簡易檢索 / 詳目顯示

研究生: 林冠言
Lin, Kuan-Yen
論文名稱: 熱加工食品添加胺基酸緩解庫氏細胞發炎反應之研究
Amino acids addition in thermal processing of food alleviates Acrolein-induced inflammation of Kupffer cells
指導教授: 沈賜川
Shen, Szu-Chuan
丁俞文
Ting, Yu-Wen
吳瑞碧
Wu, Ruwi-Bi
口試委員: 丁俞文
Ting, Yu-Wen
吳瑞碧
Wu, Ruwi-Bi
吳忠信
WU, CHUNG-HSIN
黃文忠
HUANG, WEN-JUNG
沈賜川
Shen, Szu-Chuan
口試日期: 2022/08/30
學位類別: 碩士
Master
系所名稱: 營養科學碩士學位學程
Graduate Program of Nutrition Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 72
中文關鍵詞: 丙烯醛胺基酸庫氏細胞NLRP3發炎小體
英文關鍵詞: Acrolein, Amino acids, Kupffer cell, NLRP3 inflammasome
DOI URL: http://doi.org/10.6345/NTNU202201857
論文種類: 學術論文
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝臟是人體最重要的器官之ㄧ,肝臟每天受到許多外源性及內源性的威脅,若長期處於發炎狀態,將會造成不可逆的功能受損,因此肝臟的健康與否對人體而言極為重要。丙烯醛是一種廣泛存在於人類生活中的有毒物質,空氣及某些食物中均含有丙烯醛,而在食品加工的過程中也會產生丙烯醛。丙烯醛一旦經人體攝入後,因為其親和能力強,容易與蛋白質、DNA、核酸等物質反應,使這些物質喪失其原先存在於人體中的能力;另一方面,丙烯醛對細胞的影響包括發炎、氧化壓力、內質網壓力…等。本研究探討梅納反應中間產物丙烯醛對肝臟庫氏細胞發炎之影響,以及以不同胺基酸與丙烯醛共同加熱,探討熱反應物是否可降低丙烯醛對於庫氏細胞的發炎反應。本研究首先以0、50、100、150、200μM濃度丙烯醛熱反應物對於庫氏細胞進行細胞毒性(MTT)測試。結果顯示50μM丙烯醛熱反應物對庫氏細胞大約有2成的致死率。其次,以甘胺酸、丙胺酸、擷胺酸、胱胺酸、麩胺醯胺、蘇胺酸以及麩胺酸與丙烯醛在高溫下迴流製備熱反應物,探討熱反應物對庫氏細胞發炎的效果。實驗結果發現,半胱胺酸與丙烯醛熱處理反應可以降低丙烯醛的殘留量並提高庫氏細胞的細胞存活率,且西方墨點法分析也發現,丙烯醛-半胱胺酸熱反應物可以降低丙烯醛熱反應物對庫氏細胞中發炎相關的IKKβ、Nf-κB、caspase-1及NLRP3等蛋白表現量。總結本研究證實半胱胺酸在迴流加熱下可以與丙烯醛產生反應,以降低丙烯醛對於庫氏細胞的發炎情形,此研究結果亦可以為後續研究丙烯醛於肝臟的發炎機制以及胺基酸於熱加工食品開發時的參考。

    第一章、前言 1 第二章、文獻回顧 2 第一節、肝臟(Liver) 2 一、肝臟的結構 2 二、肝臟的功能 3 三、肝臟與疾病 3 四、肝臟的免疫細胞 5 第二節、庫氏細胞 (Kupffer cell) 8 一、庫氏細胞的功能 8 二、庫氏細胞與發炎反應 8 三、庫氏細胞中的發炎小體NLRP3 9 四、NLRP3發炎體活化機轉 10 第三節、丙烯醛(Acrolein) 13 一、丙烯醛特性與來源 13 二、丙烯醛的代謝 14 三、丙烯醛對細胞的影響 15 四、丙烯醛與胺基酸 17 第四節、半胱胺酸 (Cysteine) 19 一、半胱胺酸的結構與特性 19 二、半胱胺酸與疾病 19 三、半胱胺酸與丙烯醛 20 四、食物中的半胱胺酸 20 第三章、研究動機與目的及實驗架構 22 第一節、研究動機與目的 22 第二節、實驗架構 23 第四章、實驗材料與方法 24 第一節、實驗藥品與儀器 24 一、實驗細胞 24 二、實驗藥品及試劑 24 三、儀器設備 26 第二節、實驗步驟與方法 28 一、實驗樣品配置 28 二、實驗藥品配置 28 三、實驗方法 29 四、統計分析 35 第五章、實驗結果 36 第一節、丙烯醛組及不同胺基酸組對於庫氏細胞的細胞毒性試驗 36 第二節、用高效液相層析儀分析樣品丙烯醛的殘留量 40 第三節、丙烯醛介入庫氏細胞培養液中細胞激素產量之影響 44 第四節、丙烯醛及半胱胺酸組別清除DPPH氧化自由基能力測定 46 第五節、丙烯醛介入庫氏細胞的發炎小體相關蛋白質表現量影響 48 第六章、討論 53 第一節、丙烯醛組及不同胺基酸組對於庫氏細胞的細胞毒性試驗 53 第二節、用高效液相層析儀分析樣品丙烯醛的殘留量 55 第三節、丙烯醛介入庫氏細胞培養液中細胞激素產量之影響 57 第四節、丙烯醛及半胱胺酸組別清除DPPH氧化自由基能力測定 58 第五節、丙烯醛介入庫氏細胞的發炎小體相關蛋白質表現量影響 59 第七章、結論 60 參考文獻 62

    衛福部。(2021)。死因統計分析結果https://dep.mohw.gov.tw/DOS/lp-5069-113.html
    黃俊浩。(2018)。丙烯醛在人類癌細胞中對於核醣體毒性壓力之影響。國立陽明交通大學醫學院藥理學研究所。
    Aizenbud, D., Aizenbud, I., Reznick, A. Z., & Avezov, K. (2016). Acrolein-an α, β-unsaturated aldehyde: a review of oral cavity exposure and oral pathology effects. Rambam Maimonides Medical Journal, 7(3), 1-11.
    Asrani, S. K., Devarbhavi, H., Eaton, J., & Kamath, P. S. (2019). Burden of liver diseases in the world. Journal of hepatology, 70(1), 151-171.
    Artis, D., & Spits, H. (2015). The biology of innate lymphoid cells. Nature, 517(7534), 293-301.
    Buchanan, T. A., & Xiang, A. H. (2005). Gestational diabetes mellitus. The Journal of Clinical Investigation, 115(3), 485-491.
    Boutell, J. M., Wood, J. D., Harper, P. S., & Jones, A. L. (1998). Huntingtin interacts with cystathionine β-synthase. Human molecular genetics, 7(3), 371-378.
    Bilzer, M., Roggel, F., & Gerbes, A. L. (2006). Role of Kupffer cells in host defense and liver disease. Liver International, 26(10), 1175-1186.
    Broz, P., & Dixit, V. M. (2016). Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews Immunology, 16(7), 407-420.
    Bauer, R., Cowan, D. A., & Crouch, A. (2010). Acrolein in wine: Importance of 3-hydroxypropionaldehyde and derivatives in production and detection. Journal of Agricultural and Food Chemistry, 58(6), 3243-3250.
    Blouin, A., Bolender, R. P., & Weibel, E. R. (1977). Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. The Journal of cell biology, 72(2), 441-455.
    Bandyopadhyay, K., Marrero, I., & Kumar, V. (2016). NKT cell subsets as key participants in liver physiology and pathology. Cellular & Molecular Immunology, 13(3), 337-346.
    Carvalho, V. H., Oliveira, A. H., de Oliveira, L. F., da Silva, R. P., Di Mascio, P., Gualano, B., Artioli, G.G.&Medeiros, M.H.(2018).Exercise and β-alanine supplementation on carnosine acrolein adduct in skeletal muscle. Redox Biology, 18, 222-228.
    Cai, J., Bhatnagar, A., & Pierce Jr, W. M. (2009). Protein modification by acrolein: formation and stability of cysteine adducts. Chemical research in toxicology, 22(4), 708-716.
    Crispe, I. N. (2009). The liver as a lymphoid organ. Annual review of immunology, 27, 147-163.
    Castellaneta, A., Di Leo, A., Francavilla, R., Margiotta, M., Barone, M., Amoruso, A., Troiani, L., Thomson, A.W. & Francavilla, A. (2006). Functional modification of CD11c+ liver dendritic cells during liver regeneration after partial hepatectomy in mice. Hepatology, 43(4), 807-816.
    Chiang, D. J., Pritchard, M. T., & Nagy, L. E. (2011). Obesity, diabetes mellitus, and liver fibrosis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 300(5), G697-G702.
    Csak, T., Pillai, A., Ganz, M., Lippai, D., Petrasek, J., Park, J. K., ... & Szabo, G. (2014). Both bone marrow‐derived and non‐bone marrow‐derived cells contribute to AIM 2 and NLRP 3 inflammasome activation in a MyD88‐dependent manner in dietary steatohepatitis. Liver International, 34(9), 1402-1413.
    DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., Hu, F.B., Kahn, C.R., Raz, I., Shulman, G.I., Simonson, D.C., Testa, M.A. & Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1(1), 1-22.
    Dixon, L. J., Barnes, M., Tang, H., Pritchard, M. T., & Nagy, L. E. (2013). Kupffer cells in the liver. Comprehensive Physiology, 3(2), 785.
    Dinarello, C. A. (1996). Biologic basis for interleukin-1 in disease.
    Ewert, A., Granvogl, M., & Schieberle, P. (2011). Development of two stable isotope dilution assays for the quantitation of acrolein in heat-processed fats. Journal of Agricultural and Food Chemistry, 59(8), 3582-3589.
    Ebe, Y., Hasegawa, G., Takatsuka, H., Umezu, H., Mitsuyama, M., Arakawa, M., Mukaida, N. & Naito, M. (1999). The role of Kupffer cells and regulation of neutrophil migration into the liver by macrophage inflammatory protein‐2 in primary listeriosis in mice. Pathology international, 49(6), 519-532.
    Fowler, M. J. (2008). Microvascular and macrovascular complications of diabetes. Clinical Diabetes, 26(2), 77-82.
    Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M. & Shimomura, I. (2017). Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation, 114(12), 1752-1761.
    Friedman, S. L., & Arthur, M. J. (1989). Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. The Journal of clinical investigation, 84(6), 1780-1785.
    Guilherme, A., Virbasius, J. V., Puri, V., & Czech, M. P. (2008). Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Reviews Molecular Cell Biology, 9(5), 367-377.
    Gobejishvili, L., Barve, S., Joshi-Barve, S., Uriarte, S., Song, Z., & McClain, C. (2006). Chronic ethanol-mediated decrease in cAMP primes macrophages to enhanced LPS-inducible NF-κB activity and TNF expression: relevance to alcoholic liver disease. American Journal of Physiology-Gastrointestinal and Liver Physiology, 291(4), G681-G688.
    Gao, B., Jeong, W. I., & Tian, Z. (2008). Liver: an organ with predominant innate immunity. Hepatology, 47(2), 729-736.
    Gaull, G., Sturman, J. A., & Räihä, N. C. (1972). Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissues. Pediatric Research, 6(6), 538-547.
    Gugliucci, A. (2008). Antithrombin activity is inhibited by acrolein and homocysteine thiolactone: Protection by cysteine. Life sciences, 82(7-8), 413-418.
    Gupta, S., Kamil, S., Sinha, P. R., Rodier, J. T., Chaurasia, S. S., & Mohan, R. R. (2021). Glutathione is a potential therapeutic target for acrolein toxicity in the cornea. Toxicology Letters, 340, 33-42.
    Hale, L. J., & Coward, R. J. (2013). Insulin signalling to the kidney in health and disease. Clinical Science, 124(6), 351-370.
    Han, J., & Ulevitch, R. J. (2005). Limiting inflammatory responses during activation of innate immunity. Nature immunology, 6(12), 1198-1205.
    Hawkes, W. C., & Alkan, Z. (2010). Regulation of redox signaling by selenoproteins. Biological trace element research, 134(3), 235-251.
    Iwata, F., Sata, Y., & Hara, M. (2000). A study on the effect of milk intake on change of coronary risk factors. J Child Health, 59, 608-11.
    Jo, E. K., Kim, J. K., Shin, D. M., & Sasakawa, C. (2016). Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology, 13(2), 148-159.
    Jiang, K., Yin, Z., Zhou, P., Guo, H., Huang, C., Zhang, G., Hu, W., Ou, S. & Ou, J. (2020). The scavenging capacity of γ-aminobutyric acid for acrolein and the cytotoxicity of the formed adduct. Food & Function, 11(9), 7736-7747.
    Jiang, K., Huang, C., Jiao, R., Bai, W., Zheng, J., & Ou, S. (2019). Adducts formed during protein digestion decreased the toxicity of five carbonyl compounds against Caco-2 cells. Journal of Hazardous Materials, 363, 26-33.
    Ju, C., Reilly, T. P., Bourdi, M., Radonovich, M. F., Brady, J. N., George, J. W., & Pohl, L. R. (2002). Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chemical research in toxicology, 15(12), 1504-1513.
    Krishnan, H. B., Jang, S., Kim, W. S., Kerley, M. S., Oliver, M. J., & Trick, H. N. (2011). Biofortification of soybean meal: immunological properties of the 27 kDa γ-zein. Journal of agricultural and food chemistry, 59(4), 1223-1228.
    Kiemer, A. K., Müller, C., & Vollmar, A. M. (2002). Inhibition of LPS‐induced nitric oxide and TNF‐α production by α‐lipoic acid in rat Kupffer cells and in RAW 264.7 murine macrophages. Immunology and Cell Biology, 80(6), 550-557.
    Kim, Y. K., Shin, J. S., & Nahm, M. H. (2016). NOD-like receptors in infection, immunity, and diseases. Yonsei Medical Journal, 57(1), 5-14.
    Kahn, B. B., & Flier, J. S. (2000). Obesity and insulin resistance. The Journal of Clinical Investigation, 106(4), 473-481.
    Kubes, P., & Jenne, C. (2018). Immune responses in the liver. Annual review of immunology, 36,247-277.
    Kwon, H. J., Won, Y. S., Park, O., Feng, D., & Gao, B. (2014). Opposing effects of prednisolone treatment on T/NKT cell‐and hepatotoxin‐mediated hepatitis in mice. Hepatology, 59(3), 1094-1106.
    Kita, H. (2011). Eosinophils: multifaceted biological properties and roles in health and disease. Immunological reviews, 242(1), 161-177.
    Kudira, R., Malinka, T., Kohler, A., Dosch, M., de Agüero, M. G., Melin, N., Haegele, S., Starlinger, P., Maharjan, N., Saxena, S., Keogh, A., Stroka, D., Candinas, D. & Beldi, G. (2016). P2X1‐regulated IL‐22 secretion by innate lymphoid cells is required for efficient liver regeneration. Hepatology, 63(6), 2004-2017.
    Kupffer, C. V. (1899). Ueber die sogenannten Sternzellen der Säugethierleber. Archiv für mikroskopische Anatomie, 54(2), 254-288.
    Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest. 2017 Jan 3;127(1):55-64. doi: 10.1172/JCI88881. Epub 2017 Jan 3. PMID: 28045404; PMCID: PMC5199698.
    Kolios G, Valatas V, Kouroumalis E. Role of Kupffer cells in the pathogenesis of liver disease.World J Gastroenterol. 2006 Dec 14;12(46):7413-20. doi: 10.3748/wjg.v12.i46.7413. PMID: 17167827; PMCID: PMC4087584.
    Luo, J., & Shi, R. (2005). Acrolein induces oxidative stress in brain mitochondria. Neurochemistry International, 46(3), 243-252.
    Li, X., Rezaei, R., Li, P., & Wu, G. (2011). Composition of amino acids in feed ingredients for animal diets. Amino acids, 40(4), 1159-1168.
    Moghe, A., Ghare, S., Lamoreau, B., Mohammad, M., Barve, S., McClain, C., & Joshi-Barve, S. (2015). Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicological Sciences, 143(2), 242-255.
    Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002). Acrylamide is formed in the Maillard reaction. Nature, 419(6906), 448-449.
    Murray, P. J., Allen, J. E., Biswas, S. K., Fisher, E. A., Gilroy, D. W., Goerdt, S., Gordon, S., Hamilton, J.A., Ivashkiv, L.B., Lawrence, T., Locati, M., Mantovani, A., Martinez, F.O., Mege, J.L., Mosser, D.M., Natoli, G., Saeij, J.P., Schultze, J.L., Shirey, K.N., Sica, A., Suttles, S., Udalova, I., Ginderachter, J.A., Vogel, S.N. & Wynn, T. A. (2014). Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 41(1), 14-20.
    Mikulak, J., Bruni, E., Oriolo, F., Di Vito, C., & Mavilio, D. (2019). Hepatic natural killer cells: organ-specific sentinels of liver immune homeostasis and physiopathology. Frontiers in immunology, 10, 946.
    Marra, F., DeFranco, R., Grappone, C., Parola, M., Milani, S., Leonarduzzi, G., Pastacaldi, S., Wenzel, U., Pinzani, M., Dianzani, M., Laffi, G. & Gentilini, P. (1999). Expression of monocyte chemotactic protein-1 precedes monocyte recruitment in a rat model of acute liver injury, and is modulated by vitamin E. Journal of Investigative Medicine: the Official Publication of the American Federation for Clinical Research, 47(1), 66-75.
    Meyer, D. H., Bachem, M. G., & Gressner, A. M. (1990). Modulation of hepatic lipocyte proteoglycan synthesis and proliferation by Kupffer cell-derived transforming growth factors type β1 and type α. Biochemical and biophysical research communications, 171(3), 1122-1129.
    MacDonald, M. E., Ambrose, C. M., Duyao, M. P., Myers, R. H., Lin, C., Srinidhi, L. & Harper, P. S. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell, 72(6), 971-983.
    Nuzio, S. G., Tizzard, S. A., & Vajro, P. (2014). Tips and hints for the transition: What adult hepatologists should know when accept teens with a pediatric hepatobiliary disease. Clinics and research in hepatology and gastroenterology, 38(3), 277-283.
    Nussbaum, R. L., & Ellis, C. E. (2003). Alzheimer's disease and Parkinson's disease. New england journal of medicine, 348(14), 1356-1364.
    Nowak, K. (2020). Parenteral nutrition–associated liver disease. Clinical liver disease, 15(2), 59.
    Nathan, S., Ma, Y., Tomita, Y. A., De Oliveira, E., Brown, M. L., & Rosen, E. M. (2017). BRCA1-mimetic compound NSC35446. HCl inhibits IKKB expression by reducing estrogen receptor-α occupancy in the IKKB promoter and inhibits NF-κB activity in antiestrogen-resistant human breast cancer cells. Breast cancer research and treatment, 166(3), 681-693.
    Østerby, R., Gundersen, H. J. G., Nyberg, G., & Aurell, M. (1987). Advanced diabetic glomerulo-pathy: quantitative structural characterization of nonoccluded glomeruli. Diabetes, 36(5), 612-619.
    Park, J. H., Choi, J. Y., Jo, C., & Koh, Y. H. (2020). Involvement of ADAM10 in acrolein-induced astrocytic inflammation. Toxicology Letters, 318, 44-49.
    Papatheodorou, K., Banach, M., Bekiari, E., Rizzo, M., & Edmonds, M. (2018). Complications of diabetes 2017. Journal of Diabetes Research, 2018.
    Paul, B. D., & Snyder, S. H. (2015). Modes of physiologic H2S signaling in the brain and peripheral tissues. Antioxidants & redox signaling, 22(5), 411-423.
    Paul, B. D., Sbodio, J. I., & Snyder, S. H. (2018). Cysteine metabolism in neuronal redox homeostasis. Trends in pharmacological sciences, 39(5), 513-524.
    Rao, R., Graffeo, C. S., Gulati, R., Jamal, M., Narayan, S., Zambirinis, C. P., Barilla, R., Deutsch, M., Greco, S.H., Ochi, A., Tomkötter, L., Blobstein, R., Avanzi, A., Tippens, D.M., Gelbstein, Y., Heerden, E.V., & Miller, G. (2014). Interleukin 17–producing γδT cells promote hepatic regeneration in Mice. Gastroenterology, 147(2), 473-484.
    Rahman, A. H., & Aloman, C. (2013). Dendritic cells and liver fibrosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1832(7), 998-1004.
    Ramachandran, P., & Iredale, J. P. (2012). Macrophages: central regulators of hepatic fibrogenesis and fibrosis resolution. Journal of hepatology, 56(6), 1417-1419.
    Rajamaki, K., Lappalainen, J., Oorni, K., Valimaki, E., Matikainen, S., & Kovanen, P. T. K. 539 K. Eklund. 2010. Cholesterol crystals activate the NLRP3 inflammasome in human 540 macrophages: a novel link between cholesterol metabolism and inflammation. PLoS. One, 5(541), e11765.
    Sharma, B. R., & Kanneganti, T. D. (2021). NLRP3 inflammasome in cancer and metabolic diseases. Nature immunology, 22(5), 550-559.
    Song, J. J., Lee, J. D., Lee, B. D., Chae, S. W., & Park, M. K. (2013). Effect of acrolein, a hazardous air pollutant in smoke, on human middle ear epithelial cells. International journal of pediatric otorhinolaryngology, 77(10), 1659-1664.
    Sairenji, T., Collins, K. L., & Evans, D. V. (2017). An update on inflammatory bowel disease. Primary Care: Clinics in Office Practice, 44(4), 673-692.
    Stevens, J. F., & Maier, C. S. (2008). Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Molecular Nutrition & Food Research, 52(1), 7-25.
    Si-Tayeb, K., Lemaigre, F. P., & Duncan, S. A. (2010). Organogenesis and development of the liver. Developmental cell, 18(2), 175-189.
    Seitz, H. K., Bataller, R., Cortez-Pinto, H., Gao, B., Gual, A., Lackner, C., Mathurin, P., Mueller, S., Szabo, G. & Tsukamoto, H.(2018). Alcoholic liver disease. Nature reviews Disease primers, 4(1), 1-22.
    Sun, H., Sun, C., Tian, Z., & Xiao, W. (2013). NK cells in immunotolerant organs. Cellular & molecular immunology, 10(3), 202-212.
    Spits, H., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., Koyasu, S., Locksley, R.M., McKenzie, A.N., Mebius, R.E., Powrie, F. & Vivier, E. (2013). Innate lymphoid cellsa proposal for uniform nomenclature. Nature reviews immunology, 13(2), 145-149.
    Sica, A., Erreni, M., Allavena, P., & Porta, C. (2015). Macrophage polarization in pathology. Cellular and molecular life sciences, 72(21), 4111-4126.
    Szabo, G., & Petrasek, J. (2015). Inflammasome activation and function in liver disease. Nature reviews Gastroenterology & hepatology, 12(7), 387-400.
    Savelieff, M. G., Nam, G., Kang, J., Lee, H. J., Lee, M., & Lim, M. H. (2018). Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chemical reviews, 119(2), 1221-1322.
    Tanaka, H., Fujita, N., & Tsuruo, T. (2005). 3-Phosphoinositide-dependent protein kinase-1-mediated IκB kinase β (IKKB) phosphorylation activates NF-κB signaling. Journal of Biological Chemistry, 280(49), 40965-40973.
    Tan, Q., Hu, J., Yu, X., Guan, W., Lu, H., Yu, Y., Yu, Y., Zang, G. & Tang, Z. (2016). The role of IL-1 family members and Kupffer cells in liver regeneration. BioMed research international, 2016.
    Tarantino, G., Cabibi, D., Camma, C., Alessi, N., Donatelli, M., Petta, S., Craxì, A. & Di Marco, V. (2008). Liver eosinophilic infiltrate is a significant finding in patients with chronic hepatitis C. Journal of viral hepatitis, 15(7), 523-530.
    Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol. 2017 Nov 6;27(21):R1147-R1151. doi:10.1016/j.cub.2017.09.019. PMID: 29112863; PMCID: PMC5897118.
    Troisi, J., Pierri, L., Landolfi, A., Marciano, F., Bisogno, A., Belmonte, F., Palladino, C., Nuzio, S.G., Campiglia, P. & Vajro, P. (2017). Urinary metabolomics in pediatric obesity and NAFLD identifies metabolic pathways/metabolites related to dietary habits and gut-liver axis perturbations. Nutrients, 9(5), 485.
    Thomson, A. W., & Knolle, P. A. (2010). Antigen-presenting cell function in the tolerogenic liver environment. Nature Reviews Immunology, 10(11), 753-766.
    Thurman, R. G. (1998). II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin.American Journal of Physiology-Gastrointestinal and Liver Physiology, 275(4), G605-G611.
    Valatas, V., Kolios, G., Manousou, P., Xidakis, C., Notas, G., Ljumovic, D., & Kouroumalis, E. A. (2004)Secretion of inflammatory mediators by isolated rat Kupffer cells: the effect of octreotide.Regulatory peptides, 120(1-3), 215-225.
    Wilcox, G. (2005). Insulin and insulin resistance. Clinical Biochemist Reviews, 26(2), 19.
    Wang,C., Ma,C., Gong,L., Guo, Y., Fu, K., Zhang, Y., ... & Li, Y. (2021). Macrophage polarization and its role in liver disease. Frontiers in Immunology, 5381.
    Wree, A., McGeough, M. D., Peña, C. A., Schlattjan, M., Li, H., Inzaugarat, M. E., Messer, K., Canbay, A., Hoffman, H.M. & Feldstein, A. E. (2014). NLRP3 inflammasome activation is required for fibrosis development in NAFLD.Journal of molecular medicine, 92(10), 1069- 1082.
    Witz, G. (1989). Biological interactions of α, β-unsaturated aldehydes. Free Radical Biology and Medicine, 7(3), 333-349
    Yu, X., Lan, P., Hou, X., Han, Q., Lu, N., Li, T., Jiao, C., Zhang, J., Zhang, C. & Tian, Z. (2017). HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production. Journal of Hepatology, 66(4), 693-702.
    Yin, Z., Jiang, K., Shi, L., Fei, J., Zheng, J., Ou, S., & Ou, J. (2020). Formation of di-cysteine acrolein adduct decreases cytotoxicity of acrolein by ROS alleviation and apoptosis intervention. Journal Of Hazardous Materials, 387, 121686.
    Yin, G., Gan, Y., Jiang, H., Yu, T., Liu, M., Zhang, Y., Li, H., Yin, P. & Yao, S. (2021). Direct quantification and visualization of homocysteine, cysteine, and glutathione in Alzheimer’s and Parkinson’s disease model tissues. Analytical Chemistry, 93(28), 9878-9886.
    Younossi, Z. M. (2019). Non-alcoholic fatty liver disease–a global public health perspective. Journal of hepatology, 70(3), 531-544.
    Zou, Z., Yin, Z., Ou, J., Zheng, J., Liu, F., Huang, C., & Ou, S. (2021). Identification of adducts formed between acrolein and alanine or serine in fried potato crisps and the cytotoxicity lowering effect of acrolein in three cell lines. Food Chemistry, 361, 130164.

    無法下載圖示 電子全文延後公開
    2027/09/27
    QR CODE