簡易檢索 / 詳目顯示

研究生: 涂志銘
Tu, Chih-Ming
論文名稱: 探究七年級學生之神經系統另有概念
Investigating Seventh Grade Students’ Alternative Conceptions of the Nervous System
指導教授: 林陳涌
Lin, Chen-Yung
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 142
中文關鍵詞: 另有概念神經系統概念圖
英文關鍵詞: alternative conception, nervous system, concept map
DOI URL: https://doi.org/10.6345/NTNU202202496
論文種類: 學術論文
相關次數: 點閱:28下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在深入探究學生的另有概念,做為增進生物教學與改善生物課程的參考,利用自行發展的「神經系統概念診斷工具(CDIN)」做為探究七年級學生神經系統另有概念的工具,並採用詮釋性研究法,分析學生回答CDIN的理由,深入探究學生在神經系統單元所具有的另有概念。另外,利用概念圖晤談的方式,引導學生繪製神經系統概念圖,透過分析學生概念圖的結構、概念圖的型態、概念圖上位概念使用與概念圖連接詞使用,釐清學生的神經系統概念之知識架構。
    研究結果顯示,CDIN是一個有效的概念診斷工具,CDIN的診斷結果反映學生在神經系統單元,確實存有另有概念,特別在神經系統掌控心跳呼吸等生理反應的概念,存有較多的另有概念,有關神經系統控制人體生理活動和神經傳遞路徑的相關概念,學生也有許多與科學概念不同的想法。
    概念圖分析的結果顯示,學生繪製的概念圖結構相對於課本內容概念圖的結構簡單許多,不論是概念數、命題數、分支數、階層數和交叉連結數明顯偏少。而概念圖型態部分,大部分學生能形成網絡狀概念圖,但也有學生的概念圖型態為線型、兩群型、三群型或四群型。在上位概念的使用上,學生最習慣使用「腦」為上位概念,還會形成不同的上位概念組合。概念圖連結詞的分析結果顯示,使用最多的是包含關係連結詞,其次是行動關係連接詞,描述特徵關係的連結詞使用比例相對較低。
    依據研究的結果,建議進行神經系統教學時,應該多結合日常生活的經驗,幫助學生建構陌生的神經系統概念,重視神經系統概念階層的說明,特別要強調中樞神經和周圍神經兩個概念。另外,教學時,應該增加說明神經系統概念間的特徵關係,以增進學生的概念理解。在神經系統教材編寫上,應該運用生活化的例子介紹神經系統概念,運用圖形描繪神經系統概念的階層,幫助學生釐清中樞神經系統與周圍神經系統,並透過表格比較,幫助學生區別幾個具有「神經」名詞的概念,另外,教材編寫時可以多增加概念間特徵關係的描述,以幫助學生更全面的理解神經系統概念。

    關鍵詞:另有概念、神經系統、概念圖

    The purpose of this study is to investigate the seventh grade students’ alternative conceptions in order to improve the biology teaching and the biological curriculum. The “concept diagnostic instrument in nervous system, CDIN” is developed as a tool to explore students’ alternative conceptions. By means of analyzing the reasons for answering CDIN questions, the students’ alternative conceptions can be revealed. In addition, the concept map interview framework is designed to explore students’ concept maps. By means of analyzing the structures of concept map, the patterns of concept map, the superordinate concepts of concept map and the linking words used in the concept map, students’ knowledge frameworks can be clarified.
    The results of the study showed that CDIN is a valid instrument for diagnostic students’ conceptions. The results of CDIN reflected that students indeed have a variety of alternative conceptions in nervous system, especially the concepts of “the nervous system control heartbeat, breathing and other physiological responses”. The concepts related to “the human physiological activities are controlled by nervous system” and “the nervous signal transduction pathways”, students also had some conceptions different from the scientific concepts.
    The results of the concept map revealed that the conceptual structure of students’ concept maps are much simpler than that of textbook. Students’ concept maps had less conceptions, propositions, branches, hierarchies and crosslinks than those showed in the concept map of textbook. Most students formed a network pattern of concept map, but there were students formed the patterns of the linear, the two groups, the three groups and the four groups. In the use of the superordinate concept, students were most accustomed to using the “brain” for the superordinate concept. In addition, students also used different combinations of superordinate concepts to draw concept maps. The results of the linking words showed that the inclusion relations were most used in the concept maps. Students also used a lot of the linking words belonged to action relations to describe the relationships between two concepts. Therefore, the linking words that describing the characteristic relations were less used in the concept maps.
    According to the results of the study, it is suggested that the teaching of the nervous system should combine the scientific concepts with the daily life experiences to help students construct the conceptions. Teaching should focus on the concepts of “central nervous system” and “peripheral nervous system” to help students construct a complete structure of the nervous system. In addition, teaching should be added more characteristics relations between conceptions to enhance the students’ understanding of the nervous system conceptions.

    Keywords: alternative conceptions, nervous system, concept map

    摘要 i Abstract iii 目次 v 表次 vii 圖次 ix 第壹章 緒論 1 第一節 研究的背景與理念 2 第二節 研究的重要性 6 第三節 研究的目的與問題 7 第四節 名詞釋義 8 第貳章 文獻評述 11 第一節 學生的另有概念與科學學習 11 第二節 探究學生另有概念的方法 16 第三節 神經系統概念研究成果 27 第參章 研究方法與過程 29 第一節 研究的對象 29 第二節 研究的工具 30 第三節 研究的內容與過程 37 第肆章 研究結果與討論 43 第一節 神經系統控制人體大多數生理活動之另有概念 44 第二節 跑步接球的神經傳導路徑之另有概念 59 第三節 腦幹掌管心跳呼吸之另有概念 68 第四節 神經系統概念圖分析 74 第伍章 結論與建議 105 第一節 結論 105 第二節 建議 110 參考文獻 117 附錄一 神經系統概念診斷工具 135 附錄二 神經系統概念圖連接詞分類整理表 139

    中文部分:
    沈鴻明、蔡長添(1996)。國中學生神經系統之概念發展。科學教育,1-20。
    涂志銘、林秀玉、張賴妙理、鄭湧涇(2008)。符合建構論理念的教學策略對植物的養分與能量概念學習的成效。科學教育學刊, 16(1),頁75-103。
    涂志銘、張賴妙理、鄭湧涇(2001,12月)。運用診斷測驗探究國一學生對神經系統之另有概念。「中華民國第十七屆科學教育學術研討會」發表之論文,高雄市:國立高雄科技工藝博物館。
    涂志銘、張賴妙理、鄭湧涇(2003,12月)。國一學生遺傳概念改變之研究。「中華民國第十九屆科學教育學術研討會」發表之論文,台北市:國立臺灣師範大學。
    張賴妙理、涂志銘、鄭湧涇(2001,12月)。符合建構論者理念的教學策略對生殖與遺傳概念學習成效之影響。「中華民國第十七屆科學教育學術研討會」發表之論文,高雄市:國立高雄科技工藝博物館。
    陳明鈺(2006)。國中生循環系統概念改變之研究—雙重情境學習模式(DSLM)的影響。未出版之碩士論文論文,國立臺灣師範大學,台北市。
    楊坤原、張賴妙理(2004a)。發展和應用二段式診斷工具來偵測國中一年級學生之遺傳學另有概念。科學教育學刊,12(1),頁 107-131。
    楊坤原、張賴妙理(2004b)。遺傳學迷思概念之文獻探討及其在教學上的啟示。科學教育學刊, 12(3),頁 365-398。
    薛靜瑩(1998)。國小、國中學生的遺傳先前概念。未出版之碩士論文論文,國立臺灣師範大學,台北市。

    英文部分:
    Albaladejo, C., & Lucas, A. M. (1988). Pupils' meanings for "mutation". Journal of Biological Education, 22(3), 215-219.
    Ausubel, D. P. (1968). Educational psychology: A cognitive view. San Francisco: Holt, Rinehart, & Winton.
    Bachelard, G. (1968). The philosophy of No. A philosophy of the new scientific mind. New York: The Orion Press.
    Baird, J. R., & Mitchell, I. (1986). Improving the quality of teaching and learning - an australian case study. Melbourne: Monash University.
    Biemans, H. J. A., Deel, O. R., & Simons, P. R.-J. (2001). Differences between successful and less successful students while working with the CONTACT-2 strategy. Learning and Instruction, 11(4-5), 265-282.
    Biemans, H. J. A., & Simmons, P. R.-J. (1999). Computer-assisted instructional strategies for promoting conceptual change. In W. Schnotz, S. Vosniadou & M. Carretero (Eds.), New perspectives on conceptual change (pp. 247-262). Oxford: Pergamon.
    Brown, D. E., & Clement, J. (1989). Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18, 237-261.
    Burry-Stock, J. A., & Oxford, R. L. (1994). Expert science teaching educational evaluation model (ESTEEM) for measuring excellence in science teaching for professional development. Journal of Personnel Evaluation in Education, 8(3), 267-297.
    Bybee, R. W., & Landes, N. M. (1990). Science for life and living: An elementary school science program from Biological Science Curriculum Study. American Biology Teacher, 52(2), 92-98.
    Carey, S. (1985). Conceptual change in childhood. Cambridge, Mass: The MFT Press.
    Carey, S. (2000). Science education as conceptual change. Journal of Applied Developmental Psychology, 21(1), 13-19.
    Carr, M. (1996). Interviews about instances and interviews about events. In D. F. Treagust, R. Duit & B. J. Fraser (Eds.), Improving teaching and learning in science and mathematics (pp. 44-53). New York: Teachers College Press.
    Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Implication for learning and discovery in sciences. In R. Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science (pp. 129-186). Minneapolis: University of Minnesota Press.
    Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. The Journal of The Learning Sciences, 14(2), 161-199.
    Chi, M. T. H., & Roscoe, R. D. (2002). The processes and challenges of conceptual change. In M. Limon & L. Mason (Eds.), Reconsidering Conceptual Change: Issues in theory and practice (pp. 3-28). Dordrecht: Kluwer Academic Publishers.
    Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.
    Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1-49.
    Chiu, M.-H., Chou, C.-C., & Liu, C.-J. (2002). Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium. Journal of Research in Science Teaching, 39(8), 688-712.
    Chiu, M.-H., & Lin, J.-W. (2005). Promoting fourth graders' conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 429-464.
    Demastes, S. S., Good, R. G., & Peebles, P. (1995). Students' conceptual ecologies and the process of conceptual change in evolution. Science Education, 79(6), 637-666.
    Demastes, S. S., Good, R. G., & Peebles, P. (1996). Patterns of conceptual change in evolution. Journal of Research in Science Teaching, 33(4), 407-431.
    Dole, J. A., & Sinatra, G. M. (1998). Reconceptualizing change in the cognitive construction of knowledge. Educational Psychologist, 33(2/3), 109-128.
    Driver, R. (1981). Pupils' alternative frameworks in science. European Journal of Science Education, 3(1), 93-101.
    Driver, R. (1988). Theory into Practice 2: A constructivist approach to curriculum development. In P. Fensham (Ed.), Development and dilemmas in Science Education (pp. 133-149). London: The Falmer Press.
    Driver, R., & Erickson, G. L. (1983). Theories-in-action: Some theoretical and empirical issues in the study of students' conceptual frameworks in science. Studies in Science Education, 10, 37-60.
    Duit, R. (1991a). On the role of analogies and metaphors in learning science. Science Education, 75(6), 649-672.
    Duit, R. (1991b). Students' conceptual frameworks: Consequences for learning science. In S. M. Glynn, R. H. Yeany & B. K. Britton (Eds.), The psychology of learning science (pp. 65-85). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Duit, R. (1995). The constructivist view: A fashionable and fruitful paradigm for science education research and practice. In L. P. Steffe & J. Gale (Eds.), Constructivism in Education (pp. 271-285). Hillsdale, New Jersey: Lawrence Erlbaum Associates.
    Duit, R. (1999). Conceptual change approaches in science education. In W. Schnotz, S. Vosniadou & M. Carretero (Eds.), New perspectives on conceptual change (pp. 263-282). Amsterdam: Pergamon.
    Duit, R. (2007). Bibliography STCSE: Students' and Teachers' Conceptions and Science Education (Publication. Retrieved March, 2007, from University of Kiel, IPN-Leibniz Institute for Science Education Web site: http:\\www.ipn.uni-kiel.de/aktuell/stcse/stcse.html
    Duit, R., Roth, W.-M., Komorek, M., & Wilbers, J. (1998). Conceptual change cum discourse analysis to understand cognition in a unit on chaotic systems: towards an integrative perspective on learning in science. International Journal of Science Education, 20(8), 1059-1074.
    Duit, R., Roth, W.-M., Komorek, M., & Wilbers, J. (2001). Fostering conceptual change by analogies - between Scylla and Charybdis. Learning and Instruction, 11(4-5), 283-303.
    Duit, R., & Treagust, D. F. (1995). Students' conceptions and constructivist teaching approaches. In B. J. Fraser & H. J. Walberg (Eds.), Improving Science Education (pp. 46-69). Chicago: The University of Chicago Press.
    Duit, R., & Treagust, D. F. (1998). Learning in science - From behaviourism towards social constructivism and beyond. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of Science Education, Part 1 (pp. 3-25). Dordrecht, Netherlands: Kluwer Academic Press.
    Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688.
    Dupré, J. (1993). The disorder of things: Metaphysical foundations of the disunity of science. Cambridge, Mass: Harvard University Press.
    Dykstra, D. I. (1992). Studying conceptual change: Constructing new understandings. In R. Duit, F. Goldberg & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 40-58). Kiel: IPN.
    Edmondson, K. M. (2000). Assessing science understanding through concept maps. In J. J. Mintzes, J. H. Wandersee & J. Novak (Eds.), Assessing science understanding - A human constructivist view (pp. 15-40). San Diego: Academic Press.
    Engel Clough, E., & Wood-Robinson, C. (1985). Children's understanding of inheritance. Journal of Biological Education, 19(4), 304-310.
    Fisher, K. M. (1988). Relations used in student-generated knowledge representations. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.
    Fisher, K. M. (2000a). Overview of knowledge mapping. In K. M. Fisher, J. H. Wandersee & D. E. Moddy (Eds.), Mapping biology knowledge (pp. 5-23). Netherlands: Kluewer Academic.
    Fisher, K. M. (2000b). SemNet semantic Networking. In K. M. Fisher, J. H. Wandersee & D. E. Moody (Eds.), Mapping biology knowledge (pp. 143-166). Dordrecht: Kluwer Academic Publishers.
    Glynn, S. M., & Duit, R. (1995). Learning science meaningfully: Constructing conceptual models. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp. 3-33). Mahwah, NJ: Lawrence Erlbaum Associates.
    Glynn, S. M., Yeany, R. H., & Britton, B. K. (1991). A constructive view of learning science. In S. M. Glynn, R. H. Yeany & B. K. Britton (Eds.), The psychology of learning science (pp. 3-19). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Gregoire, M. (2003). Is it a challenge or a threat? A dual-process model of teachers' cognition and appraisal process during conceptual change. Educational Psychologist Review, 15, 117-155.
    Griffard, P. B., & Wandersee, J. H. (2001). The two-tier instrument on photosynthesis: What does it diagnose? International Journal of Science Education, 23(10), 1039-1052.
    Grosslight, L., Unger, C. M., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
    Halldén, O. (1999). Conceptual change and contextualization. In W. Schnotz, S. Vosniadou & M. Carretero (Eds.), New perspectives on conceptual change (pp. 53-66). Oxford: Pergamon.
    Harrison, A. G., & Treagust, D. F. (2001). Conceptual change using multiple interpretive perspectives: Two case studies in secondary school chemistry. Instructional Science, 29, 45-85.
    Havu, S. (2005). Examining young children's conceptual change process in floating and sinking from a social constructivist perspective. International Journal of Science Education, 27(3), 259-279.
    Hennessy, S. (1993). Situated cognition and cognitive apprenticeship: Implications for classroom learning. Studies in Science Education, 22, 1-41.
    Hesse, M. B. (1967). Models and analogies in science. In P. Edwards (Ed.), The encyclopedia of philosophy (pp. 354-359). New York: Free Press.
    Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students' prior knowledge and conceptual change strategies in science learning. Journal of Research in Science Teaching, 20(8), 731-743.
    Hewson, P. W. (1982). A case study of conceptual change in special relativity: The influence of prior knowledge in learning. European Journal of Research in Science Education, 4(1), 61-78.
    Hewson, P. W. (1996). Teaching for conceptual change. In D. F. Treagust, R. Duit & B. J. Fraser (Eds.), Improving teaching and learning in science and mathematics (pp. 131-140). New York: Teachers College Press.
    Hewson, P. W., & Lemberger, J. (1999). Status and subscribing: A response to Schwitzgebel. Science & Education, 8(5), 507-523.
    Hewson, P. W., & Thorley, N. R. (1989). The conditions of conceptual change in the classroom. International Journal of Science Education, 11, 541-553.
    Jones, M. G., Carter, G., & Rua, M. J. (2000). Exploring the development of conceptual ecologies: Communities of concepts related to convection and heat. Journal of Research in Science Teaching, 37(2), 139-159.
    Kang, S., Scharmann, L. C., Noh, T., & Koh, H. (2005). The influence of students' cognitive and motivational variables in respect of cognitive conflict and conceptual change. International Journal of Science Education, 27(9), 1037-1058.
    Kinchin, I. M. (2000). From 'ecologist' to 'conceptual ecologist': The utility of the conceptual ecology for teachers of biology. Journal of Biological Education, 34(4), 178-183.
    Kindfield, A. C. H. (1991). Confusing chromosome number and structure: A common student error. Journal of Biological Education, 25(3), 193-200.
    Kuhn, T. (1970). The structure of scientific revolutions. Chicago: University of Chicago Press.
    Lakatos, I. (1970). Falsification and the methodology of scientific research programmers. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth and the knowledge (pp. 91-195). Cambridge: Cambridge University Press.
    Laukenmann, M., Bleicher, M., Mayring, P., & von Rhöneck, C. (2003). An investigation of the influence of emotional factors on learning in physics instruction. International Journal of Science Education, 25(4), 489-507.
    Lavoie, D. R. (1999). The effects of emphasizing hypothetico-predicitve reasoning within the science learning cycle on high school students’ process skills and conceptual understandings in biology. Journal of Research in Science Teaching, 36(10), 1127-1147.
    Lawson, A. E., Abraham, M. R., & Renner, J. W. (1989). A theory of instruction: Using the learning cycle to teach science concepts and thinking skills. NARST Monograph Number One.
    Lawson, A. E., Alkhoury, S., Benford, R., Clark, B. R., & Falconer, K. A. (2000). What kinds of scientific concepts exist? concept construction and intellectual development in college biology. Journal of Research in Science Teaching, 37(9), 996-1018.
    Lawson, A. E., & Rissing, S. W. (1990). An inquiry approach to nonmajors biology. Journal of College Science Teaching, 23(6), 340-346.
    Lee, Y., & Law, N. (2001). Explorations in promoting conceptual change in electrical concepts via ontological category shift. International Journal of Science Education, 23(2), 111-149.
    Lewis, J., Leach, J., & Wood-Robinson, C. (2000a). All in the genes? - Young people's understanding of the nature of genes. Journal of Biological Education, 34(2), 74-79.
    Lewis, J., Leach, J., & Wood-Robinson, C. (2000b). Chromosomes: The missing link - young people's understanding of mitosis, meiosis, and fertilisation. Journal of Biological Education, 34(4), 189-199.
    Lewis, J., Leach, J., & Wood-Robinson, C. (2000c). What's in the cell? - Young people's understanding of the genetic relationship between cells, within an individual. Journal of Biological Education, 34(3), 129-132.
    Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance - Do students see any relationship? International Journal of Science Education, 22(2), 177-196.
    Limón, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal. Learning and Instruction, 11(4-5), 357-380.
    Lin, S.-W. (2004). Development and application of a two-tier diagnostic test for high school students' understanding of flowering plant growth and development. International Journal of Science and Mathematics Education, 2(2), 175-199.
    Linnenbrink, E. A., & Pintrich, P. R. (2002). The role of motivational beliefs in conceptual change. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issue in theory and practice (pp. 115-135). Dordrecht: Kluwer Academic Publishers.
    Liu, X. (2004). Using concept mapping for assessing and promoting relational conceptual change in science. Science Education, 88(3), 373-396.
    Marbach-Ad, G., & Stavy, R. (2000). Students' cellular and molecular explanations of genetic phenomena. Journal of Biological Education, 34(4), 200-205.
    Mason, L. (2001). Introducing talk and writing for conceptual change: A classroom study. Learning and Instruction, 11(4-5), 305-329.
    Mintzes, J. J., Wandersee, J. H., & Novak, J. D. (2001). Assessing understanding in biology. Journal of Biological Education, 35(3), 118-124.
    Mirjamaija, M.-E. (2001). Improving conceptual change concerning photosynthesis through text design. Learning and Instruction, 11(3), 241-257.
    Mortimer, E. (1995). Conceptual change or conceptual profile change? Science & Education, 4(3), 267-285.
    Narode, R. (1987). Standardized testing for misconceptions in basic mathematics. In J. D. Novak (Ed.), 2nd international seminar on misconception and educational strategies in science and mathematics, 1 (pp. 222-333). Ithaca, NY: Cornell University.
    Nieswandt, M. (2001). Problems and possibilities for learning in an introductory chemistry course from a conceptual change perspective. Science Education, 85(2), 158-179.
    Novak, J. D. (1978). An alternative to piagetian psychology for science and mathematics education. Studies in Science Education, 5, 1-30.
    Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge: Cambridge University Press.
    Oakes, M. E. (1947). Children's explanations of natural phenomena. New York: Columbia University, Teachers College.
    Odom, A. L., & Barrow, L. H. (1995). Development and application of a two-tier diagnostic test measuring college biology students' understanding of diffusion and osmosis after a course of instruction. Journal of Research in Science Teaching, 32(1), 45-61.
    Osborne, R., & Freyberg, P. (1985). Learning in science: The implications of children's science. Auckland: Heinemann.
    Osborne, R., & Gilbert, J. K. (1980). A method for investigating concept understanding in science. European Journal of Science Education, 2(3), 311-321.
    Park, H. J. (2007). Components of conceptual ecologies. Research in Science Education, 37(2), 217-237.
    Pella, M. O. (1966). Concept learning in science. The Science Teacher, 33(9), 31-34.
    Piaget, J. (1981). The psychology of intelligence. New Jersey: Littlefield, Adams & Co.
    Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: the role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63(2), 167-199.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211-227.
    Ramorogo, G., & Wood-Robinson, C. (1995). Batswana children's understanding of biological inheritance. Journal of Biological Education, 29(1), 60-71.
    Reynold, R. E. (2000). Attentional resource emancipation: Towards understanding the interaction of word identification and comprehension processes in reading. Scientific Studies of Reading, 4(3), 169-195.
    Runmelhart, D. E., & Norman, D. A. (1981). Accretion, tuning and restructuring: three modes of learning. In R. Klatsky & J. W. Cotton (Eds.), Semantic factors in cognition. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Sadler, P. M. (2000). The relevance of multiple-choice testing in assessing science understanding. In J. J. Mintzes, J. H. Wandersee & J. D. Novak (Eds.), Assessing science understanding - A human constructivist view (pp. 249-278). San Diego: Academic Press.
    Savinainen, A., Scott, P., & Viiri, J. (2005). Using a bridging representation and social interactions to foster conceptual change: Designing and evaluating an instructional sequence for Newton's third law. Science Education, 89(2), 175-195.
    She, H.-C. (2002). Concepts of a higher hierarchical level require more dual situated learning events for conceptual change: A study of air pressure and buoyancy. International Journal of Science Education, 24(9), 981-996.
    She, H.-C. (2004). Fostering radical conceptual change through dual-situated learning model. Journal of Research in Science Teaching, 41(2), 142-164.
    Sinatra, G. M. (2002). Motivational, social, and contextual aspects of conceptual change: a commentary. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 187-197). Dordrecht: Kluwer Academic Publishers.
    Sinatra, G. M., & Pintrich, P. R. (2003). The role of intentions in conceptual change learning. In G. M. Sinatra & P. R. Pintrich (Eds.), Intentional conceptual change (pp. 1-18). Mahwah, NJ: Lawrence Erlbaum Associates.
    Sinatra, G. M., Southerland, S. A., McConaughy, F., & Demastes, J. W. (2003). Intentions and beliefs in students' understanding and acceptance of biological evolution. Journal of Research in Science Teaching, 40(5), 510-528.
    Southerland, S. A., Smith, M. U., & Cummins, C. L. (2000). "What do you mean by that?": Using structured interviews to assess science understanding. In J. J. Mintzes, J. H. Wandersee & J. D. Novak (Eds.), Assessing science understanding - A human constructivist view (pp. 71-93). San Diego: Academic Press.
    Stewart, J., Hafner, B., & Dale, M. (1990). Students' alternative views of meiosis. The American Biology Teacher, 52(4), 228-232.
    Strike, K. A., & Posner, G. J. (1985). A conceptual change view of learning and understanding. In L. West & L. Pines (Eds.), Cognitive structure and conceptual change (pp. 211-231). Orlando: Academic Press.
    Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 147-176). Albany: State University of New York Press.
    Tang, H. Y., She, H.-C., & Lee, Y. M. (2005). Promoting middle school students' conceptual change involving mitosis and meiosis with a DSLM instructional approach. Paper presented at the National Association for Research in Science Teaching 2005 World Conference, Dallas, Texas.
    Thagard, P. (1992). Conceptual revolution. Princeton, NJ: Princeton University Press.
    Thompson, T. L., & Mintzes, J. J. (2002). Cognitive structure and the affective domain: On knowing and feeling in biology. International Journal of Science Education, 24(6), 645-660.
    Toulmin, S. E. (1972). Human understanding. Princeton, NJ: Princeton University Press.
    Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students' misconceptions in science. International Journal of Science Education, 10(2), 159-169.
    Treagust, D. F., Duit, R., & Fraser, B. J. (1996). Overview: Research on students' preinstructional conceptions - The driving force for improving teaching and learning in science and mathematics. In D. F. Treagust, R. Duit & B. J. Fraser (Eds.), Improving teaching and learning in science and mathematics (pp. 1-16). New York: Teachers College Press.
    Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81(4), 387-404.
    Venville, G. J. (2004). Young children learning about living things: a case study of conceptual change from ontological and social perspectives. Journal of Research in Science Teaching, 41(5), 449-480.
    Venville, G. J., Gribble, S. J., & Donovan, J. (2005). An exploration of young children's understandings of genetics concepts from ontological and epistemological perspectives. Science Education, 89(4), 614-633.
    Venville, G. J., & Treagust, D. F. (1996). The role of analogies in promoting conceptual change in biology. Instructional Science, 24, 295-320.
    Venville, G. J., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35(9), 1031-1056.
    von Glasersfeld, E. (2000). Problems of constructivism. In L. P. Steffe & P. W. Thompson (Eds.), Radical constructivism in action (pp. 3-9). New York: RoutledgeFalmer.
    Vosniadou, S. (1994). Capturing and modelling the process of conceptual change. Learning and Instruction, 4(1), 45-69.
    Vosniadou, S., & Ioannides, C. (1998). From conceptual development to Science Education: A psychological point of view. International Journal of Science Education, 20(10), 1213-1230.
    Wandersee, J. H. (2000a). Using concept circle diagramming as a knowledge mapping tool. In K. M. Fisher, J. H. Wandersee & D. E. Moody (Eds.), Mapping biology knowledge (pp. 109-126). Dordrecht: Kluwer Academic Publishers.
    Wandersee, J. H. (2000b). Using concept mapping as a knowledge mapping tool. In K. M. Fisher, J. M. Wandersee & D. E. Moody (Eds.), Mapping biology knowledge (pp. 127-142). Dordrecht, The Netherlands: Kluwer Academic Publishers.
    Wandersee, J. H., Fisher, K. M., & Moody, D. E. (2000). The nature of biology knowledge. In K. M. Fisher, J. M. Wandersee & D. E. Moody (Eds.), Mapping biology knowledge (pp. 39-54). Dordrecht, The Netherlands: Kluwer Academic Publishers.
    Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 177-210). New York: Macmillan.
    Wang, J.-R. (2004). Development and validation of a two-tier instrument to examine understanding of internal transport in plants and the human circulatory system. International Journal of Science and Mathematics Education, 2(2), 131-157.
    Ward, R. E., & Wandersee, J. H. (2001). Visualizing science using the roundhouse diagram. Science Scope, 17, 17-21.
    Ward, R. E., & Wandersee, J. H. (2002). Students' perceptions of Roundhouse diagramming: a middle-school viewpoint. International Journal of Science Education, 24(2), 205-225.
    White, R., & Gunstone, R. (1992). Probing understanding. London, UK: The Falmer Press.
    White, R. T. (1987). The future of research on cognitive structure and conceptual change. Paper presented at the annual meeting of the American Educational Research Association, Washington D. C.
    White, R. T. (1994). Dimensions of content. In P. J. Fensham, R. F. Gunstone & R. T. White (Eds.), The content of science: a constructivist approach to its teaching and learning (pp. 255-262). London: Falmer Press.
    Wiser, M., & Amin, T. (2001). "Is heat hot?" Inducing conceptual change by integrating everyday and scientific perspectives on thermal phenomena. Learning and Instruction, 11(4-5), 331-355.
    Wood-Robinson, C. (1994). Young people's ideas about inheritance and evolution. Studies in Science Education, 24, 29-47.
    Wood-Robinson, C. (1995). Children's biological ideas: Knowledge about ecology, inheritance, and evolution. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp. 111-130). Mahwah, NJ: Lawrence Erlbaum Associates.
    Wood-Robinson, C., Lewis, J., & Leach, J. (2000). Young people's understanding of the nature of genetic information in the cells of an organism. Journal of Biological Education, 35(1), 29-36.
    Wood-Robinson, C., Lewis, J., Leach, J., & Driver, R. (1998). Young people's understanding of basic genetic terminology. In H. Bayrhuber & F. Brinkman (Eds.), What - Why - How? Research in Didaktik of Biology (pp. 162-172). Kiel: IPN - Materialien.

    下載圖示
    QR CODE