簡易檢索 / 詳目顯示

研究生: 張皓翔
Chang, Hao-Hsiang
論文名稱: 動靜脈廔管及腎絲球腎炎之治療策略探討
The Therapeutic Strategy Exploration of Arteriovenous Fistula Stenosis and Glomerulonephritis
指導教授: 鄭劍廷
Chien, Chiang-Ting
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 71
中文關鍵詞: 動靜脈廔管間質幹細胞腎絲球腎炎氧化壓力史塔汀
英文關鍵詞: Arteriovenous fistula, Mesenchymal stem cells, Glomerulonephritis, Oxidative stress, Statin
DOI URL: https://doi.org/10.6345/NTNU202203460
論文種類: 學術論文
相關次數: 點閱:94下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 日益增加的末期腎病人大大地增加腎臟取代治療的費用與公共衛生的負擔。如何減少末期腎病的發生,及提升腎臟取代病患的照護品質是面對這一問題的關鍵。本論文針對血液透析病患動靜脈廔管阻塞問題及腎絲球腎炎治療等臨床困境進行研究。自體動靜脈廔管因為感染率較低、生活品質較佳與整體醫療花費較少等因素,是長期血液透析病患建立血管通路的第一選擇,也是使用最廣泛的。然而,自體動靜脈廔管的阻塞率高,且目前仍缺乏有效的藥物或方法來預防阻塞改善通暢率,因此,血液透析病患自體動靜脈廔管功能喪失仍是臨床上未解決的困境。腎絲球腎炎則是導致末期腎病的重要病因之一,腎絲球腎炎的治療目前僅有一些效果有限的免疫調節治療,許多慢性腎絲球腎炎病患最終仍發展至末期腎病卻苦無有效治療,在論文中透過臨床大資料分析探討藥物史塔汀對自體動靜脈廔管阻塞的影響,以及以間質幹細胞治療腎絲球腎炎的大鼠模式,評估其療效與治療機轉,並針對抗氧化機轉深入研究,期許成果能對此醫學難題提供進一步的治療基礎。
    動靜脈廔管阻塞的疾病生理特徵是內皮細胞功能失調、血管平滑肌增生與移轉,而史塔汀藥物具有抗發炎、改善內皮細胞功能的特性,具有潛在改善動靜脈廔管阻塞的病理機轉,是預防靜脈廔管阻塞的選擇藥物之一。史塔汀藥物對動靜脈廔管的保護作用已在動物實驗中多次被證實,然而,人類的臨床研究卻無一致性的結論。本論文利用全國性的血液透析世代研究資料庫來分析處方史塔汀類藥物與血液透析病患血管通路通暢度的關係。總共9862對依年齡、性別配對的史塔汀使用者與非使用者,自2000-2008年間75404位新增加的血液透析病患中選出。史塔汀對於自體動靜脈廔管阻塞的影響利用Cox proportional hazards 模式分析。與非使用者相比,史塔汀使用降低18%動靜脈廔管需要進行血管整型術或重建的風險(adjusted hazard ratio=0.82 [95%CI, 0.78-0.87]),減少21%重建風險(風險比=0.79 [95%CI, 0.69-0.80]),這種保護的效果只在自體動靜脈廔管有顯著意義(風險比=0.78[95% CI, 0.73-0.82]),而對使用人工血管的動靜脈廔管無保護效果(風險比=1.10 [95% CI, 0.98-1.24])。本研究的結果顯示在血液透析病患建立動靜脈廔管後使用史塔汀具有保護血管通路通暢的效果。這種效果在不同史塔汀中都出現,而其保護效力與史塔汀的效力強弱有關。使用史塔汀能降低血液透析病患血管通路重建風險,進而降低醫療花費與提昇病患生活品質,這分析的結果可提供將來臨床治療動脈廔管的重要參考依據。
    腎絲球腎炎的疾病生理特徵是免疫相關的發炎現象,導致腎小球内繫膜细胞增生與受損,而幹細胞證實具備自我修復與免疫調節的特性提供的腎絲球腎炎符合病理機轉的治療選擇。相較於幹細胞的抗發炎與抗纖維化作用被廣泛探討,氧化壓力的傷害也是腎絲球腎炎重要損傷來源,抗氧化作用雖是幹細胞重要潛在治療機轉,卻是很少研究詳細地探索其作用,本論文透過使用一般濃度氧氣及缺氧狀態培養之間質幹細胞治療anti-Thy1.1引發大鼠腎炎的模式,以尿蛋白、組織化學染色與西方墨點法等方法來確認幹細胞的治療效果與分析其抗氧化的機制。結果發現經腎動脈注射間質幹細胞能緩解腎炎大鼠的蛋白尿、降低腎絲球硬化程度,低氧環境培養可以強化此療效。無論一般濃度氧氣或缺氧狀態培養之間質幹細胞均顯示一致性的減少巨噬細胞/單核球浸潤、壓力指標蛋白表現、自噬作用與凋亡指標蛋白表現,在抗氧化壓力的部分,則能提昇核內的Nrf2表現,減低NFkB的表現。經低氧前處理的幹細胞能強化細胞抗氧化壓力反應組成(ARE anti-oxidative response elements)包括GCLC (glutamate-cysteine ligase catalytic subunit)、GCLM(glutamate-cysteine ligase modifier subunit)、麩胱甘肽過氧化酵素(glutathione peroxidase)、錳超氧化物歧化酶、銅/鋅超氧化物歧化酶的表現。由此結果可知,低氧前處理可藉由活化Nrf2的訊息、加強抗氧化壓力反應組成,提升內在抗氧化能力達到減低傷害的目標,而抗氧化機轉在間質幹細胞治療的腎絲球腎炎上扮演重要角色。
    本論文利用臨床大資料分析及動物實驗等方法,針對醫學上仍難以克服兩個的困境,提供史塔汀藥物降低動靜脈廔管阻塞與幹細胞治療腎絲球腎炎的實證基礎。
    關鍵字: 動靜脈廔管、間質幹細胞、腎絲球腎炎、氧化壓力、史塔汀

    The growing end stage renal disease (ESRD) population and expanding cost of renal replacement therapy (RRT) have great burden on both public health and economics. Autologous arteriovenous fistula (AVF) is widely recommended as the first choice of long term vascular access for long term hemodialysis. However, high stenosis rates of AVF remained a medical challenge today. Glomerulonephritis (GN) is still one of the leading causes of ESRD, and has limited immunosuppressive treatment options with non-satisfactory outcomes. This thesis is to explore the potential beneficial effect of statin on AVF and the anti-oxidative therapeutic mechanism of stem cell on GN.
    The pathophysiology of AVF stenosis is characterized by endothelial dysfunction and vascular smooth muscle proliferation and transmigration. Statins are well known to reduce inflammation and improve endothelial function, thus provide a potential drug of choice for prevention of AVF stenosis. The protective effects of statins against stenosis for permanent hemodialysis access have been repeatedly demonstrated in animal studies, but remain controversial in human studies. This thesis evaluates the association between statin use and permanent hemodialysis access patency using a nationwide hemodialysis cohort. A total of 9862 pairs of statin users and non-users, matched by age and gender, were selected for investigation from 75404 new hemodialysis patients during 2000-2008. The effect of statins on permanent hemodialysis access patency was evaluated using Cox proportional hazards models. Compared with non-users, statin users had an overall 18% risk reduction in the composite endpoint in which angioplasty and recreation were combined (adjusted hazard ratio=0.82 [95%CI, 0.78-0.87]) and 21% in recreation of permanent hemodialysis access (adjusted hazard ratio=0.79 [95%CI, 0.69-0.80]). Specifically, the protective effect was found for arteriovenous fistula (adjusted hazard ratio= 0.78[95% CI, 0.73-0.82] for composite endpoint and 0.74 [95% CI, 0.69-0.80] for vascular recreation), but not for arteriovenous grafts (adjusted hazard ratio= 1.10 [95% CI, 0.98-1.24] and 0.94 [95% CI, 0.83-1.07]). These findings suggest that statins use after permanent HD access creation possess a dose-responsive effect of protecting AVF from stenosis for patients undertaking hemodialysis. The beneficial effect on permanent HD access outcomes is a universal class effect and the effect size is associated with the statins’ potency. The use of statin may reduce failure of AVF, therefore, promoting patient outcomes and reducing health-care costs. These results have important therapeutic implications for future prospective randomized control studies.
    Pathophysiologic feature of GN is immune mediated inflammation related mesangial proliferation and damage. Stem cells had been proved the potential of self-renewal and the ability of immune modulation and provide one potential therapeutic option to the unmet need of GN. The anti-oxidative ability of stem cells is one potential mechanism in the therapeutic application, but scarcely studied. This study aimed to investigate the mechanisms of the anti-oxidative effects involved in the use of normoxic and hypoxic conditions treated mesenchymal stem cells to treat anti-Thy1.1 induced rat glomerulonephritis. Proteinuria, histochemical staining and western blotting were used to explore the therapeutic effects and anti-oxidative mechanisms. Mesenchymal stem cell transplantation ameliorated proteinuria and glomerulosclerosis glomerulonephritis rats. Hypoxic conditioning significantly enhanced these therapeutic effects. Normoxic and hypoxic mesenchymal stem cells demonstrated a consistent reduction in macrophage/monocyte infiltration, levels of stress index proteins, autophagy and apoptosis. In addition, they both promoted intranuclear nuclear factor (erythroid-derived 2)-like expression and ameliorated elevated nuclear factor kappa B expression in diseased kidneys. Hypoxic preconditioning treated mesenchymal stem cells significantly enhanced the expression of anti-oxidative response elements including glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, glutathione peroxidase, catalase, Mn and Cu/Zn superoxide dismutase. Anti-oxidative mechanisms play a role in the therapeutic effect of mesenchymal stem cells in glomerulonephritis. Hypoxic preconditioning is one effective strategy to activate intrinsic anti-oxidative defense systems by promoting the Nrf2 pathway signaling, rescuing ROS scavengers and increasing anti-oxidative responsive element proteins.
    The results of this thesis provide evidence supporting therapeutic options to permanent hemodialysis vascular access failure and glomerulonephritis.
    Key words: arteriovenous fistula, mesenchymal stem cell, glomerulonephritis, oxidative stress, statin

    Content Chapter 1 Introduction and Literature Review 12 1.1 Arteriovenous Fistula Stenosis 12 1.2 Glomerulonephritis and Oxidative Stress 13 Chapter 2. Material and Method 16 2.1 A population-based Method for Evaluation of Statin on AVF Stenosis Prevention 16 2.2 Animal model to Exploration of the Anti-oxidative Mechanisms in Therapeutic Application of Mesenchymal Stem Cell for Glomerulonephritis 20 Chapter 3 Results 27 3.1 Therapeutic Effect of Statin on AVF Stenosis 27 3.2 Theapeutic Effects of Mesenchymal Stem Cell on GN 30 Chapter 4 Discussion and Conclusion 35 4.1 Statins Possess a Dose-responsive Effect of Protecting AVF from Stenosis 35 4.2 Hypoxic Preconditioning Promote the Ability of Stem Cell to Activate Intrinsic Anti-oxidative Defense Systems 40 Reference 65 Tables Table 1 Demographic characteristics, comorbid diseases and medications exposure between statin users and nonusers 46 Table 2 Crude and adjusted hazard ratio of vascular access recreation for statin users and nonusers 48 Table 3 Risk factors of vascular access recreation by multivariate Cox proportional hazards model, by different types of vascular access 49 Table 4 Crude and adjusted hazard ratio of vascular access recreation for different statins 51 Table 5 Demographic characteristics, comorbid diseases and medications exposure between statin users and nonusers in propensity-score matched cohort 52 Table 6 Crude and adjusted hazard ratio of vascular access recreation for statin users and nonusers in propensity-score matched cohort 54 Table 7 Hazard ratio of permanent hemodialysis access recreation for statin users in propensity-score matched cohort 55 Table 8 Crude and adjusted hazard ratio of vascular access recreation for statin users by time-dependent Cox regression models 56 Table 9 Crude and competing-risk adjusted hazard ratio of vascular access recreation for statin users 56   Figures Figure 1 The experimental grouping and design were displayed in the eight groups. 57 Figure 2 Cumulative incidence of vascular access recreation for statin users and nonusers by the multivariate Nelson-Aalen method. 58 Figure 3 The recruitment of MSCs and HMSCs in injured kidneys. 59 Figure 4 Mesenchymal stem cell transplantation ameliorated disease activity in a rat anti-Thy1.1-induced GN model. 60 Figure 5 Immunohistochemical stains for ED1, GRP78, LC3-II, Caspase1, TUNEL and Collagen IV in the study groups. . 61 Figure 6 The index of ROS, ROS enzymatic scavenger expression, Nrf2 expression, and anti-oxidative response protein expressions among the experimental groups. 63

    1 Ohira, S. et al. 2005 Japanese Society for Dialysis Therapy guidelines for vascular access construction and repair for chronic hemodialysis. Ther Apher Dial 10, 449-462, doi:TAP410 [pii]
    10.1111/j.1744-9987.2006.00410.x (2006).
    2 Besarab, A. & Dinwiddie, L. Changes noted to KDOQI guidelines for vascular access. Nephrol News Issues 20, 36 (2006).
    3 Sidawy, A. N. et al. The Society for Vascular Surgery: clinical practice guidelines for the surgical placement and maintenance of arteriovenous hemodialysis access. J Vasc Surg 48, 2S-25S, doi:10.1016/j.jvs.2008.08.042
    S0741-5214(08)01399-2 [pii] (2008).
    4 Smith, G. E., Gohil, R. & Chetter, I. C. Factors affecting the patency of arteriovenous fistulas for dialysis access. J Vasc Surg 55, 849-855, doi:10.1016/j.jvs.2011.07.095
    S0741-5214(11)01857-X [pii] (2012).
    5 Lin, C. C. et al. Effect of far infrared therapy on arteriovenous fistula maturation: an open-label randomized controlled trial. Am J Kidney Dis 62, 304-311, doi:10.1053/j.ajkd.2013.01.015
    S0272-6386(13)00106-6 [pii] (2013).
    6 Al-Jaishi, A. A. et al. Patency rates of the arteriovenous fistula for hemodialysis: a systematic review and meta-analysis. Am J Kidney Dis 63, 464-478, doi:10.1053/j.ajkd.2013.08.023
    S0272-6386(13)01218-3 [pii] (2014).
    7 Asano, M. et al. Vascular access care and treatment practices associated with outcomes of arteriovenous fistula: international comparisons from the Dialysis Outcomes and Practice Patterns Study. Nephron Clin Pract 124, 23-30, doi:10.1159/000353733
    000353733 [pii] (2013).
    8 Saran, R. et al. Association between vascular access failure and the use of specific drugs: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 40, 1255-1263, doi:10.1053/ajkd.2002.36895
    S027263860200255X [pii] (2002).
    9 Sajgure, A., Choudhury, A., Ahmed, Z. & Choudhury, D. Angiotensin converting enzyme inhibitors maintain polytetrafluroethylene graft patency. Nephrol Dial Transplant 22, 1390-1398, doi:gfl821 [pii]
    10.1093/ndt/gfl821 (2007).
    10 Yevzlin, A. S., Conley, E. L., Sanchez, R. J., Young, H. N. & Becker, B. N. Vascular access outcomes and medication use: a USRDS study. Semin Dial 19, 535-539, doi:SDI218 [pii]
    10.1111/j.1525-139X.2006.00218.x (2006).
    11 Roan, J. N. et al. Rosuvastatin improves vascular function of arteriovenous fistula in a diabetic rat model. J Vasc Surg 56, 1381-1389 e1381, doi:10.1016/j.jvs.2012.03.243
    S0741-5214(12)00711-2 [pii] (2012).
    12 Fang, S. Y. et al. Rosuvastatin suppresses the oxidative response in the venous limb of an arteriovenous fistula and enhances the fistula blood flow in diabetic rats. J Vasc Res 51, 81-89, doi:10.1159/000357619
    000357619 [pii] (2014).
    13 Janardhanan, R. et al. Simvastatin reduces venous stenosis formation in a murine hemodialysis vascular access model. Kidney Int 84, 338-352, doi:10.1038/ki.2013.112
    ki2013112 [pii] (2013).
    14 Birch, N., Fillaus, J. & Florescu, M. C. The effect of statin therapy on the formation of arteriovenous fistula stenoses and the rate of reoccurrence of previously treated stenoses. Hemodial Int 17, 586-593, doi:10.1111/j.1542-4758.2012.00762.x (2013).
    15 Florescu, M. C. & Birch, N. Statin therapy and hemodialysis vascular access--were we bringing a knife to a gunfight and were hoping to win? Semin Dial 25, 700-702, doi:10.1111/j.1525-139X.2012.01059.x (2012).
    16 Pisoni, R., Barker-Finkel, J. & Allo, M. Statin therapy is not associated with improved vascular access outcomes. Clin J Am Soc Nephrol 5, 1447-1450, doi:10.2215/CJN.02740310
    CJN.02740310 [pii] (2010).
    17 Righetti, M., Ferrario, G., Serbelloni, P., Milani, S. & Tommasi, A. Some old drugs improve late primary patency rate of native arteriovenous fistulas in hemodialysis patients. Ann Vasc Surg 23, 491-497, doi:10.1016/j.avsg.2008.08.033
    S0890-5096(08)00324-5 [pii] (2009).
    18 Couser, W. G. Glomerulonephritis. Lancet 353, 1509-1515, doi:S0140-6736(98)06195-9 [pii]
    10.1016/S0140-6736(98)06195-9 (1999).
    19 Kunter, U. et al. Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol 17, 2202-2212, doi:ASN.2005080815 [pii]
    10.1681/ASN.2005080815 (2006).
    20 D'Amico, G. Influence of clinical and histological features on actuarial renal survival in adult patients with idiopathic IgA nephropathy, membranous nephropathy, and membranoproliferative glomerulonephritis: survey of the recent literature. Am J Kidney Dis 20, 315-323, doi:S0272638692001197 [pii] (1992).
    21 Deegens, J. K. & Wetzels, J. F. Diagnosis and treatment of primary glomerular diseases. Membranous nephropathy, focal segmental glomerulosclerosis and IgA nephropathy. Minerva Urol Nefrol 57, 211-236 (2005).
    22 Heaf, J., Lokkegaard, H. & Larsen, S. The epidemiology and prognosis of glomerulonephritis in Denmark 1985-1997. Nephrol Dial Transplant 14, 1889-1897 (1999).
    23 Moranne, O., Watier, L., Rossert, J. & Stengel, B. Primary glomerulonephritis: an update on renal survival and determinants of progression. QJM 101, 215-224, doi:10.1093/qjmed/hcm142
    hcm142 [pii] (2008).
    24 Pippias, M. et al. The changing trends and outcomes in renal replacement therapy: data from the ERA-EDTA Registry. Nephrol Dial Transplant, doi:gfv327 [pii]
    10.1093/ndt/gfv327 (2015).
    25 Jin, M., Xie, Y., Li, Q. & Chen, X. Stem cell-based cell therapy for glomerulonephritis. Biomed Res Int 2014, 124730, doi:10.1155/2014/124730 (2014).
    26 Gu, F. et al. Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clin Rheumatol 33, 1611-1619, doi:10.1007/s10067-014-2754-4 (2014).
    27 Wang, D. et al. Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther 16, R79, doi:10.1186/ar4520
    ar4520 [pii] (2014).
    28 Meyer-Schwesinger, C. et al. Bone marrow-derived progenitor cells do not contribute to podocyte turnover in the puromycin aminoglycoside and renal ablation models in rats. Am J Pathol 178, 494-499, doi:10.1016/j.ajpath.2010.10.024
    S0002-9440(10)00117-3 [pii] (2011).
    29 Budisavljevic, M. N. et al. Oxidative stress in the pathogenesis of experimental mesangial proliferative glomerulonephritis. Am J Physiol Renal Physiol 285, F1138-1148, doi:10.1152/ajprenal.00397.2002
    285/6/F1138 [pii] (2003).
    30 Fang, Y. et al. Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int J Mol Med 30, 85-92, doi:10.3892/ijmm.2012.977 (2012).
    31 Liu, H. et al. Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1alpha in MSCs. Biochem Biophys Res Commun 401, 509-515, doi:10.1016/j.bbrc.2010.09.076
    S0006-291X(10)01773-0 [pii] (2010).
    32 Petrangeli, E. et al. Hypoxia Promotes the Inflammatory Response and Stemness Features in Visceral Fat Stem Cells From Obese Subjects. J Cell Physiol 231, 668-679, doi:10.1002/jcp.25113 (2016).
    33 Huang, T. F. et al. Mesenchymal stem cells from a hypoxic culture improve and engraft Achilles tendon repair. Am J Sports Med 41, 1117-1125, doi:10.1177/0363546513480786
    0363546513480786 [pii] (2013).
    34 Yew, T. L. et al. Efficient expansion of mesenchymal stem cells from mouse bone marrow under hypoxic conditions. J Tissue Eng Regen Med 7, 984-993, doi:10.1002/term.1491 (2013).
    35 Chen, Y. M. et al. Pentoxifylline attenuates experimental mesangial proliferative glomerulonephritis. Kidney Int 56, 932-943, doi:ki636 [pii]
    10.1046/j.1523-1755.1999.00636.x (1999).
    36 Saito, T., Sumithran, E., Glasgow, E. F. & Atkins, R. C. The enhancement of aminonucleoside nephrosis by the co-administration of protamine. Kidney Int 32, 691-699 (1987).
    37 Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119, 493-501 (1992).
    38 Dubuis, C. et al. Atorvastatin-loaded hydrogel affects the smooth muscle cells of human veins. J Pharmacol Exp Ther 347, 574-581, doi:10.1124/jpet.113.208769
    jpet.113.208769 [pii] (2013).
    39 Zhang, L. et al. Local delivery of pravastatin inhibits intimal formation in a mouse vein graft model. Can J Cardiol 28, 750-757, doi:10.1016/j.cjca.2012.01.018
    S0828-282X(12)00043-8 [pii] (2012).
    40 Andreucci, V. E. et al. Dialysis Outcomes and Practice Patterns Study (DOPPS) data on medications in hemodialysis patients. Am J Kidney Dis 44, 61-67, doi:S0272638604011072 [pii] (2004).
    41 Stone, N. J. et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, S1-45, doi:10.1161/01.cir.0000437738.63853.7a
    01.cir.0000437738.63853.7a [pii] (2014).
    42 Lazarides, M. K., Georgiadis, G. S., Antoniou, G. A. & Staramos, D. N. A meta-analysis of dialysis access outcome in elderly patients. J Vasc Surg 45, 420-426, doi:S0741-5214(06)01951-3 [pii]
    10.1016/j.jvs.2006.10.035 (2007).
    43 Monroy-Cuadros, M., Yilmaz, S., Salazar-Banuelos, A. & Doig, C. Independent prediction factors for primary patency loss in arteriovenous grafts within six months. J Vasc Access 13, 29-35, doi:10.5301/JVA.2011.8425
    8077EF7C-99E1-4E06-905E-4A58A48EAB4E [pii] (2012).
    44 Monroy-Cuadros, M., Yilmaz, S., Salazar-Banuelos, A. & Doig, C. Risk factors associated with patency loss of hemodialysis vascular access within 6 months. Clin J Am Soc Nephrol 5, 1787-1792, doi:10.2215/CJN.09441209
    CJN.09441209 [pii] (2010).
    45 Weale, A. R. et al. Radiocephalic and brachiocephalic arteriovenous fistula outcomes in the elderly. J Vasc Surg 47, 144-150, doi:10.1016/j.jvs.2007.09.046
    S0741-5214(07)01532-7 [pii] (2008).
    46 Rooijens, P. P. et al. Radiocephalic wrist arteriovenous fistula for hemodialysis: meta-analysis indicates a high primary failure rate. Eur J Vasc Endovasc Surg 28, 583-589, doi:S1078-5884(04)00406-X [pii]
    10.1016/j.ejvs.2004.08.014 (2004).
    47 Moon, J. Y. et al. Arteriovenous fistula patency associated with angiotensin-converting enzyme I/D polymorphism and ACE inhibition or AT1 receptor blockade. Nephron Clin Pract 111, c110-116, doi:10.1159/000191201
    000191201 [pii] (2009).
    48 Osborn, G., Escofet, X. & Da Silva, A. Medical adjuvant treatment to increase patency of arteriovenous fistulae and grafts. Cochrane Database Syst Rev, CD002786, doi:10.1002/14651858.CD002786.pub2 (2008).
    49 Kunter, U. et al. Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. J Am Soc Nephrol 18, 1754-1764, doi:ASN.2007010044 [pii]
    10.1681/ASN.2007010044 (2007).
    50 Rampino, T. et al. Mesenchymal stromal cells improve renal injury in anti-Thy 1 nephritis by modulating inflammatory cytokines and scatter factors. Clin Sci (Lond) 120, 25-36, doi:10.1042/CS20100147
    CS20100147 [pii] (2011).
    51 Sakr, S., Rashed, L., Zarouk, W. & El-Shamy, R. Effect of mesenchymal stem cells on anti-Thy1,1 induced kidney injury in albino rats. Asian Pac J Trop Biomed 3, 174-181, doi:10.1016/S2221-1691(13)60045-3
    apjtb-03-03-174 [pii] (2013).
    52 Uchimura, H. et al. Intrarenal injection of bone marrow-derived angiogenic cells reduces endothelial injury and mesangial cell activation in experimental glomerulonephritis. J Am Soc Nephrol 16, 997-1004, doi:ASN.2004050367 [pii]
    10.1681/ASN.2004050367 (2005).
    53 Li, B., Morioka, T., Uchiyama, M. & Oite, T. Bone marrow cell infusion ameliorates progressive glomerulosclerosis in an experimental rat model. Kidney Int 69, 323-330, doi:5000083 [pii]
    10.1038/sj.ki.5000083 (2006).
    54 Tsuda, H. et al. Allogenic fetal membrane-derived mesenchymal stem cells contribute to renal repair in experimental glomerulonephritis. Am J Physiol Renal Physiol 299, F1004-1013, doi:10.1152/ajprenal.00587.2009
    ajprenal.00587.2009 [pii] (2010).
    55 Abe-Yoshio, Y. et al. Involvement of bone marrow-derived endothelial progenitor cells in glomerular capillary repair in habu snake venom-induced glomerulonephritis. Virchows Arch 453, 97-106, doi:10.1007/s00428-008-0618-5 (2008).
    56 Zoja, C. et al. Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. Am J Physiol Renal Physiol 303, F1370-1381, doi:10.1152/ajprenal.00057.2012
    ajprenal.00057.2012 [pii] (2012).
    57 Li, D. et al. Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secretion of epithelial growth factor. Stem Cell Res Ther 4, 103, doi:scrt314 [pii]
    10.1186/scrt314 (2013).
    58 Ezquer, M. E., Ezquer, F. E., Arango-Rodriguez, M. L. & Conget, P. A. MSC transplantation: a promising therapeutic strategy to manage the onset and progression of diabetic nephropathy. Biol Res 45, 289-296, doi:10.4067/S0716-97602012000300010
    S0716-97602012000300010 [pii] (2012).
    59 Salmon, A. B. et al. Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB J 23, 3601-3608, doi:10.1096/fj.08-127415
    fj.08-127415 [pii] (2009).
    60 Valle-Prieto, A. & Conget, P. A. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev 19, 1885-1893, doi:10.1089/scd.2010.0093 (2010).
    61 Li, Y. et al. Delivering Oxidation Resistance-1 (OXR1) to Mouse Kidney by Genetic Modified Mesenchymal Stem Cells Exhibited Enhanced Protection against Nephrotoxic Serum Induced Renal Injury and Lupus Nephritis. J Stem Cell Res Ther 4, doi:231 [pii]
    10.4172/2157-7633.1000231 (2014).
    62 Miyazaki, Y. et al. Keap1 inhibition attenuates glomerulosclerosis. Nephrol Dial Transplant 29, 783-791, doi:10.1093/ndt/gfu002
    gfu002 [pii] (2014).
    63 Pergola, P. E. et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med 365, 327-336, doi:10.1056/NEJMoa1105351 (2011).
    64 de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 369, 2492-2503, doi:10.1056/NEJMoa1306033 (2013).
    65 Chen, M., Hou, Y. & Lin, D. Polydatin Protects Bone Marrow Stem Cells against Oxidative Injury: Involvement of Nrf 2/ARE Pathways. Stem Cells Int 2016, 9394150, doi:10.1155/2016/9394150 (2016).
    66 Yu, X. et al. Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One 8, e62703, doi:10.1371/journal.pone.0062703
    PONE-D-12-39161 [pii] (2013).
    67 Rosova, I., Dao, M., Capoccia, B., Link, D. & Nolta, J. A. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26, 2173-2182, doi:10.1634/stemcells.2007-1104
    2007-1104 [pii] (2008).
    68 Annabi, B. et al. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells 21, 337-347, doi:10.1634/stemcells.21-3-337 (2003).

    下載圖示
    QR CODE