簡易檢索 / 詳目顯示

研究生: 楊東穎
Yang, Dong-Ying
論文名稱: 廣視野數位全像顯微系統最佳化解析度及其光學檢測應用
Wide-field digital holographic microscopy with optimized resolution and its application in optical inspection
指導教授: 鄭超仁
Cheng, Chau-Jern
杜翰艷
Tu, Han-Yen
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 60
中文關鍵詞: 數位全像顯微術廣視野視野範圍升採樣空間帶寬乘積參考球面波
英文關鍵詞: wide-field, field of view, pixel resolution, up-sampling, point source reference wave, space bandwidth product
DOI URL: https://doi.org/10.6345/NTNU202202589
論文種類: 學術論文
相關次數: 點閱:30下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討如何在廣視野數位全像顯微術達成系統最佳化解析度的目的,利用光學空間帶寬乘積與高空間頻率繞射光與參考點光源傳播方向之干涉角度的分析,設計最佳化參數來提升系統的橫向解析度。一般廣視野的系統會受限於光感測元件,因此使用放大倍率小於1的4f系統,來突破光感測元件視野範圍之限制,但光場經過縮束後會遇到像點解析度與橫向解析度不足的問題,因此以紀錄菲涅爾全像片結合升採樣技術,提升重建平面上的像點解析度,並以空間帶寬乘積,探討其最佳化的記錄距離,使系統能達到較大的視野範圍且橫向解析度接近光學解析度。提升像點解析度與橫向解析度後,可以使原本只能解析 線寬13.92um提升至8.77um,視野範圍可達25mmX25mm。
    本研究探討光感測元件的限制以及優化系統解析度,並建立一套玻璃基板的定量化瑕疵檢測之原型機台,具備廣視野單次曝光與即時三維高解析度顯微成像的功能,並可突破影像感測器的像素大小與像素總數的光學偵測限制。最後,設計一五吋光場之廣視野數位全像顯微系統並探討其問題與解決方案,以增加未來光學檢測應用層面的潛力。

    We propose a wide-field digital holographic microscopy system to enhance the field of view. In wide-field system, the field of view is limited by image sensor. So we use telescope to enhance the field of view. To resolve the low pixel resolution, we use up-sampling method in Fresnel transform to enhance the pixel resolution in reconstruction plane. Then, to enhance the lateral resolution, we use spherical reference wave to product the additional magnification in spectrum plane. And using space bandwidth product and high spatial frequency with spherical reference wave to analysis the optimized recording distance in WF-DHM, It’s can get the high resolution and keep the wide field of view. After enhancing the pixel resolution and found the optimized recording distance, we can get the lateral resolution from 13.92um becomes to 8.77um and FOV can reach to 25mm X 25mm. Finally. We have established a prototype for glass substrate quantitative defect detection, with a wide field of view and real-time three-dimensional high-resolution imaging capabilities. Finally, design the FOV about five-inch of the wide field system to explore its problems and solutions to increase the potential of optical detection applications in the future.

    論文摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 廣視野數位全像術發展與現況 1 1.2 研究動機及挑戰 4 1.3 文獻回顧及分析 6 1.3.1 廣視野及橫向高解析度技術 6 1.3.2 光學系統空間解析度分析 8 1.4 論文架構 10 第二章 廣視野遠心數位全像顯微術 11 2.1 原理 11 2.1.1 電腦模擬結果 14 2.1.2 實驗結果與討論 16 2.2 系統最佳化解析度設計 21 2.2.1 空間帶寬乘積分析最佳化解析度及其限制 22 2.2.2 系統解析度之干涉角度設計 28 2.3 結論 34 第三章 廣視野全像量測系統設計及測試分析 35 3.1 廣視野遠心數位全像光機系統設計與分析 35 3.1.1 ASAP建置干涉系統與物體成像之光學分析 38 3.1.2 SolidWorks建置光學量測機台 41 3.2 玻璃基板量測及其瑕疵特性分析 42 3.2.1 玻璃基板光學取像原理 43 3.2.2 瑕疵類型與特性分析 44 3.3 實驗與檢測結果 48 第四章 (五吋)廣視野數位全像系統設計與量測應用 51 4.1 最佳化系統設計 51 4.2 測試與分析 53 4.3 問題及其可能解決的方案 55 第五章 結論與未來展望 56 參考文獻 58

    [1] D. Gabor, “A New Microscopic Principle,” Nature 161, 777-778 (1948).
    [2] Emmett N. Leith and Juris Upatnieks, “Reconstructed Wavefronts and Communication Theory,” J. Opt. Soc. Am. 52, 1123-1130 (1962).
    [3] J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77 (1967).
    [4] Tong Zhang and Ichirou Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221-1223 (1998).
    [5] U. Schnars and W. Jüptner, ”Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 2, 179-181 (1994).
    [6] I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270, (1997).
    [7] E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
    [8] E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 34, 6994-7001 (1999).
    [9] W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002).
    [10] M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express. 2, 2721-2730 (2011).
    [11] W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field of-view using pixel super-resolution,” Opt. Express. 11, 11181-11191 (2010).
    [12] A. Greenbaum, W. Luo, B. Khademhosseinieh, T. W. Su, A. F. Coskun and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” SCIENTIFIC REPORTS 3, 1717 (2013).
    [13] W. Luo, A. Greenbaum, Y. B. Zhang and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light: Sci Applic 2015, 4, e261 (2015).
    [14] S. N. A. Morel, A. Delon, P. Blandin, T. Bordy, O. Cioni, L. Hervé, C. Fromentin, J. Dinten and C. Allier, “Wide-Field Lensfree Imaging of Tissue Slides,” Proc. SPIE 9536, Advanced Microscopy Techniques IV and Neurophotonics II, 95360K (2015).
    [15] U. Schnars and W. P. O. Juptner, Digital Holography, Springer US, New York, 5-69 (2005).
    [16] W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98, 11301–11305 (2001).
    [17] I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
    [18] G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489-4496 (2002).
    [19] Y. C. Lin, M. L. Hsieh, H. Y. Tu, and C. J. Cheng, “Characterization of Liquid Crystal Spatial Light Modulators Using Digital Holographic Microscopy,” DH (2007).
    [20] J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
    [21] L. A. Williams, G. Nehmetallah, R. Aylo, and P. P. Banerjee, “Application of up-sampling and resolution scaling to Fresnel reconstruction of digital holograms,” Appl. Opt. 54, 1443-1452 (2015).
    [22] A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. 13, 3, 470-473 (1996).
    [23] L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express. 13, 7, 2444-2452 (2005).
    [24] D. Claus, D. Iliescu, and P. Bryanston-Cross, “Quantitative space-bandwidth product analysis in digital holography,” Appl. Opt. 50, 34, H116-H127 (2011).
    [25] D. Claus and D. Iliescu, “Optical parameters and space–bandwidth product optimization in digital holographic microscopy,” Appl. Opt. 52, 1, A410-A422 (2013).

    無法下載圖示 本全文未授權公開
    QR CODE