簡易檢索 / 詳目顯示

研究生: 陳友華
Chen, Yu-Hua
論文名稱: 石墨烯與高熵合金薄膜於表面電漿高反射結構及生物感測之應用
High reflection structures and biosensing of graphene and high-entropy alloys thin film
指導教授: 楊承山
Yang, Chan-Shan
謝卓帆
Hsieh, Cho-Fan
口試委員: 楊承山
Yang, Chan-Shan
謝卓帆
Hsieh, Cho-Fan
許文東
Hsu, Wen-Dung
施權峰
Shih, Chuan-Feng
口試日期: 2022/09/21
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 52
中文關鍵詞: 表面電漿高熵合金高對比度光柵兆赫波石墨烯生醫感測器有限元素法
英文關鍵詞: Surface plasmons, high-entropy alloys, high-contrast gratings, Terahertz waves, graphene, biomedical sensors, finite element methods
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201790
論文種類: 學術論文
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致謝 i 中文摘要 ii Abstract iii 目次 iv 表次 vi 圖次 vii 第一章、 緒論 1 1.1 簡介 1 1.2 文獻回顧 2 1.2.1 高對比度光柵反射器(High Contrast Grating reflector) 2 1.2.2 垂直面射型共振腔雷射(VCSEL) 3 1.2.3 表面電漿共振生物感測器 4 1.2.4 微奈米結構局域表面電漿生物感測器 6 1.2.5 光子晶體表面電漿生物感測器 8 1.2.6 石墨烯表面電漿生物感測器 10 1.3 研究動機 14 1.3.1 高對比度光柵反射器 14 1.3.2 表面電將光學感測器 14 1.4 論文架構 14 第二章、 理論與原理 16 2.1 兆赫波 16 2.2 高熵合金 17 2.2.1 高熵效應(High-Entropy Effect) 17 2.2.2 嚴重晶格扭曲效應 18 2.2.3 延遲擴散效應 19 2.2.4 雞尾酒效應 19 2.2.5 材料(NbMoTaW) 20 2.3 石墨烯光電導率模型 20 2.4 表面電漿子 22 2.5 高對比度光柵(High contrast grating, HCG) 27 2.6 表面增強紅外吸收光譜技術(Surface Enhanced Infrared Absorption, SEIRA) 29 2.7 待測物分子震盪吸收 30 2.7.1 蛋白質IgG (Immunoglobulin G) 30 2.7.2 有機半導體CBP (4,4′-bis(N-carbazolyl)-1,1′-biphenyl) 31 第三章、 結構設計和實驗方法 33 3.1 設計發想 33 3.2 表面電漿高反射結構 34 3.3 表面電漿紅外增強生物感測器 34 第四章、 模擬分析與結果 36 4.1 兆赫波高熵合金模擬分析 36 4.1.1 模擬反射頻譜 36 4.1.2 紫外線短波反射器 38 4.2 石墨烯生物感測器模擬 40 4.2.1 石墨烯光電導率計算 40 4.2.2 各項材料帶狀石墨烯陣列模擬 40 4.2.3 最佳化設計模擬調變結果 43 4.2.4 最終模擬結果 46 第五章、 結論 48 5.1 結論 48 5.2 未來工作 48 參考文獻 49

    [1] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” nature, 424(6950), 824-830, 2003.
    [2] Li, Ming, Scott K. Cushing, and Nianqiang Wu. "Plasmon-enhanced optical sensors: a review." Analyst 140.2 (2015): 386-406. [3]. Zeng, Shuwen, et al.
    [3] "Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications." Chemical Society Reviews 43.10 (2014): 3426-3452.
    [4] Hong, Qilin, et al. "Hybrid metal-graphene plasmonic sensor for multi-spectral sensing in both near-and mid-infrared ranges." Optics express 27.24 (2019): 35914-35924.
    [5] Gallagher, Patrick, et al. "Quantum-critical conductivity of the Dirac fluid in graphene." Science 364.6436 (2019): 158-162.
    [6] Rodrigo, Daniel, et al. "Mid-infrared plasmonic biosensing with graphene." Science 349.6244 (2015): 165-168.
    [7] C. J. Chang-Hasnain and W. Yang. “High-contrast gratings for integrated optoelectronics.” Adv. Opt. Photon. 4, 379–440 (2012).
    [8] C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-Contrast Grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869 (2009).
    [9] Wang, H. L., You, E. M., Panneerselvam, R., Ding, S. Y., & Tian, Z. Q. (2021). Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Light: Science & Applications, 10(1), 1-19.
    [10] C. F. R. Mateus, M. C. Y. Huang, Lu Chen, C. J. Chang-Hasnain and Y. Suzuki, "Broad-band mirror (1.12-1.62 μm) using a subwavelength grating," in IEEE Photonics Technology Letters, vol. 16, no. 7, pp. 1676-1678, July 2004
    [11] Y. Zhou, M. C. Y. Huang and C. J. Chang-Hasnain, "Large Fabrication Tolerance for VCSELs Using High-Contrast Grating," in IEEE Photonics Technology Letters, vol. 20, no. 6, pp. 434-436, March15, 2008
    [12] Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors. Sensors and actuators B: Chemical, 54(1-2), 3-15.
    [13] Kretschmann, Erwin, and Heinz Raether. "Radiative decay of non radiative surface plasmons excited by light." Zeitschrift für Naturforschung A 23.12 (1968): 2135- 2136.
    [14] Otto, Andreas. "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection." Zeitschrift für Physik A Hadrons and nuclei 216.4 (1968): 398-410.
    [15] Huang, Yi, et al. "Graphene/insulator stack based ultrasensitive terahertz sensor with surface plasmon resonance." IEEE Photonics Journal 9.6 (2017): 1-11.
    [16] Adato, Ronen, and Hatice Altug. "In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas." Nature communications 4.1 (2013): 1-10.
    [17] Wei, Jingxuan, et al. "Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices." ACS applied materials & interfaces 11.50 (2019): 47270-47278.
    [18] Liu, Na, et al. "Nanoantenna-enhanced gas sensing in a single tailored nanofocus." Nature materials 10.8 (2011): 631-636.
    [19] Spadavecchia, Jolanda, et al. "Approach for plasmonic based DNA sensing: 53 amplification of the wavelength shift and simultaneous detection of the plasmon modes of gold nanostructures." Analytical chemistry 85.6 (2013): 3288-3296.
    [20] Wadell, Carl, Svetlana Syrenova, and Christoph Langhammer. "Plasmonic hydrogen sensing with nanostructured metal hydrides." ACS nano 8.12 (2014): 11925-11940.
    [21] Zangeneh-Nejad, Farzad, and Reza Safian. "A graphene-based THz ring resonator for label-free sensing." IEEE Sensors Journal 16.11 (2016): 4338-4344.
    [22] Cicek, Kenan, Mustafa Eryürek, and Alper Kiraz. "Single-slot hybrid microring resonator hydrogen sensor." JOSA B 34.7 (2017): 1465-1470.
    [23] Wang, Xiangxian, et al. "Wide range refractive index sensor based on a coupled structure of Au nanocubes and Au film." Optical Materials Express 9.7 (2019): 3079-3088.
    [24] Nemova, Galina, and Raman Kashyap. "Fiber-Bragg-grating-assisted surface plasmon-polariton sensor." Optics letters 31.14 (2006): 2118-2120.
    [25] Tong, Kai, et al. "Surface plasmon resonance biosensor based on graphene and grating excitation." Applied optics 58.7 (2019): 1824-1829.
    [26] Joo, Yang Hyun, Seok Ho Song, and Robert Magnusson. "Demonstration of long-range surface plasmon-polariton waveguide sensors with asymmetric double-electrode structures." Applied Physics Letters 97.20 (2010): 201105.
    [27] Ahmadivand, Arash, et al. "Rhodium plasmonics for deep-ultraviolet bio-chemical sensing." Plasmonics 11.3 (2016): 839-849.
    [28] Yang, Chan-Shan, et al. "Hybrid graphene-based photonic-plasmonic biochemical sensor with a photonic and acoustic cavity structure." Crystals 11.10 (2021): 1175.
    [29] Li, Xin, et al. "Graphene in photocatalysis: a review." Small 12.48 (2016): 6640-6696.
    [30] Emani, Naresh Kumar, et al. "Graphene: a dynamic platform for electrical control of plasmonic resonance." Nanophotonics 4.2 (2015): 214-223.
    [31] Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of modern physics, 81(1), 109.
    [32] Mikhailov, Sergey A., and Klaus Ziegler. "New electromagnetic mode in graphene." Physical review letters 99.1 (2007): 016803.
    [33] Luo, Xiaoguang, et al. "Plasmons in graphene: recent progress and applications." Materials Science and Engineering: R: Reports 74.11 (2013): 351-376.
    [34] Gonçalves, Paulo André Dias, and Nuno MR Peres. An introduction to graphene plasmonics. World Scientific, 2016.
    [35] Etezadi, Dordaneh, et al. "Real-time in situ secondary structure analysis of protein monolayer with mid-infrared plasmonic nanoantennas." ACS sensors 3.6 (2018): 1109-1117.
    [36] Omeis, Fatima, et al. "Following the chemical immobilization of membrane proteins on plasmonic nanoantennas using infrared spectroscopy." ACS sensors 5.7 (2020): 2191-2197.
    [37] Rodrigo, Daniel, et al. "Double-layer graphene for enhanced tunable infrared plasmonics." Light: Science & Applications 6.6 (2017): e16277-e16277.
    [38] Gopalan, Kavitha K., et al. "Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics." Nano letters 18.9 (2018): 5913-5918.
    [39] Guzelturk, B., Belisle, R. A., Smith, M. D., Bruening, K., Prasanna, R., Yuan, Y., ... & Lindenberg, A. M. (2018). Terahertz emission from hybrid perovskites driven by ultrafast charge separation and strong electron–phonon coupling. Advanced Materials, 30(11), 1704737.
    [40] Zhang, Z., Yu, X., Zhao, H., Xiao, T., Xi, Z., & Xu, H. (2007). Component analysis to isomer mixture with THz-TDS. Optics communications, 277(2), 273-276.
    [41] Zheng, Z. P., Fan, W. H., Liang, Y. Q., & Yan, H. (2012). Application of terahertz spectroscopy and molecular modeling in isomers investigation: Glucose and fructose. Optics Communications, 285(7), 1868-1871.
    [42] Mourou, G., et al. "Picosecond microwave pulses generated with a subpicosecond laser‐driven semiconductor switch." Applied Physics Letters 39.4 (1981): 295-296.
    [43] Auston, D. H., Cheung, K. P., & Smith, P. R. (1984). Picosecond photoconducting Hertzian dipoles. Applied physics letters, 45(3), 284-286.
    [44] Yeh, J‐W., et al. "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes." Advanced engineering materials 6.5 (2004): 299-303.
    [45] Jien-Wei Yeh, The Development of High-Entropy Alloys, Hua Kang Journal of Engineering Chinese Culture University. 27(2011)1-18
    [46] Tsai, Ming-Hung, and Jien-Wei Yeh. "High-entropy alloys: a critical review." Materials Research Letters 2.3 (2014): 107-123.
    [47] Senkov, Oleg N., et al. "Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys." Intermetallics 19.5 (2011): 698-706.
    [48] Wang, J., & Hu, X. (2017). Graphene-Enhanced Optical Signal Processing. Graphene Materials: Advanced Applications, 143.
    [49] Yao, Yu, et al. "Broad electrical tuning of graphene-loaded plasmonic antennas." Nano letters 13.3 (2013): 1257-1264.
    [50] Llatser, Ignacio, et al. "Graphene-based nano-patch antenna for terahertz radiation." Photonics and Nanostructures-Fundamentals and Applications 10.4 (2012): 353-358.
    [51] Lin, Qi, et al. "Tunable plasmon-induced absorption in an integrated graphene nanoribbon side-coupled waveguide." Applied optics 56.34 (2017): 9536-9541.
    [52] Emani, Naresh Kumar, et al. "Graphene: a dynamic platform for electrical control of plasmonic resonance." Nanophotonics 4.2 (2015): 214-223
    [53] Li, Xuesong, et al. "Graphene films with large domain size by a two-step chemical 56 vapor deposition process." Nano letters 10.11 (2010): 4328-4334.
    [54] Wan, Yuan, et al. "Manipulation of surface plasmon resonance of a graphene-based Au aperture antenna in visible and near-infrared regions." Optics Communications 410 (2018): 733-739.
    [55] Das, Gobind, et al. "Plasmonic nanostructures for the ultrasensitive detection of biomolecules." Rivista del nuovo Cimento 39.11 (2016): 547-586.
    [56] Li, Aobo, Shreya Singh, and Dan Sievenpiper. "Metasurfaces and their applications." Nanophotonics 7.6 (2018): 989-1011.
    [57] Ouyang, Qingling, et al. "Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor." Scientific reports 6.1 (2016): 1-13.
    [58] Chou, Yu-Hsun, et al. "Ultrastrong mode confinement in ZnO surface plasmon nanolasers." ACS nano 9.4 (2015): 3978-3983.
    [59] Qiao, Pengfei, Weijian Yang, and Connie J. Chang-Hasnain. "Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals." Advances in Optics and Photonics 10.1 (2018): 180-245.
    [60] Sang, Tian, et al. "Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane." JOSA A 26.3 (2009): 559-565.
    [61] Wang, S. S., and R. J. A. O. Magnusson. "Theory and applications of guided-mode resonance filters." Applied optics 32.14 (1993): 2606-2613.
    [62] Hartstein, A., J. R. Kirtley, and J. C. Tsang. "Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers." Physical Review Letters 45.3 (1980): 201.
    [63] Chen, L. C., Osawa, M., & Chang, H. C. 表面增顯紅外光技術與其在界面科學之應用研究.
    [64] Zhou, Hong, et al. "Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: pushing the frontier of ultrasensitive on-chip sensing." International Journal of Optomechatronics 15.1 (2021): 97-119.
    [65] Neubrech, F., Pucci, A., Cornelius, T. W., Karim, S., García-Etxarri, A., & Aizpurua, J. (2008). Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Physical review letters, 101(15), 157403.
    [66] Gallagher, Warren. "FTIR analysis of protein structure." Course manual Chem 455 (2009).
    [67] Lian, Jiarong, et al. "Efficient near ultraviolet organic light-emitting devices based on star-configured carbazole emitters." Current Applied Physics 11.3 (2011): 295-297.
    [68] Glaser, T., Beck, S., Lunkenheimer, B., Donhauser, D., Köhn, A., Kröger, M., & Pucci, A. Organic Electronics, 14(2), 2013, 575-583.
    [69] Chan-Shan Yang, Qi-Yan Zheng Tunable Terahertz High-contrast Gratings Using Graphene-based Surface Plasmon Polaritons

    無法下載圖示 電子全文延後公開
    2027/09/27
    QR CODE