簡易檢索 / 詳目顯示

研究生: 張博勛
Chang, Po-Hsun
論文名稱: 高強度循環訓練對心肺適能與心率變異性之影響
Effects of high intensity circuit training on cardiopulmonary fitness and heart rate variability
指導教授: 鄭景峰
Cheng, Ching-Feng
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 96
中文關鍵詞: 脂質代謝體重訓練有氧適能身體組成高強度間歇訓練
英文關鍵詞: fat oxidation, body weight exercise, aerobic fitness, body composition, high-intensity interval training
DOI URL: https://doi.org/10.6345/NTNU202203153
論文種類: 學術論文
相關次數: 點閱:133下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討4週高強度循環訓練 (high-intensity circuit training, HICT) 與耐力訓練 (endurance training, ET) 對心肺適能、心率變異性 (heart rate variability, HRV)、身體組成與運動中的脂質代謝之影響。方法:招募36名健康男性,依前測之最大攝氧量 (maximal oxygen uptake, VO2max) 分派至HICT (每組12個動作執行30秒,動作間休息10秒) 、ET [以第一換氣閾值 (first ventilatory threshold, VT1) 所對應之強度,於跑步機上進行運動30-45分鐘] 與CON (不訓練)。所有受試者於4週前、後分別進行遞增負荷運動測驗 (graded exercise test, GXT)、安靜狀態下HRV指標 (時域與頻域分析) 評估與皮脂厚測量 (胸部、下腹部與股四頭肌)。脂質代謝會使用GXT前數個階段,呼吸交換率 (respiratory exchange ratio, RER) 低於或等於1.0時的資料進行分析。結果:VO2max、安靜狀態下HRV指標與運動中的脂質代謝在組別因子與時間因子之交互作用皆未達顯著差異 (p > . 05)。VO2max所對應的跑步速度 (vVO2max) 在HICT與ET訓練後有顯著進步 (前測vs.後測:HICT,15.3 ± 1.1 vs. 15.8 ± 1.2 km/hr;ET,14.9 ± 1.4 vs. 15.7 ± 1.1 km/hr,p < .05),而HICT與ET之間未達顯著差異 (p > . 05);遞增負荷運動至衰竭的時間在HICT訓練後有顯著提升 (前測vs.後測:2160.0 ± 267.5 vs. 2209.7 ± 265.3秒,p < .05);VT1所對應的VO2max百分比 (%VO2max at VT1),HICT與ET (前測vs.後測:HICT,50.9 ± 7.7% vs. 57.1 ± 9.9%;ET,50.9 ± 8.4% vs. 58 ± 6.2%,p < .05) 訓練後均顯著提升,而ET後測顯著高於CON後測 (48.9 ± 11 %, p < .05);HICT與ET的皮脂厚總和 (前測vs.後測:HICT,47.8 ± 11.8 vs. 44.1± 10.8 mm;ET,51.7 ± 13 vs. 46.8 ± 13.1 mm) 與體脂肪百分比 (前測vs.後測:HICT,13.7 ± 3.4 vs. 12.7 ± 3.1%;ET,14.8 ± 3.9 vs. 13.4 ± 4%) 在訓練後均顯著下降。然而,GXT前期的脂質代謝在組別因子與時間因子之交互作用未達顯著差異。結論:4週的HICT與ET可以提升規律運動者心肺適能並改善體脂肪百分比,但無法改善安靜狀態下自律神經系統的調控與運動中的脂質代謝。

    關鍵詞:脂質代謝、體重訓練、有氧適能、身體組成、高強度間歇訓練

    Purpose: The purpose of the study was to investigate the effects of 4 weeks of high intensity circuit training (HICT) and endurance training (ET) on cardiopulmonary fitness, heart rate variability (HRV), body composition, and fat oxidation rate during exercise. Methods: 36 active male adults were recruited and assigned to HICT (12 callisthenic exercises were performed for 30-s with 10-s rest interval), ET [ran at first ventilatory threshold (VT1) for 30–45 minutes on a treadmill] and control (CON, no training) groups according to the initial maximal oxygen uptake (VO2max). Before and after 4-week training, all participants were asked to perform the graded exercise test (GXT), resting HRV indices (time and frequency domain), and skinfold thickness (chest, abdominal, thigh). During GXT, the fat oxidation rates were further analyzed at first few stages which respiratory exchange ratio was less than or equal to 1.0. Results: No significant interaction effects were observed in VO2max, HRV indices at rest, and fat oxidation during exercise (p > .05). The velocity at VO2max (vVO2max) was significantly improved after HICT and ET (HICT, from 15.3 ± 1.1 to 15.8 ± 1.2 km/hr; ET, from 14.9 ± 1.4 to 15.7 ± 1.1 km/hr, p < .05); however, there were no significant differences between HICT and ET (p > .05). Time to exhaustion during GXT was significantly extended after HICT (from 2160.0 ± 267.5 to 2209.7 ± 265.3 s, p < .05). The percentage of VO2max at VT1 (%VO2max at VT1) were significantly increased after HICT and ET (HICT, from 50.9 ± 7.7% to 57.1 ± 9.9%; ET, from 50.9 ± 8.4% to 58 ± 6.2%, p < .05). The %VO2max at VT1 after ET was significantly higher than that in CON (48.9 ± 11 %, p < .05). The sum of skinfold thickness at 3 sites (HICT, from 47.8 ± 11.8 to 44.1± 10.8 mm; ET, from 51.7 ± 13 to 46.8 ± 13.1 mm) and body fat percentages (HICT, from 13.7 ± 3.4 to 12.7 ± 3.1%; ET, from 14.8 ± 3.9 to 13.4 ± 4%) were significantly decreased after HICT and ET. However, no significant interaction effects were found in fat oxidation rates at early period of GXT. Conclusion: 4 weeks of HICT and ET might improve cardiopulmonary fitness and percent body fat, but not for the modulation of autonomic nervous system at rest and fat oxidation during exercise in active individuals.

    Keywords: fat oxidation, body weight exercise, aerobic fitness, body composition, high-intensity interval training

    中文摘要………………………………………………………………………………...i 英文摘要…………………………………………………………………….…………..ii 謝誌………………………………………………………………………….…………...iii 目次………………………………………………………………………….…………...iv 表次………………………………………………………………………………….…...vi 圖次…………………………………………………………………………….………...vii 附錄…………………………………………………………….………………………...viii 第壹章 緒論……………………………………………………………..................1 第一節 研究背景……….……………………………………………………….......1 第二節 研究的重要性……………………………………………………………...4 第三節 研究目的……………………………………………………………....…...4 第四節 研究假設………………………………………………………………...….4 第五節 研究範圍與限制…………………………………………………………..5 第六節 名詞操作性定義…………………………………………………………..5 第貳章 文獻探討……………………………………………................................9 第一節 心率變異性的介紹………………………………………………………........9 第二節 耐力訓練對於心肺適能與心率變異性影響之相關研究………....12 第三節 高強度間歇訓練對於心肺適能與心率變異性影響之相關研究…16 第四節 高強度間歇訓練對脂質代謝與體脂肪百分比影響之相關研究…21 第五節 本章總結…………………………………………………………………........24 第參章 研究方法與步驟………………………………………………........25 第一節 研究對象……….……………………………………………………….25 第二節 實驗時間與地點………………………………………………………25 第三節 實驗設計………………………………………………………………..26 第四節 實驗流程………………………………………………………………..27 第五節 實驗儀器與設備………………………………………………………28 第六節 實驗方法與步驟………………………………………………………28 第七節 統計分析………………………………………………………………..43 第肆章 結果…………………………………..…………………………..........44 第一節 受試者基本資料………………..…………………………………….44 第二節 不同運動方式對心肺適能之影響……………………….……..48 第三節 不同運動方式對心率變異性之影響………………….………..55 第四節 不同運動方式對身體組成與脂質代謝之影響…..………….59 第伍章 討論與結論…………………………..………………………….68 第一節 不同運動方式對心肺適能之影響………………………..68 第二節 不同運動方式對心率變異性之影響…………………....72 第三節 不同運動方式對身體組成與脂質代謝之影響……....75 第四節 結論………………………………………………………….........79 第五節 建議………………………………………………………….........79 引用文獻………………………………………………….....................80

    Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science, 213(4504), 220-222.

    Amano, M., Kanda, T., Ue, H., & Moritani, T. (2001). Exercise training and autonomic nervous system activity in obese individuals. Medicine and Science in Sports and Exercise, 33(8), 1287-1291.

    American College of Sports Medicine. (2014). ACSM's health-related physical fitness assessment manual (4th ed.). Baltimore, MD: Author.

    Astorino, T. A., Allen, R. P., Roberson, D. W., & Jurancich, M. (2012). Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. The Journal of Strength and Conditioning Research, 26(1), 138-145.

    Astorino, T. A., Schubert, M. M., Palumbo, E., Stirling, D., & McMillan, D. W. (2013). Effect of two doses of interval training on maximal fat oxidation in sedentary women. Medicine and Science in Sports Exercise, 45(10), 1878-1886.

    Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. Sports Medicine, 33(12), 889-919.

    Babraj, J. A., Vollaard, N. B., Keast, C., Guppy, F. M., Cottrell, G., & Timmons, J. A. (2009). Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocrine Disorders, 9(1), 3-10.

    Bailey, S. J., Romer, L. M., Kelly, J., Wilkerson, D. P., DiMenna, F. J., & Jones, A. M. (2010). Inspiratory muscle training enhances pulmonary O2 uptake kinetics and high-intensity exercise tolerance in humans. Journal of Applied Physiology, 109(2), 457-468.

    Bailey, S. J., Wilkerson, D. P., DiMenna, F. J., & Jones, A. M. (2009). Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans. Journal of Applied Physiology, 106(6), 1875-1887.

    Baquet, G., Berthoin, S., Gerbeaux, M., & Van Praagh, E. (2001). High-intensity aerobic training during a 10 week one-hour physical education cycle: Effects on physical fitness of adolescents aged 11 to 16. International Journal of Sports Medicine, 22(4), 295-300.

    Barwell, N. D., Malkova, D., Leggate, M., & Gill, J. M. (2009). Individual responsiveness to exercise-induced fat loss is associated with change in resting substrate utilization. Metabolism, 58(9), 1320-1328.

    Bayati, M., Farzad, B., Gharakhanlou, R., & Agha-Alinejad, H. (2011). A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble ‘all-out’ sprint interval training. Journal of Sports Science and Medicine, 10(3), 571-576.

    Bedford, T. G., & Tipton, C. M. (1987). Exercise training and the arterial baroreflex. Journal of Applied Physiology, 63(5), 1926-1932.

    Berger, N. J., Tolfrey, K., Williams, A. G., & Jones, A. M. (2006). Influence of continuous and interval training on oxygen uptake on-kinetics. Medicine and Science in Sports and Exercise, 38(3), 504-512.

    Boer, P. H., Meeus, M., Terblanche, E., Rombaut, L., De Wandele, I., Hermans, L., ... & Calders, P. (2014). The influence of sprint interval training on body composition, physical and metabolic fitness in adolescents and young adults with intellectual disability: A randomized controlled trial. Clinical Rehabilitation, 28(3), 221-231.

    Boutcher, S. H. (2010). High-intensity intermittent exercise and fat loss. Journal of Obesity, 2011(2011), 1-10.

    Boutcher, S. H., Park, Y., Dunn, S. L., & Boutcher, Y. N. (2013). The relationship between cardiac autonomic function and maximal oxygen uptake response to high-intensity intermittent-exercise training. Journal of Sports Sciences, 31(9), 1024-1029.

    Boutcher, S. H., & Stein, P. (1995). Association between heart rate variability and training response in sedentary middle-aged men. European Journal of Applied Physiology and Occupational Physiology, 70(1), 75-80.

    Buchheit, M., Chivot, A., Parouty, J., Mercier, D., Al Haddad, H., Laursen, P. B., & Ahmaidi, S. (2010). Monitoring endurance running performance using cardiac parasympathetic function. European Journal of Applied Physiology, 108(6), 1153-1167.

    Buchheit, M., Laursen, P. B., Al Haddad, H., & Ahmaidi, S. (2009). Exercise-induced plasma volume expansion and post-exercise parasympathetic reactivation. European Journal of Applied Physiology, 105(3), 471-481.

    Buchheit, M., Millet, G., Parisy, A., Pourchez, S., Laursen, P., & Ahmaidi, S. (2008). Supramaximal training and postexercise parasympathetic reactivation in adolescents. Medicine and Science in Sports and Exercise, 40(2), 362-371.

    Burgomaster, K. A., Heigenhauser, G. J., & Gibala, M. J. (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. Journal of Applied Physiology, 100(6), 2041-2047.

    Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., MacDonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of Physiology, 586(1), 151-160.

    Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology, 98(6), 1985-1990.

    Butler, J., O'brien, M., O'malley, K., & Kelly, J. G. (1982). Relationship of β-adrenoreceptor density to fitness in athletes. Nature, 298(5869), 60-62.

    Carter, J. B., Banister, E. W., & Blaber, A. P. (2003). The effect of age and gender on heart rate variability after endurance training. Medicine and Science in Sports and Exercise, 35(8), 1333-1340.

    Carter, J. R., Ray, C. A., Downs, E. M., & Cooke, W. H. (2003). Strength training reduces arterial blood pressure but not sympathetic neural activity in young normotensive subjects. Journal of Applied Physiology, 94(6), 2212-2216.

    Chao, D., Foy, C. G., & Farmer, D. (2000). Exercise adherence among older adults: Challenges and strategies. Controlled Clinical Trials, 21(5), 212-217.

    Chenevière, X., Borrani, F., Ebenegger, V., Gojanovic, B., & Malatesta, D. (2009). Effect of a 1-hour single bout of moderate-intensity exercise on fat oxidation kinetics. Metabolism, 58(12), 1778-1786.

    Cheng, C. F., Lin, H. M., Tsai, H. C., Chu, C. H., & Lin, J. C. (2005). Analysis of heart rate variability during acute exposure to moderate altitude and rowing exercise. Journal of Exercise Science and Fitness, 3(1), 25-32.

    Cocks, M., Shaw, C. S., Shepherd, S. O., Fisher, J. P., Ranasinghe, A. M., Barker, T. A., ... & Wagenmakers, A. J. (2013). Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. The Journal of Physiology, 591(3), 641-656.

    Coggan, A. R., Raguso, C. A., Williams, B. D., Sidossis, L. S., & Gastaldelli, A. (1995). Glucose kinetics during high-intensity exercise in endurance-trained and untrained humans. Journal of Applied Physiology, 78(3), 1203-1207.

    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New Jersey: Laurence Erlbaum Associates.

    Dickhuth, H. H., Lehmann, M., Auch-Schwelk, W., Meinertz, T., & Keul, J. (1987). Physical training, vegetative regulation, and cardiac hypertrophy. Journal of Cardiovascular Pharmacology, 10, 71-78.

    Dixon, E. M., Kamath, M. V., McCartney, N., & Fallen, E. L. (1992). Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovascular Research, 26(7), 713-719.

    Dunham, C., & Harms, C. A. (2012). Effects of high-intensity interval training on pulmonary function. European Journal of Applied Physiology, 112(8), 3061-3068.

    Edge, J., Bishop, D., & Goodman, C. (2006). The effects of training intensity on muscle buffer capacity in females. European Journal of Applied Physiology, 96(1), 97-105.

    Egan, B., Carson, B. P., Garcia‐Roves, P. M., Chibalin, A. V., Sarsfield, F. M., Barron, N., ... & O’Gorman, D. J. (2010). Exercise intensity‐dependent regulation of peroxisome proliferator‐activated receptor γ coactivator‐1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. The Journal of Physiology, 588(10), 1779-1790.

    Ekblom, B., Kilbom, Å., & Soltysiak, J. (1973). Physical training, bradycardia, and autonomic nervous system. Scandinavian Journal of Clinical and Laboratory Investigation, 32(3), 251-256.

    Esfandiari, S., Sasson, Z., & Goodman, J. M. (2014). Short-term high-intensity interval and continuous moderate-intensity training improve maximal aerobic power and diastolic filling during exercise. European Journal of Applied Physiology, 114(2), 331-343.

    Farah, B. Q., Ritti‐Dias, R. M., Balagopal, P., Hill, J. O., & Prado, W. L. (2014). Does exercise intensity affect blood pressure and heart rate in obese adolescents? A 6‐month multidisciplinary randomized intervention study. Pediatric Obesity, 9(2), 111-120.

    Ferreira, F. C., de Medeiros, A. I., Nicioli, C., Nunes, J. E. D., Shiguemoto, G. E., Prestes, J., ... & de Andrade Perez, S. E. (2009). Circuit resistance training in sedentary women: Body composition and serum cytokine levels. Applied Physiology, Nutrition, and Metabolism, 35(2), 163-171.

    Fritzsche, R. G., & Coyle, E. F. (2000). Cutaneous blood flow during exercise is higher in endurance-trained humans. Journal of Applied Physiology, 88(2), 738-744.

    Fukuba, Y., Yano, Y., Murakami, H., Kan, A., & Miura, A. (2000). The effect of dietary restriction and menstrual cycle on excess post-exercise oxygen consumption (EPOC) in young women. Clinical Physiology, 20(2), 165-169.

    Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., ... & Swain, D. P. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334-1359.

    Gibala, M. J., Little, J. P., MacDonald, M. J., & Hawley, J. A. (2012). Physiological
    adaptations to low‐volume, high‐intensity interval training in health and disease. The Journal of Physiology, 590(5), 1077-1084.

    Gibala, M. J., Little, J. P., Van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., ... & Tarnopolsky, M. A. (2006). Short‐term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. The Journal of Physiology, 575(3), 901-911.

    Gibala, M. J., McGee, S. L., Garnham, A. P., Howlett, K. F., Snow, R. J., & Hargreaves, M. (2009). Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. Journal of Applied Physiology, 106(3), 929-934.

    Gillen, J. B., Percival, M. E., Ludzki, A., Tarnopolsky, M. A., & Gibala, M. (2013). Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity, 21(11), 2249-2255.

    Goldsmith, R. L., Bloomfield, D. M., & Rosenwinkel, E. T. (2000). Exercise and autonomic function. Coronary Artery Disease, 11(2), 129-135.

    Godin, G., Desharnais, R., Valois, P., Lepage, L., Jobin, J., & Bradet, R. (1994). Differences in perceived barriers to exercise between high and low intenders: Observations among different populations. American Journal of Health Promotion, 8(4), 279-385.

    Green, H. J., Coates, G., Sutton, J. R., & Jones, S. (1991). Early adaptations in gas exchange, cardiac function and haematology to prolonged exercise training in man. European Journal of Applied Physiology and Occupational Physiology, 63(1), 17-23.

    Green, H. J., Jones, L. L., Houston, M. E., Ball-Burnett, M. E., & Farrance, B. W.
    (1989). Muscle energetics during prolonged cycling after exercise hypervolemia. Journal of Applied Physiology, 66(2), 622-631.

    Green, H. J., Jones, L. L., & Painter, D. C. (1990). Effects of short-term training on cardiac function during prolonged exercise. Medicine and Science in Sports and Exercise, 22(4), 488-493.

    Haff, G. G., & Triplett, N. T. (2015). Essentials of strength training and conditioning (4th ed.). Champaign, IL: Human Kinetics.

    Hayano, J., Sakakibara, Y., Yamada, M., Ohte, N., Fujinami, T., Yokoyama, K., ... &
    Takata, K. (1990). Decreased magnitude of heart rate spectral components in coronary artery disease. Its relation to angiographic severity. Circulation, 81(4), 1217-1224.

    Hazell, T. J., MacPherson, R. E., Gravelle, B. M., & Lemon, P. W. (2010). 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. European Journal of Applied Physiology, 110(1), 153-160.

    Hazell, T. J., Olver, T. D., Hamilton, C. D., & Lemon, P. W. (2012). Two minutes of sprint-interval exercise elicits 24-hr oxygen consumption similar to that of 30 min of continuous endurance exercise. International Jouranl of Sport Nutrition and Exercise Metabolism, 22(4), 276-283.

    Heffernan, K. S., Fahs, C. A., Shinsako, K. K., Jae, S. Y., & Fernhall, B. (2007). Heart rate recovery and heart rate complexity following resistance exercise training and detraining in young men. American Journal of Physiology Heart and Circulatory Physiology, 293(5), 3180-3186.

    Heffernan, K. S., Kelly, E. E., Collier, S. R., & Fernhall, B. (2006). Cardiac autonomic modulation during recovery from acute endurance versus resistance exercise. European Journal of Cardiovascular Prevention and Rehabilitation, 13(1), 80-86.

    Heffernan, K. S., Sosnoff, J. J., Jae, S. Y., Gates, G. J., & Fernhall, B. (2008). Acute resistance exercise reduces heart rate complexity and increases QTc interval. International Journal of Sports Medicine, 29(04), 289-293.

    Hermansen, L., Grandmontagne, M., Moehlum, S., & Ingnes, I. (1984). Postexercise elevation of resting oxygen uptake: Possible mechanisms and physiological significance. Physiological Chemistry of Training and Detraining, 17, 119-129.

    Heydari, M., Boutcher, Y. N., & Boutcher, S. H. (2013). High-intensity intermittent exercise and cardiovascular and autonomic function. Clinical Autonomic Research, 23(1), 57-65.

    Iwasaki, K. I., Zhang, R., Zuckerman, J. H., & Levine, B. D. (2003). Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults: How much training for what benefit? Journal of Applied Physiology, 95(4), 1575-1583.

    Jacobs, R. A., Flück, D., Bonne, T. C., Bürgi, S., Christensen, P. M., Toigo, M., & Lundby, C. (2013). Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. Journal of Applied Physiology, 115(6), 785-793.

    Jeukendrup, A. E., & Wallis, G. A. (2005). Measurement of substrate oxidation during exercise by means of gas exchange measurements. International Journal of Sports Medicine, 26, 28-37.

    Jones, A. M., & Carter, H. (2000). The effect of endurance training on parameters of aerobic fitness. Sports Medicine, 29(6), 373-386.

    Kaikkonen, H., Yrjämä, M., Siljander, E., Byman, P., & Laukkanen, R. (2000). The effect of heart rate controlled low resistance circuit weight training and endurance training on maximal aerobic power in sedentary adults. Scandinavian Journal of Medicine and Science in Sports, 10(4), 211-215.

    Karlsson, J., Nordesjö, L. O., & Saltin, B. (1974). Muscle glycogen utilization during exercise after physical training. Acta Physiologica Scandinavica, 90(1), 210-217.

    Kiviniemi, A. M., Tulppo, M. P., Eskelinen, J. J., Savolainen, A. M., Kapanen, J., Heinonen, I. H., ... & Kalliokoski, K. K. (2014). Cardiac autonomic function and high-intensity interval training in middle-age men. Medicine and Science in Sports and Exercise, 46(10), 1960-1967.

    Klika, B., & Jordan, C. (2013). High-intensity circuit training using body weight: Maximum results with minimal investment. ACSM's Health and Fitness Journal, 17(3), 8-13.

    Kliszczewicz, B. M., Esco, M. R., Quindry, J. C., Blessing, D. L., Oliver, G. D., Taylor, K. J., & Price, B. M. (2016). Autonomic responses to an acute bout of high-intensity body weight resistance exercise vs. treadmill running. The Journal of Strength and Conditioning Research, 30(4), 1050-1058.

    Laursen, P. B. (2010). Training for intense exercise performance: High‐intensity or high‐volume training? Scandinavian Journal of Medicine and Science in Sports, 20(s2), 1-10.

    Lee, C., Cheng, C., Lee, W., & Lin, J. (2007). The acute effects of inhaling different concentrations of oxygen on heart rate variability after exhaustive exercise. Journal of Exercise Science and Fitness, 5(1), 56-64.

    Little, J. P., Safdar, A., Bishop, D., Tarnopolsky, M. A., & Gibala, M. J. (2011). An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 300(6), 1303-1310.

    MacPherson, R. E., Hazell, T. J., Olver, T. D., Paterson, D. H., & Lemon, P. W. (2011). Run sprint interval training improves aerobic performance but not maximal cardiac output. Medicine and Science in Sports and Exercise, 43(1), 115-122.

    McKay, B. R., Paterson, D. H., & Kowalchuk, J. M. (2009). Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. Journal of Applied Physiology, 107(1), 128-138.

    McRae, G., Payne, A., Zelt, J. G., Scribbans, T. D., Jung, M. E., Little, J. P., & Gurd, B. J. (2012). Extremely low volume, whole-body aerobic-resistance training improves aerobic fitness and muscular endurance in females. Applied Physiology, Nutrition, and Metabolism, 37(6), 1124-1131.

    Melanson, E. L., & Freedson, P. S. (2001). The effect of endurance training on resting heart rate variability in sedentary adult males. European Journal of Applied Physiology, 85(5), 442-449.

    Morales, J., Garcia, V., García-Massó, X., Salvá, P., & Escobar, R. (2013). The use of heart rate variability in assessing precompetitive stress in high-standard judo athletes. International Journal of Sports Medicine, 34(02), 144-151.

    Moreira, M. M., Souza, H. P. C. D., Schwingel, P. A., Sá, C. K. C. D., & Zoppi, C. C. (2008). Effects of aerobic and anaerobic exercise on cardiac risk variables in overweight adults. Arquivos Brasileiros de Cardiologia, 91(4), 219-226.

    Murphy, E., & Schwarzkopf, R. (1992). Effects of standard set and circuit weight training on excess post-exercise oxygen consumption. The Journal of Strength and Conditioning Research, 6(2), 88-91.

    Myers, T. R., Schneider, M. G., Schmale, M. S., & Hazell, T. J. (2015). Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females. The Journal of Strength and Conditioning Research, 29(6), 1592-1600.

    Nevill, M. E., Holmyard, D. J., Hall, G. M., Allsop, P., Van Oosterhout, A., Burrin, J. M., & Nevill, A. M. (1996). Growth hormone responses to treadmill sprinting in sprint- and endurance-trained athletes. European Journal of Applied Physiology and Occupational Physiology, 72(5), 460-467.

    Oja, P., Titze, S., Bauman, A., De Geus, B., Krenn, P., Reger‐Nash, B., & Kohlberger, T. (2011). Health benefits of cycling: A systematic review. Scandinavian Journal of Medicine and Science in Sports, 21(4), 496-509.

    Paoli, A., Pacelli, Q. F., Moro, T., Marcolin, G., Neri, M., Battaglia, G., ... & Bianco, A. (2013). Effects of high-intensity circuit training, low-intensity circuit training and endurance training on blood pressure and lipoproteins in middle-aged overweight men. Lipids in Health and Disease, 12, 131-138.

    Paoli, A., Moro, T., Marcolin, G., Neri, M., Bianco, A., Palma, A., & Grimaldi, K. (2012). High-intensity interval resistance training (HIRT) influences resting energy expenditure and respiratory ratio in non-dieting individuals. Journal of Translational Medicine, 10(1), 237-244.

    Pollack, M. L., Schmidt, D. H., & Jackson, A. S. (1980). Measurement of cardiorespiratory fitness and body composition in the clinical setting. Comprehensive Therapy, 6(9), 12-17.

    Portier, H., Louisy, F., Laude, D., Berthelot, M., & Guezennec, C. Y. (2001). Intense endurance training on heart rate and blood pressure variability in
    runners. Medicine and Science in Sports and Exercise, 33(7), 1120-1125.

    Racil, G., Ounis, O. B., Hammouda, O., Kallel, A., Zouhal, H., Chamari, K., & Amri, M. (2013). Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. European Journal of Applied Physiology, 113(10), 2531-2540.

    Schmidt, W., Anderson, K., Graff, M., & Strutz, V. (2016). The effect of high-intensity circuit training on physical fitness. The Journal of Sports Medicine and Physical Fitness, 56(5), 534-540.

    Schuit, A. J., Van Amelsvoort, L. G., Verheij, T. C., Rijneke, R. D., Maan, A. C., Swenne, C. A., & Schouten, E. G. (1999). Exercise training and heart rate variability in older people. Medicine and Science in Sports and Exercise, 31(6), 816-821.

    Shepherd, S. O., Cocks, M., Tipton, K. D., Ranasinghe, A. M., Barker, T. A., Burniston, J. G., ... & Shaw, C. S. (2013). Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. The Journal of Physiology, 591(3), 657-675.

    Talanian, J. L., Galloway, S. D., Heigenhauser, G. J., Bonen, A., & Spriet, L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, 102(4), 1439-1447.

    Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153-156.

    Task Force of European Society of Cardiology and North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1046-1065.

    Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141(2), 122-131.

    Tjonna, A., Stolen, T., Bye, A., Volden, M., Slordahl, S., Odegard, R., ... & Wisloff, U. (2009). Aerobic interval training reduces cardiovascular risk factors more than a multi-treatment approach in overweight adolescents. Clinical Science, 116, 317-326.

    Tomlin, D. L., & Wenger, H. A. (2001). The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Medicine, 31(1), 1-11.

    Trapp, E. G., Chisholm, D. J., Freund, J., & Boutcher, S. H. (2008). The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. International Journal of Obesity, 32(4), 684-691.

    Trilk, J. L., Singhal, A., Bigelman, K. A., & Cureton, K. J. (2011). Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. European Journal of Applied Physiology, 111(8), 1591-1597.

    Trost, S. G., Owen, N., Bauman, A. E., Sallis, J. F., & Brown, W. (2002). Correlates of adults' participation in physical activity: Review and update. Medicine and Science in Sports and Exercise, 34(12), 1996-2001.

    Vrachimis, A., Hadjicharalambous, M., & Tyler, C. (2016). The effect of circuit training on resting heart rate variability, cardiovascular disease risk factors and physical fitness in healthy untrained adults. Health, 8(2), 144-155.

    Wallman, K., Plant, L. A., Rakimov, B., & Maiorana, A. J. (2009). The effects of two modes of exercise on aerobic fitness and fat mass in an overweight population. Research in Sports Medicine, 17(3), 156-170.

    Weston, M., Taylor, K. L., Batterham, A. M., & Hopkins, W. G. (2014). Effects of low-volume high-intensity interval training (HIT) on fitness in adults: A meta-analysis of controlled and non-controlled trials. Sports Medicine, 44(7), 1005-1017.

    Whyte, L. J., Ferguson, C., Wilson, J., Scott, R. A., & Gill, J. M. (2012). Effects of single bout of very high-intensity exercise on metabolic health biomarkers in overweight/obese sedentary men. Metabolism, 62(2), 212-219.

    Whyte, L. J., Gill, J. M., & Cathcart, A. J. (2010). Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism, 59(10), 1421-1428.

    Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., ... & Spiegelman, B. M. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1α. Cell, 98(1), 115-124.

    下載圖示
    QR CODE