簡易檢索 / 詳目顯示

研究生: 彭及帝
Peng, Chi-Ti
論文名稱: 壹.α-胺基酸的脫羰基耦合反應:中間體的鑑定與2-取代的環狀胺基生物鹼的合成 貳.經脯胺酸衍生物的分子內脫羰基親核性芳香取代反應合成Crispine A
Decarbonylative Coupling of α-Amino Acids: Identification Intermediates and Synthesis of 2-Substituted Cyclic Amino alkaloids Intramolecular Decarbonylative Electrophilic Aromatic Substitution Reaction of Proline Derivatives: Synthesis of Crispine A
指導教授: 簡敦誠
Chien, Tun-Cheng
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 16
中文關鍵詞: 脫羰基耦合反應亞胺離子α-胺基酸
英文關鍵詞: Decarbonylative Coupling, iminium ion, α-amino acids, Crispine A
DOI URL: https://doi.org/10.6345/NTNU202202678
論文種類: 學術論文
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究主題共分為兩個部分。
    第一章是針對α-胺基酸的脫羰基反應,隨後進行親核性加成反應生成α-位具有取代之三級胺產物的研究。藉由氫核磁共振光譜的追蹤反應,確認脫羰基反應的發生,隨後優化亞胺離子的產率,以精準控製一鍋兩步的反應。由此解決過去只能由脯胺酸進行反應的問題。開發與格里納試劑的反應條件,來克服電子密度不足的官能基無法反應的限制,拓展了反應的應用性。
    第二章,應用分子內脫羰基親核性芳香取代反應來合成crispine A,並透過氫核磁共振光譜來辨識中間體的生成與變化。

    This thesis contains two research topics.
    The first topic is decarbonylative electrophilic addition of α-amino acids to give α-substituted amines. The in situ NMR monitoring experiments showed the formation of the key intermediates, iminiums, which allowed us to control the condition precisely. The iminium intermediates can further reaction with various carbon nucleophiles to undergo electrophilic aromatic substitution reaction, Grignard reaction, and Mannich reaction.
    The second chapter is applied intramolecular decarbonylative electrophilic aromatic substitution reaction to synthesis crispine A. The proton NMR spectra identify the iminium and aldehyde intermediates of intramolecular decarbonylative electrophilic aromatic substitution reaction.

    Table of Contents 2 Table of Figure 3 Table of Scheme 3 Abstract 4 Chinese Abstract 5 List of Abbreviation 6 Chapter I. Decarbonylative Coupling of α-Amino Acids: Identification Intermediates and Synthesis of 2-Substituted Cyclic Amino alkaloids 1 1.1. Introduction 1 1.2. Background 3 1.2.1. Decarboxylation of proline 3 1.2.2. Decarbonylation of proline 7 1.3. References 10 Chapter II. Intramolecular Decarbonylative Electrophilic Aromatic Substitution Reaction of Proline Derivatives: Synthesis of Crispine A 11 2.1. Introduction 11 2.2. Background 12 2.3. References 16

    1. E. Reinhard, Tubingen U. Planta Med. 1979, 36, 97.
    2. Abraham, T. W. J. Am. Chem. Soc. 1995, 117, 8100.
    3. Hoye, T. R.; Bjorklund, J. A.; Koltun, D. O.; Renner, M. K. Org. Lett. 2000, 2, 3.
    4. Humphrey, A. J.; O’Hagan, D. Nat. Prod. Rep. 2001, 18, 494.
    5. Barker, G.; McGrath, J. L.; Klapars, A.; Stead, D.; Zhou, G.; Campos, K. R.; O’Brien, P. J. Org. Chem. 2011, 76, 5936.
    6. Brennan, M. B. Chem. Eng. News 2000, 78, 23.
    7. Manfré, F.; Pulicani, J. P. Tetrahedron: Asymmetry 1994, 5, 235.
    8. Michael, J. P. Nat. Prod. Rep. 2008, 25, 139.
    9. Hermann, K. Annalen der Chemie und Pharmacie 1884, 64, 339.
    10. Boto, A.; Hernández, R.; Suárez, E. J. Org. Chem. 2000, 65, 4930.
    11. Boto, A.; Hernández, R.; Suárez, E. Tetrahedron Lett. 2000, 41, 2899.
    12. Boto, A.; Hernández, R.; Suárez, E. Tetrahedron Lett. 2000, 41, 2495.
    13. Boto, A.; Hernández, R.; Suárez, E. J. Org. Chem. 2001, 66, 7796.
    14. Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
    15. Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 10886.
    16. Bi, H. P.; Zhao, L.; Liang, Y. M.; Li, C. J. Angew. Chem., Int. Ed. 2009, 48, 792.
    17. Bi, H. P.; Chen, W. W.; Liang, Y. M.; Li, C. J. Org. Lett. 2009, 11, 3246.
    18. Klein, D. R. Organic Chemistry, 1st Edition; John Wiley & Sons: USA, 2012; p 1060.
    19. Zhang, C.; Seidel, D. J. Am. Chem. Soc. 2010, 132, 1798.
    20. Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis:Background and Detailed Mechanisms; Elsevier: USA, 2005; p 460.
    21. Dean, R. T.; Padgett, H. C.; Rapoport, H. J. Am. Chem. Soc., 1976, 98, 7448.
    22. Bates, H. A.; Rapoport, H. J. Am. Chem. Soc. 1979, 101, 1259.
    23. Sardina, F. J.; Howard, M. H.; Koskinen, A. M. P.; Rapoport, H. J. Org. Chem. 1989, 54, 4654.
    24. Lochead, A. W.; Proctor, G. R.; Caton, M. P. L. J. Chem. Soc.,Perkin Trans. 1 1984, 2477.
    25. Martin, S. F.; Barr, K. J. J. Am. Chem. Soc. 1996, 118, 3299.

    1. Zhang, Q.; Tu, G.; Zhao, Y.; Cheng, T. Tetrahedron 2002, 58, 6795.
    2. Dewick, P. M.; Medicinal Natural Products: A Biosynthetic Approach, Third Edition; John Wiley & Sons, Chichester: UK, 2009; p335.
    3. Pässler, U.; Knölker, H.-J. Alkaloids Chem. Biol. 2011, 70, 79-151
    4. Child, R.; Pyman, F. L. J. Chem. Soc. 1931, 0, 36.
    5. Sugasawa, S.; Sakurai, K.; Sugimoto, N. Proc. Imp. Acad. 1939, 15, 82.
    6. Shono, T.; Hamaguchi, H.; Sasaki, M.; Fujita, S.; Nagami, K. J. Org. Chem. 1983, 48, 1621.
    7. Schell, F. M.; Smith, A. M. Tetrahedron Lett. 1983, 24, 1883.
    8. Lennon, M.; McLean, A.; Proctor, G. R.; Sinclair, I. W. J. Chem. Soc., Perkin Trans. 1, 1975, 622.
    9. Lochead, A. W.; Proctor, G. R.; Caton, M. P. L. J. Chem. Soc., Perkin Trans. 1, 1984, 2477.
    10. Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2006, 128, 9646.
    11. King, F. D. Tetrahedron 2007, 63, 2053.

    無法下載圖示 本全文未授權公開
    QR CODE