.-K., Collision-induced dissociation of sodiated glucose and identification of anomeric configuration. Physical Chemistry Chemical Physics 2017, 19 (23), 15454-15462.
    43. Tsai, S. T.; Chen, J. L.; Ni, C. K., Does low‐energy collision‐induced dissociation of lithiated and sodiated carbohydrates always occur at anomeric carbon of the reducing end? Rapid Communications in Mass Spectrometry 2017, 31 (21), 1835-1844.

    無法下載圖示 電子全文延後公開
    2025/07/20
    QR CODE