簡易檢索 / 詳目顯示

研究生: 郭家宏
Guo, Jia-Hong
論文名稱: 基於超像素分割之衛星雲圖進行預測與估計日射量之系統
A system for predicting and estimating solar irradiance based on satellite cloud image with superpixel segmentation
指導教授: 呂藝光
Leu, Yih-Guang
口試委員: 鄭錦聰
Jeng, Jin-Tsong
吳政郎
Wu, Jenq-Lang
陶金旺
Tao, Chin-Wang
莊鎮嘉
Chuang, Chen-Chia
呂藝光
Leu, Yih-Guang
口試日期: 2022/07/18
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 101
中文關鍵詞: 日射量衛星雲圖超像素分割光流法長短期記憶
英文關鍵詞: solar irradiance, satellite cloud image, super pixel segmentation, optical flow, LSTM
研究方法: 實驗設計法比較研究觀察研究文件分析法
DOI URL: http://doi.org/10.6345/NTNU202201314
論文種類: 學術論文
相關次數: 點閱:37下載:112
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於日射量容易受天氣因素影響而容易產生變化,進而造成太陽能發電量不穩定,因此,難以將其整合入區域電網當中。本文建立一個以超像素分割衛星雲圖為基礎之日射量估計與預測系統。分析衛星雲圖並萃取其雲層特徵,採用光流法,分析雲層運動,生成預測的衛星雲圖。再將這些影像特徵與一些天氣預報特徵作為長短期記憶(LSTM)之輸入,進行日射量的估計與預測。本文使用幾個效能指標來評估估計與預測的效果,包括平均絕對誤差(MAE)、均方根誤差(RMSE)以及判定係數(R^2);並設計數個實驗方法進行比較,實驗結果顯示,本文所提出方法有達到預期的成果。

    Since solar radiation is susceptible to changes due to weather factors, it is difficult to integrate it into the regional power grid because of the instability of solar power generation. In this study, a solar irradiance estimation system based on satellite cloud image superpixel segmentation was established. The satellite cloud image is analyzed, the cloud features are extracted, the satellite cloud image is used as the input, the cloud layer movement is analyzed by the optical flow method, and the predicted satellite cloud image is generated. These features are used as input to long short-term memory (LSTM) to estimate and predict solar irradiance. Several performance metrics are used to evaluate the estimation and prediction, including MAE, RMSE, and R2. Several methods are compared, and the experimental results show that the proposed method performs better.

    誌  謝 I 目 錄 IV 表目錄 VII 圖目錄 IX 第一章緒論 1 1.1研究動機與背景 1 1.2研究目的 2 1.3研究方法 2 1.4論文架構 2 第二章文獻探討與回顧 4 2.1雲層特徵提取 4 2.1.1機器學習 4 2.1.2圖像處理 4 2.2雲層移動預測 5 2.3日射量估計與預測 6 第三章研究方法 8 3.1衛星雲圖 8 3.1.1可見光衛星雲圖 8 3.1.2真實色衛星雲圖 9 3.2色彩空間轉換 10 3.3超像素分割 11 3.3.1 SLIC超像素分割 11 3.3.2改進型SLIC超像素分割 13 3.4紅藍比例法 14 3.5太陽軌道物理模型 15 3.5.1本地標準時間子午線(Local Standard Time Meridian, Tlstm) 15 3.5.2天文時間差(Equation of Time, EoT) 15 3.5.3時間修正因子(Time Correction Factor, TC) 15 3.5.4真太陽時間(Local Solar Time, LST) 16 3.5.5時角(Hour Angle, HA) 16 3.5.6太陽偏差角(Declination, 𝛅solar) 16 3.5.7太陽高度角(Elevation) 16 3.5.8太陽方位角(Azimuth) 17 3.6光流法 17 3.6.1 Lucas-Kanade 光流法 18 3.6.2光流場(Optical Field) 19 3.7長短期記憶(LONG SHORT-TERM MEMORY , LSTM) 20 3.8周期特徵編碼(ENCODING CYCLICAL CONTINUOUS FEATURES) 22 第四章日射量估計與預測之系統架構 24 4.1日射量估計與預測架構 24 4.2雲層特徵萃取 26 4.2.1改進型紅藍比例法 26 4.2.2框選區域 28 4.2.3改進型SLIC分割區域 29 4.2.4雲層特徵 30 4.3預測影像 31 4.3.1光流法預測下一張衛星雲圖 33 4.3.2平均移動量與剪裁向量 33 4.3.3後處理 47 第五章效能評估指標與實驗結果 50 5.1 資料集 50 5.2評估指標 52 5.3日射量估 52 5.3.1實驗一 沒有衛星雲圖的特徵 52 5.3.2實驗二 加入衛星雲圖的特徵 56 5.4日射量預測 58 5.4.1實驗三 沒有衛星雲圖的特徵 58 5.4.2實驗四 加入衛星雲圖的特徵 77 5.4.3實驗五 加入預測的衛星雲圖特徵 81 5.4.3實驗六 比較30組的預測誤差 86 第六章結論與未來展望 94 6.1結論 94 6.2未來展望 95 參 考 文 獻 97

    [1] T. Hsiao, K. Huang, and Y. Chang, "A model for forecasting of solar power annual electricity and its strategy application," Journal of Taiwan Energy, vol. 4, no. 4, pp. 401-430, 2017.
    [2] M. Q. Raza, M. Nadarajah, and C. Ekanayake, "On recent advances in PV output power forecast," Solar Energy, vol. 136, pp. 125-144, 2016.
    [3] J. X. Yeo, Y. H. Lee, and J. T. Ong, "Performance of site diversity investigated through RADAR derived results," IEEE Transactions on Antennas and Propagation, vol. 59, no. 10, pp. 3890-3898, 2011.
    [4] M. Z. Hassan, M. E. K. Ali, A. S. Ali, and J. Kumar, "Forecasting day-ahead solar radiation using machine learning approach," in 2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), 2017: IEEE, pp. 252-258.
    [5] X. Shao, S. Lu, and H. F. Hamann, "Solar radiation forecast with machine learning," in 2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2016: IEEE, pp. 19-22.
    [6] S. Sun et al., "Short term cloud coverage prediction using ground based all sky imager," in 2014 IEEE international conference on smart grid communications (SmartGridComm), 2014: IEEE, pp. 121-126.
    [7] A. Taravat, F. Del Frate, C. Cornaro, and S. Vergari, "Neural networks and support vector machine algorithms for automatic cloud classification of whole-sky ground-based images," IEEE Geoscience and remote sensing letters, vol. 12, no. 3, pp. 666-670, 2014.
    [8] F. Xie, M. Shi, Z. Shi, J. Yin, and D. Zhao, "Multilevel cloud detection in remote sensing images based on deep learning," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 8, pp. 3631-3640, 2017.
    [9] F. Qin, J. Guo and F. Lang, "Superpixel Segmentation for Polarimetric SAR Imagery Using Local Iterative Clustering," in IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 1, pp. 13-17, Jan. 2015
    [10] M. Shi, F. Xie, Y. Zi and J. Yin, "Cloud detection of remote sensing images by deep learning," 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, pp. 701-704.
    [11] C. W. Chow et al., "Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed," Solar Energy, vol. 85, no. 11, pp. 2881-2893, 2011.
    [12] D. Bernecker, C. Riess, E. Angelopoulou, and J. Hornegger, "Towards improving solar irradiance forecasts with methods from computer vision," in Computer Vision in Applications Workshop, 2012, vol. 1005.
    [13] Z. El Jaouhari, Y. Zaz, and L. Masmoudi, "Cloud tracking from whole-sky ground-based images," in 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), 2015: IEEE, pp. 1-5.
    [14] S. Tiwari, R. Sabzehgar, and M. Rasouli, "Short term solar irradiance forecast based on image processing and cloud motion detection," in 2019 IEEE Texas Power and Energy Conference (TPEC), 2019: IEEE, pp. 1-6.
    [15] Z. El Jaouhari, Y. Zaz, and L. Masmoudi, "Cloud tracking from whole-sky ground-based images," in 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), 2015: IEEE, pp. 1-5.
    [16] M.-C. Chang, Y. Yao, G. Li, Y. Tong, and P. Tu, "Cloud tracking for solar irradiance prediction," in 2017 IEEE International Conference on Image Processing (ICIP), 2017: IEEE, pp. 4387-4391.
    [17] S. U. Weligamage, H. Ravindu, T. Bandara, and L. Ranathunga, "Cloud Movement Analysis Using Lucas Kanade Method," in 2021 3rd International Conference on Electrical Engineering (EECon), 2021: IEEE, pp. 112-117.
    [18] A. Ulutaş, R. Çakmak, and İ. H. Altaş, "Hourly solar irradiation prediction by artificial neural network based on similarity analysis of time series," in 2018 Innovations in Intelligent Systems and Applications Conference (ASYU), 2018: IEEE, pp. 1-6.
    [19] S. M. Ruffing and G. K. Venayagamoorthy, "Short to medium range time series prediction of solar irradiance using an echo state network," in 2009 15th International Conference on Intelligent System Applications to Power Systems, 2009: IEEE, pp. 1-6.
    [20] H. Nazaripouya, B. Wang, Y. Wang, P. Chu, H. Pota, and R. Gadh, "Univariate time series prediction of solar power using a hybrid wavelet-ARMA-NARX prediction method," in 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), 2016: IEEE, pp. 1-5.
    [21] R. Huang, T. Huang, R. Gadh, and N. Li, "Solar generation prediction using the ARMA model in a laboratory-level micro-grid," in 2012 IEEE third international conference on smart grid communications (SmartGridComm), 2012: IEEE, pp. 528-533.
    [22] I. Colak, M. Yesilbudak, N. Genc, and R. Bayindir, "Multi-period prediction of solar radiation using ARMA and ARIMA models," in 2015 IEEE 14th international conference on machine learning and applications (ICMLA), 2015: IEEE, pp. 1045-1049.
    [23] J. Wu and C. K. Chan, "The prediction of monthly average solar radiation with TDNN and ARIMA," in 2012 11th International Conference on Machine Learning and Applications, 2012, vol. 2: IEEE, pp. 469-474.
    [24] X. Yang, F. Jiang, and H. Liu, "Short-term solar radiation prediction based on SVM with similar data," in 2nd IET Renewable Power Generation Conference (RPG 2013), 2013: IET, pp. 1-4.
    [25] H. S. Jang, K. Y. Bae, H.-S. Park, and D. K. Sung, "Solar power prediction based on satellite images and support vector machine," IEEE Transactions on Sustainable Energy, vol. 7, no. 3, pp. 1255-1263, 2016.
    [26] F. Bellocchio et al., "Illuminance prediction through SVM regression," in 2011 IEEE Workshop on Environmental Energy and Structural Monitoring Systems, 2011: IEEE, pp. 1-5.
    [27] X. Qing and Y. Niu, "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, vol. 148, pp. 461-468, 2018.
    [28] B. M. Alluhaidah, S. Shehadeh, and M. El-Hawary, "Most influential variables for solar radiation forecasting using artificial neural networks," in 2014 IEEE Electrical power and energy conference, 2014: IEEE, pp. 71-75.
    [29] K.-H. Lee, M.-W. Hsu, and Y.-G. Leu, "Solar irradiance forecasting based on electromagnetism-like neural networks," in 2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII), 2018: IEEE, pp. 365-368.
    [30] A. Muhammad, J. M. Lee, S. W. Hong, S. J. Lee, and E. H. Lee, "Deep learning application in power system with a case study on solar irradiation forecasting," in 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2019: IEEE, pp. 275-279.
    [31] R. Zhang, M. Feng, W. Zhang, S. Lu, and F. Wang, "Forecast of solar energy production-A deep learning approach," in 2018 IEEE International Conference on Big Knowledge (ICBK), 2018: IEEE, pp. 73-82.
    [32] M. C. Sorkun, C. Paoli, and Ö. D. Incel, "Time series forecasting on solar irradiation using deep learning," in 2017 10th international conference on electrical and electronics engineering (ELECO), 2017: IEEE, pp. 151-155.
    [33] K. Chen, Z. He, K. Chen, J. Hu, and J. He, "Solar energy forecasting with numerical weather predictions on a grid and convolutional networks," in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), 2017: IEEE, pp. 1-5.
    [34] A. Alzahrani, P. Shamsi, M. Ferdowsi, and C. Dagli, "Solar irradiance forecasting using deep recurrent neural networks," in 2017 IEEE 6th international conference on renewable energy research and applications (ICRERA), 2017: Ieee, pp. 988-994.
    [35] S. Mishra and P. Palanisamy, "Multi-time-horizon solar forecasting using recurrent neural network," in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018: IEEE, pp. 18-24.
    [36] S. Srivastava and S. Lessmann, "A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data," Solar Energy, vol. 162, pp. 232-247, 2018.
    [37] L. Cho, C. -Y. Hsu, C. -W. Li, W. -C. Chen, H. -R. Wang and C. -P. Lin, "Study of Features and Number of Time Steps to Improve Hourly Solar Power Forecasting via LSTM," 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), 2019, pp. 303-304.
    [38] Y. Lin, D. Duan, X. Hong, X. Cheng, L. Yang and S. Cui, "Very-Short-Term Solar Forecasting with Long Short-Term Memory (LSTM) Network," 2020 Asia Energy and Electrical Engineering Symposium (AEEES), 2020, pp. 963-967.
    [39] Y. Bengio, "Practical recommendations for gradient-based training of deep architectures," in Neural networks: Tricks of the trade: Springer, 2012, pp. 437-478.
    [40] I. Goodfellow, Y. Bengio, and A. Courville, "Deep learning (adaptive computation and machine learning series)," 2016, pp 278.
    [41] D. Masters and C. Luschi, "Revisiting small batch training for deep neural networks," arXiv preprint arXiv:1804.07612, 2018.
    [42] Q. Zhang and C. Xiao, "Cloud detection of RGB color aerial photographs by progressive refinement scheme," IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 11, pp. 7264-7275, 2014.
    [43] Z. An and Z. Shi, "Scene learning for cloud detection on remote-sensing images," IEEE Journal of selected topics in applied earth observations and remote sensing, vol. 8, no. 8, pp. 4206-4222, 2015.
    [44] E. Welch, R. Moorhead, and J. Owens, "Image processing using the HSI color space," in IEEE Proceedings of the SOUTHEASTCON'91, 1991: IEEE, pp. 722-725.
    [45] A. R. Weeks and G. E. Hague, "Color segmentation in the hsi color space using the k-means algorithm," in Nonlinear image processing VIII, 1997, vol. 3026: SPIE, pp. 143-154.
    [46] N. Ohyama, K. Suzuki, T. Honda, J. Tsujiuchi, R. Ono, and S. Ikeda, "Digital processing of endoscopic color images," Optics communications, vol. 55, no. 4, pp. 242-247, 1985.
    [47] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, "SLIC superpixels compared to state-of-the-art superpixel methods," IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 11, pp. 2274-2282, 2012.
    [48] C. L. Zitnick and S. B. Kang, "Stereo for image-based rendering using image over-segmentation," International Journal of Computer Vision, vol. 75, no. 1, pp. 49-65, 2007.
    [49] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum, "Lazy snapping," ACM Transactions on Graphics (ToG), vol. 23, no. 3, pp. 303-308, 2004.
    [50] G. Mori, "Guiding model search using segmentation," in Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, 2005, vol. 2: IEEE, pp. 1417-1423.
    [51] B. Fulkerson, A. Vedaldi, and S. Soatto, "Class segmentation and object localization with superpixel neighborhoods," in 2009 IEEE 12th international conference on computer vision, 2009: IEEE, pp. 670-677.
    [52] I. Reda and A. Andreas, "Solar position algorithm for solar radiation applications," Solar energy, vol. 76, no. 5, pp. 577-589, 2004.
    [53] B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision. Vancouver, 1981.
    [54] S. Dev, F. M. Savoy, Y. H. Lee, and S. Winkler, "Short-term prediction of localized cloud motion using ground-based sky imagers," in 2016 IEEE Region 10 Conference (TENCON), 2016: IEEE, pp. 2563-2566.
    [55] K. Gade, "A non-singular horizontal position representation," The journal of navigation, vol. 63, no. 3, pp. 395-417, 2010.
    [56] H. Moritz, "Geodetic reference system 1980," Journal of Geodesy, vol. 74, no. 1, pp. 128-133, 2000.
    [57] S. M. Robeson, "Spherical methods for spatial interpolation: Review and evaluation," Cartography and Geographic Information Systems, vol. 24, no. 1, pp. 3-20, 1997.
    [58] https://github.com/MohammadFneish7/Keras_LSTM_Diagram, Accessed July 2022.
    [59] https://keras.io/api/layers/recurrent_layers/lstm/, Accessed July 2022.

    下載圖示
    QR CODE