簡易檢索 / 詳目顯示

研究生: 洪國峰
Hung, Kuo-Feng
論文名稱: 國中生的科技素養測驗發展及其表現之研究
Development of Technological Literacy Test and Its Performance of Junior High Students
指導教授: 游光昭
Yu, Kuang-Chao
林坤誼
Lin, Kuen-Yi
學位類別: 博士
Doctor
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 216
中文關鍵詞: 科技素養科技知識科技態度科技技能科技能力
英文關鍵詞: technological literacy, technology knowledge, attitudes toward technology, technology skills, technology competencies
DOI URL: https://doi.org/10.6345/NTNU202204266
論文種類: 學術論文
相關次數: 點閱:145下載:67
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的主要在發展一份「國中生科技素養測驗」,據此分析國中生的科技素養表現情形及其差異,並建構科技態度與科技知能(知識、技能及能力)之間的關聯模式。在「國中生科技素養測驗」的發展過程中,本研究參考科技領域之十二年國民基本教育之國中階段生活科技的學習表現來編製素養測驗。為達研究目的,本研究採用問卷調查法,以臺灣地區公立國民中學九年級學生為主要研究對象,採用分層隨機叢集取樣,總計回收有效問卷2192份,有效回收率為98.16%。透過因素分析、無母數統計分析、斯皮爾曼等級相關、結構方程模式等統計分析方法。歸納出以下結論:(1)本研究所發展的國中生科技素養測驗,具有良好信、效度且值得推廣與應用;(2)國中生的科技素養表現不盡理想,宜定期追蹤學生科技素養表現;(3)國中生對科技的態度尚屬樂觀,但在科技的興趣方面有待提升,尤其未來想從事科技領域工作的意願偏低;(4)國中男生在科技態度表現優於國中女生,但在科技知能方面上並無差異;(5)透過非正式課程可有助於培養學生對科技的態度,但仍須透過正式課程以培養學生的科技知能;(6)科技態度對科技知能僅有偏低的正向影響。

    The purposes of this research were to develop a technological literacy test for junior high students, and further to analyze students’ performances and differences. This study also constructed a model of students’ attitudes toward technology and technology learning outcomes (knowledge, skills, competencies). The technological literacy test was developed according to the technology curriculum of 12-year compulsory education. A questionnaire survey was conducted and sent to the ninth grade students of public junior high schools in Taiwan, receiving 2192 valid questionnaires with a return rate of 98.16%. Factor analysis, spearman correlation coefficient, and structural equation modeling were utilized, and the following conclusions are made: (1) The technological literacy test developed in this research had excellent reliability and validity. (2) The technological literacy performance of junior high students is not in an accepted situation, we need to enhance students’ technological literacy. (3) The attitudes toward technology of junior high students is optimistic. However, students’ interest of technology should be raised, especially the willness of working in the technology fields. (4) Male students have better attitudes toward technology than female students, but no difference in the performance of technology learning outcomes. (5) Informal education needs to be used to help students improve the attitudes toward technology, and to improve students’ technology learning outcomes through formal education. (6) The attitudes toward technology has slight effect on technology learning outcomes.

    誌 謝………………………………………………………………………………………i 中文摘要………………………………………………………………………………………ii 英文摘要……………………………………………………………………………………iii 目 錄…………………………………………………………………………………v 表 次………………………………………………………………………………………vii 圖 次……………………………………………………………………………………….ix 第一章 緒論………………………………………………………………………………………1 第一節 研究背景與動機…………………………………………………………………1 第二節 研究目的與待答問題…………………………………………………………7 第三節 研究範圍與限制…………………………………………………………………9 第四節 重要名詞釋義………………………………………………………………………11 第二章 文獻探討………………………………………………………………………………15 第一節 科技素養的內涵及架構……………………………………………………15 第二節 科技知識的內涵…………………………………………………………………37 第三節 科技態度的內涵…………………………………………………………………42 第四節 科技技能的內涵…………………………………………………………………49 第五節 科技能力的內涵…………………………………………………………………55 第六節 科技素養能力的內涵…………………………………………………………60 第七節 科技態度與科技知能之關係探討……………………………………71 第三章 研究設計與實施……………………………………………………………………77 第一節 研究設計…………………………………………………………………………………77 第二節 研究程序…………………………………………………………………………………84 第三節 研究對象…………………………………………………………………………………88 第四節 研究工具…………………………………………………………………………………94 第五節 資料分析…………………………………………………………………………………101 第四章 研究結果與討論……………………………………………………………………103 第一節 科技素養測驗之編製……………………………………………………………103 第二節 國中學生在科技素養測驗能力表現之分析……………………120 第三節 不同科技資訊來源與性別在科技素養能力的差異………134 第四節 科技態度與科技知能之關聯模式………………………………………148 第五節 綜合討論……………………………………………………………………………………156 第五章 結論與建議………………………………………………………………………………163 第一節 結論……………………………………………………………………………………………163 第二節 建議……………………………………………………………………………………………167 參考文獻……………………………………………………………………………………………………………170 一、中文部份…………………………………………………………………………………………………170 二、外文部份…………………………………………………………………………………………………174 附 錄   附錄一 國中生科技素養測驗預試問卷………………………………………185   附錄二 國中生科技素養測驗正式問卷…………………………………………201   附錄三 科技素養測驗學習表現與題目對照表……………………………216   表次 表2-1 PISA科學評量的情境內涵……………………………………………………………29 表2-2 科技素養測驗學習表現之命題參考規準表………………………………65 表3-1 科技素養測驗預試學校名單…………………………………………………………89 表3-2 科技素養測驗正式施測取樣班級數分配表………………………………90 表3-3 科技素養測驗正式施測取樣班級數回收統計表………………………91 表3-4 科技素養測驗預試題目列表…………………………………………………………95 表3-5 國中生科技素養測驗的雙向細目表……………………………………………98 表4-1 科技素養測驗預試問卷之科技態度面向項目分析摘要………105 表4-2 科技素養測驗預試問卷之科技態度面向因素分析摘要表…107 表4-3 科技素養測驗預試問卷之科技態度內部一致性分析…………108 表4-4 科技知識、技能及能力面向第一次預試試題分析表…………109 表4-5 科技知識、技能及能力面向第二次預試試題分析表…………110 表4-6 科技知識、技能及能力測驗正式問卷之學習表現與題目對照表………111 表4-7 科技素養測驗題目難易度分析表…………………………………………………………………112 表4-8 科技素養測驗正式問卷之科技態度面向項目分析摘要表……………………113 表4-9 科技素養測驗正式問卷之科技態度面向因素分析摘要表……………………114 表4-10 科技素養測驗正式問卷之科技態度內部一致性分析……………………………115 表4-11 科技知識、技能及能力面向正式問卷試題分析表…………………………………116 表4-12 常態分佈檢定……………………………………………………………………………………………………121 表4-13 科技態度測驗問卷平均數及標準差分析結果…………………………………………124 表4-14 科技興趣、貢獻及決策與科技態度測驗總分之相關係數……………………124 表4-15 科技知識、技能及能力之各學習表現答對率分析…………………………………128 表4-16 科技知識、技能及能力構面之間相關係數………………………………………………129 表4-17 不同性別在科技素養測驗的平均數與標準差…………………………………………134 表4-18 不同性別在科技素養測驗的差異分析………………………………………………………135 表4-19 學生對不同科技資訊來源的意向分析………………………………………………………136 表4-20 科技資訊的來源的平均數與標準差……………………………………………………………137 表4-21 從電視節目獲得資訊來源對於學生科技素養的差異分析……………………138 表4-22 從雜誌獲得資訊來源對於學生科技素養的差異分析……………………………140 表4-23 從營隊獲得資訊來源對於學生科技素養的差異分析……………………………141 表4-24 從競賽獲得資訊來源對於學生科技素養的差異分析……………………………142 表4-25 從學校課程獲得資訊來源對於學生科技素養的差異分析……………………144 表4-26 各觀察變項之平均數、標準差、偏態、峰度及相關係數……………………149 表4-27 本研究假設模式之絕對適配指標考驗結果………………………………………………150 表4-28 本研究假設模式之相對適配指標考驗結果………………………………………………150 表4-29 本研究假設模式之精簡適配指標考驗結果………………………………………………151 表4-30 本研究假設模式之參數估計表……………………………………………………………………152 表4-31 本研究假設模式之個別指標信度及潛在變項組成信度、平均變異抽取量……………………………………………………………………………………………………………………………………………153   圖次 圖2-1 科技的寰宇………………………………………………………………………………………………20 圖2-2 科技素養的面向………………………………………………………………………………………22 圖2-3 科技素養三面向之關係…………………………………………………………………………26 圖2-4 PISA 2006科學能力評量架構圖………………………………………………………28 圖2-5 NAEP科技素養主要評量領域………………………………………………………………32 圖2-6 臺灣科技素養測驗面向圖………………………………………………………………………36 圖2-7 臺灣科技素養架構圖………………………………………………………………………………60 圖2-8 產品探究模型和學習態度關係之研究架構………………………………………72 圖2-9 科技接受模型………………………………………………………………………………………………75 圖2-10 STEM專題學習行為模式……………………………………………………………………………76 圖2-11 科技態度與科技知能關係圖……………………………………………………………………76 圖3-1 研究架構圖……………………………………………………………………………………………………77 圖3-2 科技素養測驗編製流程圖…………………………………………………………………………80 圖3-3 不同背景變項與科技素養能力測驗之關係圖………………………………………81 圖3-4 科技態度與科技知能之關聯模式圖…………………………………………………………82 圖3-5 研究流程圖………………………………………………………………………………………………………87 圖4-1 科技素養測驗各題項答對人數統計圖………………………………………………………125 圖4-2 科技態度對科技知能之影響假設模式的標準化參數係數……………………154

    一、中文部份
    丁信中(2009)。芬蘭中學生PISA 科學成就優異表現及其相關因素之探討:2007歐洲科學教育學術參訪反思。科學教育月刊,316,2-19。
    王鼎銘(1999)。科技發展與科技教育學習經驗。生活科技教育,32(11),2-9。
    吳坤璋、黃台珠、吳裕益(2005)。影響中小學學生科學學習成就的因素之比較研究。教育心理學報,37(2),147-171。
    吳明隆(2007)。SPSS統計應用學習實務。臺北:五南圖書公司。
    吳明隆、涂金堂(2005)。SPSS與統計應用分析。臺北:五南圖書公司。
    宋曜廷(2012)。以標準參照的入學考試和班級評量促進科教發展。科學月刊,43(9),672-678。
    宋曜廷、周業太、曾芬蘭(2014)。十二年國民基本教育的入學考試與評量變革。教育科學研究期刊,59(1),1-32。
    李大偉、方崇雄、余鑑、林薇(1997)。技學素養測驗編製-國民中學技學素養測驗編製。行政院國家科學委員會專題研究計畫(NSC-86-2511-S-003-001),未出版。
    李大偉、林薇、曾國鴻、游光昭(1995)。國中國小學生技學素養之研究。行政院國家科學委員會專題研究計畫(NSC-84-2511-S-003- 033-TL),未出版。
    李哲迪(2009)。臺灣國中學生在TIMSS 及PISA 的科學學習成果表現及其啟示。研習資訊,26(2),73-88。
    李堅萍(2006)。培育科技創造力應重視實作技能的教學與自我效能的激發。生活科技教育,39(8),21-28。
    李隆盛、林坤誼(2003)。中美中小學生活科技標準之比較。中等教育,54(3),20-29。
    林志忠(1998)。科技素養教育的哲學分析。國立臺灣師範大學教育學系博士論文,未出版,臺北市。
    林志哲(2007)。以結構方程模式驗證期望、價值與數學成就的關係。教育學刊,29,103-127。
    林國明、陳東升(2005)。審議民主、科技決策與公共討論。載於科技.醫療與社會,3,5-49。臺北:群學出版社。
    林崇熙(2008)。科技就是風險。科學發展月刊,421,60-63.
    林清山(2006)。心理與教育統計學。臺北:東華書局。
    林煥祥(2009)。公民科技素養的調查研究成果報告。行政院國家科學委員會專題研究計畫(NSC-98-2511-S-110-005),未出版。
    林煥祥、劉聖忠、林素微、李暉(2008)。臺灣參加PISA 2006 成果報告。行政院國家科學委員會專題研究成果報告(NSC-95-2522-S-026-002),未出版。
    邱皓政(2001)。量化研究與統計分析。臺北:五南圖書公司。
    邱皓政(2008)。量化研究法(二):統計原理與分析技術。臺北:雙葉出版社。
    邱皓政(2010)。量化研究與統計分析(五版) 。臺北:五南圖書公司。
    邱皓政(2012)。量化研究法(三):測驗原理與量表發展技術。臺北:雙葉出版社。
    徐妙琴(1994)。國中學生科技素養量表之發展研究。國立高雄師範大學工業科技教育系碩士論文,未出版,高雄市。
    教育部(2001)。國民中小學九年一貫課程暫行綱要。臺北:教育部。
    教育部(2008)。國民中小學九年一貫課程綱要:自然與科技領域。臺北:教育部。
    教育部(2013a)。十二年國民基本教育生活與科技領域綱要內容之前導研究。臺北:教育部。
    教育部(2013b)。國民中學學生學習成就評量標準(試行版)。臺北:教育部。
    教育部(2014)。十二年國民基本教育課程綱要總綱。臺北:教育部。
    教育部(2016)。十二年國民基本教育課程綱要:科技領域(草案)。臺北:教育部。
    郭生玉(1996)。心理與教育測驗。臺北:精華書局。
    彭森明(2006)。學習成就評量的多元功能 及其相應研究設計。教育研究與發展期刊,2(4),21-38。
    游光昭、林坤誼(2005)。設計與製作的能力。2014年6月28日,取自http://www.phy.ntnu.edu.tw/nstsc/doc/book94.11/13.doc
    游光昭、林坤誼、洪國峰(2009)。科技教學的另類選擇:科技史的融入。生活科技教育,41(8),42-65。
    游光昭、林坤誼、洪國峰(2010)。從反思與實踐看國中生在科技實作活動中的學習歷程表現。課程與教學,13(3),219-250。
    游光昭、林坤誼、洪國峰(2011)。操作技能對思考與實作表現影響之研究。課程與教學,14(4),161-185。
    游光昭、韓豐年、徐毅穎、林坤誼(2005)。國中學生科技態度量表之發展。高雄師大學報,19,69-83。
    黃芳銘(2003)。結構方程模式:理論與應用。臺北:五南書局。
    黃政傑(1991)。課程設計。臺北:東華書局。
    黃臺珠主編(2014)。2012年臺灣公民科技素養概況。高雄:國立中山大學公民素養推動研究中心。
    楊惟程、靳知勤(2006)。國小六年級學童對讀寫活動融入自然科教學之知覺研究。科學教育學刊,14(1),29-53。
    楊朝祥(1984)。技術職業敎育辭典。臺北:三民書局。
    雷祥麟(2004b)。相互可望的科技與社會。載於吳嘉苓、傅大為、雷祥麟主編,STS 科技渴望社會(頁7-17)。台北:群學出版社。
    雷祥麟譯(2004a)。直線進步或交引纏繞。載於吳嘉苓、傅大為、雷祥麟主編,STS 科技渴望社會(頁79-106)。台北:群學出版社。
    靳知勒(2007)。科學教育應如何提升學生的科學素養-台灣學術精英的看法。科學教育學刊,15(6),627-646。
    蔡東鐘(2005)。科技史導向教材對國小學生科技素養影響之研究。國立臺灣師範大學工業科技教育學系博士論文,未出版,臺北市。

    二、 英文部份
    Ardies, J., de Maeyer, S., & Gijbels, D. (2013). Reconstructing the pupils attitude towards technologysurvey. Design and Technology Education: An International Journal, 18(1), 8–19.
    Ardies, J., de Maeyer, S., Gijbels, D., & van Keulen, H. (2014). Students’ attitudes towards technology. International Journal of Technology and Design Education,. doi:10.1007/s10798-014-9268-x.
    Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety and performance. Journal of Experimental Psychology, 120(2), 224–237.
    Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Academic of Marketing Science, 16, 74-94.
    Baker, G. E., & Dugger, J. C. (1986). Helping students develop problem solving skills. The Technology Teacher, 45(4), 10-13.
    Bame, E., Dugger, W., de Vries, M., & McBee, J. (1993). Pupils’ attitudes toward technology: USA. Journal of Technology Studies, 19(1), 40-48.
    Bandura, A. (1977). Social learning theory. Englewood Cliffs, New Jersey: Prentice Hall.
    Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. New Jersey: Prentice-Hall.
    Basalla, G. (1988). The evolution of technology. New York: Cambridge University Press.
    Boser, R. A., Palmer, J. D., & Daugherty, M. K. (1998). Students’ attitudes toward technology in selected technology education programs. Journal of Technology Education, 10(1), 4-19.
    Bulte, A., Westbroek, H., de Jong, O., & Pilot, A. (2006). A research approach to designing chemistry education using authentic practices as contexts. International Journal of Science Education, 28(9), 1063-1086.
    Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 6.
    Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities.Arlington, VA: National Science Teachers Association.
    Carmines, E. G., & Mclver, J. P. (1981). Analyzing Models with Unobserved Variables: Analysis of Covariance Structures. In Bohrnstedt, G. W., & Borgatta, E. F. (Eds.), Social Measurement: Current Issues (pp. 65-115).
    Combs, A. W. (1973). Affective education-or none at all. In R. B. Sund & R. W. Bybee, (Eds.), Becoming a better elementary science teacher: A reader. (pp.41-50). Columbus, OH: Merrill Publishing Company.
    Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-339.
    Davis, F.D., Bagozzi, R.P., & Warshaw, P.R.(1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
    Davis, T. R. V., & Luthans, F. (1980). A social learning approach to organizational behavior. Academy of Managemance Review, 5, 281-290.
    De Vore, P. W. (1985). Differentiating between science and technology. Paper presented at the annual conference of the international technology education association. ERIC ED 265407.
    De Vries, M. J. (2000). Industrial research and development labs: How they inform science and technology curricula. Journal of Technology Studies, 26(1), 64-70.
    DeVellis, R. F. (1991). Scale development theory and applications. London: Sage.
    Diamantopoulos, A., & Siguaw, J. A. (2000). Introducing LISREL: A guide for the uninitiated. Thousand Oaks, CA: Sage.
    Duffy, T. M., & Jonassen, D. H. (1992). Constructivism: New implications for instructional technology. In T. M. Duffy, & D. H. Jonassen (Ed.), Constructivism and the technology of instruction: a conversation (pp. 1-16). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Durant, J. R., Evans, G. A., & Thomas, G. P. (1989). The public understanding of science. Nature, 340(6), 11-14.
    Dyrenfurth, M. J. (1991). Technological literacy synthesized. In M. J.Dyrenfurth & M. R. Kozak (Eds.), Technological literacy: Council on Techology Teacher Education 40th yearbook (pp. 138-183). Peoria, IL:Macmillan McGraw-Hill.
    Fennema, E., & Sherman, J. A. (1976). Fennema–Sherman mathematics attitudes scales: Instruments designed to measure attitudes toward the learning of mathematics by males and females. Journal for Research in Mathematics Education, 7, 324–326.
    Fensham, P. (1992). Science and Technology. In P. Jackson (Ed.), Handbook of research on curriculum (pp.789–821). New York: MacMillan.
    Fiorino, D. J. (1990). “Citizen participation and environmental risk:A survey of institutional mechanisms.” Science, Technology & Human Values 15(2): 226-243.
    Folkestad, J. E. & DeMiranda, M. A. (2000). Linking cognitive science theory and technology education practice: A powerful connection not fully realized. Journal of Industrial Teacher Education, 37(4), 5-23.
    Garmire, E., & Pearson, G. (Eds.). (2006). Tech tally: Approaches to assessing technological literacy. Washington, DC: National Academies Press.
    Ghiselli, E.E., Campbell, J.P. & Zedeck, S. (1981). Measurement theory for the behavioral sciences. San Francisco, CA: Freeman.
    Greenfield, T. A. (1997). Gender-and grade-level differences in science interest and participation. Science Education, 81, 259-276.
    Hair, J. F., Black, W. C., Babin B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate date analysis (6th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
    Hammack, R., Ivey, T. A., Utley, J., &High, K. A.(2015). Effect of an engineering camp on students' perceptions of engineering and technology. Journal of Pre-College Engineering Education Research (J-PEER): Vol. 5: Iss. 2, Article 2.
    http://dx.doi.org/10.7771/2157-9288.1102
    Hendley, D. (2001). Pupils’ attitudes and perceptions towards design and technology. In G. Owen-Jackson (Ed.), Teaching design and technology in secondary schools (pp. 64–76). London: Routledge/Falmer, Taylor & Francis Group.
    Hoffmann, L. (2002). Promoting girls’ interest and achievement in physics classes for beginners. Learning and Instruction, 12, 447-465.
    Hooper-Greenhill, E. (2007). Museums and education: Purpose, pedagogy, performance. London, UK: Taylor & Francis.
    Howard-Jones, P. A. (2002). A dual-state model of creative cognition for supporting strategies that foster creativity in the classroom. International Journal of Technology and Design Education, 12, 215-226.
    Hu, L. T., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues and applications (pp. 76-99). Thousand Oaks, CA: Sage.
    Ihde, D. (1997). The structure of technology knowledge. International Journal of Technology and Design Education, 7(1), 73-79.
    International Technology and Engineering Educator Association (2006).Technology literacy for all: A rationale and structure for the study of technology. Reston, VA: Author.
    International Technology Education Association (ITEA) (1996). Technology for all Americans: a rational and structure for the study of technology. Reston, VA: ITEA.
    International Technology Education Association (ITEA) (2000). Standards for technological literacy: content for the study of technology. Arlington, Virginia: Author.
    Ja¨rvinen, E.-M., & Rasinen, A. (2014). Implementing technology education in Finnish general education schools: studying the cross-curricular theme ‘Human being and technology’. International Journal of Technology and Design Education,. doi:10.1007/s10798-014-9270-3.
    Jarvis, P. (1992). Paradoxes of learning: On becoming an individual in society. San Francisco: Jossey-Bass.
    Jones, A., & Moreland, J. (2003). Developing classroom-focused research in technology education. Canadian Journal of Science, Mathematics and Technology Education, 3(1), 51-66.
    Judson, E.(2006).How teachers integrate technology and their beliefs about learning: Is there a connection?. Journal of Technology and Teacher Education,14(3),581-597.
    Kaiser, H. F. (1974). An index of fartorial simplicity. Psychometrika, 39, 31-36.
    Kimbell, R., Stables, K., & Green, R. (2002) .The nature and purpose of design and technology. In G. Owen-Jackson (Ed.), Teaching design and technology in secondary schools (pp.19-30). Landon: Routledge Falmer.
    Knoll, M. (1997). The project method: Its vocational education origin and international development. Journal of Industrial Teacher Education, 34(3), 59-80.
    Krejcie, R. V., Morgan, D. W.(1970).Determining sample size for reseach activities. Educational and Psychological Measurement, 30(3),88.
    Leppävirta, J., Kettunen, H., & Sihvola, A. (2010). Complex problem exercises in developing engineering students’ conceptual and procedural knowledge of electromagnetics. IEEE Transactions on Education, 54 (1), 63-66.
    Lou, S.-J., Liu, Y.-H., & Shih, R.-C. (2011). The senior high school students’ learning behavioral model of STEM in PBL. International Journal of Technology and Design Education, 21(2), 161-183.
    Lyon, E.(2011). Beliefs, practices, and reflection: Exploring a science teacher’s classroom assessment through the assessment triangle model. Journal of Science Teacher Education, 22(5), 417-435. doi:10.1007/s10972-011-9241-4.
    Maley, D.(1983). Teaching the heritage of technology: Past, present, and future. The Technology Teacher, 45(3), 4-6.
    Martone, A., & Sireci, S. G.(2009). Evaluating alignment between curriculum, assessment, and instruction. Review of Educational Research, 79(4), 1332-1361. doi:10.3102/0034654309341375
    Mayer, R. E. (1999). Fifty years of creativity research. In R. J. Sternberg (Ed.), Handbook of Creativity (pp. 449-460). Cambridge: Cambridge University Press.
    McCormick, R. (2004). Issues of learning and knowledge in technology education. International Journal of Technology and Design Education, 14(1), 21-44.
    McCracken, J. R. (2000). Design : The creative soul of technology. In G. Eugene Martin (Eds.), Technology education for the 21st century (pp. 85-90). Peoria, IL: Glencoe/McGraw-Hill.
    Metsämuuronen, J. (2012). Challenges of the Fennema–Sherman test in the international comparisons. International Journal of Psychological Studies, 4(3), 1–22.
    Metsärinne, M., & Kallio, M.(2015). How are students’ attitudes related to learning outcomes?. International Journal of Technology and Design Education. First online: 07 June 2015.
    Metsärinne, M., Kallio, M., & Virta, K. (2015). Pupils’ readiness for self-regulated learning in the forethought phase of exploratory production. International Journal of Technology and Design Education, 25(1), 85–108.
    Michael, K. Y. (2001). The effect of a computer simulation activity versus a hands-on activity on product creativity in technology education. Journal of Technology Education, 13(1), 31-43.
    Mokyr, J. (1990). The lever of riches: Technological creativity and economic progress. Oxford, New York, Toronto, and Melbourne: Oxford University Press.
    National Assessment Governing Board(2010). Technology and engineering literacy assessment and item specifications for the 2014 National Assessment of Educational Progress. Retrieved November 8, 2010, from http://www.edgateway.net/cs/naepsci/view/lib/263.
    National Research Council (NRC). (2010). Exploringthe intersection of science education and 2lst century skills: A workshop summary. Washington, DC: National Academies Press.
    National Research Council(1996). National science educational standards. Washington, DC. : National Academy Press.
    National Science Board(NSB). (2012). Science and engineering indicators 2012. Retrieved from http://www.nsf.gov/statics/seind12/pdf/seind12.pdf.
    National Science Board. (2006). Science and Engineering Indicators-2006. Arlington, VA: National Science Foundation.
    National Science Foundation (1983). Educating Americans for the 21st Centry. Washington. DC: National Science Foundation.
    National Technology and Engineering Educators Association (2010). ITEA officially becomes ITEEA. August 31, 2010, retrieved from http://www.iteea.org/AboutITEEA/NameChange.pdf
    Neathery, M. F. (1997). Elementary and secondary students’ perceptions toward science and correlation with gender, ethnicity, ability, grade, and science achievement. Electronic Journal of Science Education(Online), 2(1). Available: http://unr.edu/homepage/ jcannon/ ejse/ejsev2n1.html
    Nelkin, D. (1984). Science, Technology, and Political Conflict: Analyzing the Issues. In D. Nelkin ed. Controversy: Politics of Technical Decisions. Beverly Hills, CA: Sage Publications. 9-24
    OECD (2009). PISA 2006 Technical Report (vo1.2). OECD, Paris.
    Olsen, R. V., Przenel, M. & Martin, R.(2011).Interest in science: Amany-faceted picture painted by data from the OECD PISA study, International Journal of Science Education, 33(1), 1-6.
    Olson, D. W. (1973). Tecnol-o-gee. Raleigh: North Carolina University School of Education, Office of Publications.
    Organization for Economic Cooperation and Development (OECD)(2006). Assessing scientific, reading and mathematical literacy. July, 4, 2009, retrieved from www.oecd.org/dataoecd/63/35/37464175.pdf
    Organization for Economic Cooperation and Development (OECD)(2009). PISA 2009 assessment framework. January, 7, 2011, retrieved from http://www.oecd.org/dataoecd/11/40/44455820.pdf
    Pearson, G. & Young, A. T.(2002). Technically speaking: Why all Americans need to know more about technology. Washington: National Academy of Sciences.
    Peltonen, J. (2003). The chain of rational theories as the directing means of productive activities in academic Sloyd education. Techne Series A, 5, 78–96.
    Peterson, R. E. (2002). Establishing the creative environment in technology education. The Technology Teacher, 61(4), 7-10.
    Pilot, A., & Bulte, A. M. W. (2006). The use of ‘contexts’ as a challenge for the chemistry curriculum: Its successes & the need for further development and understanding. International Journal of Science Education, 28(9), 1087–1112.
    Rillero, P.(2005).Exploring science with young children.Scholastic Early Childhood Toda, 19(6),8-9.
    Sachs, J., & Leung, S. O. (2007). Shortened versions of Fennema–Sherman mathematic attitude scales employing trace information. Psychologika, 50(3), 224–235.
    Sanidas, E. (2004). Technology, technical and organizational innovations, economic and societal growth. Technology in Society, 26, 67-84.
    Schon, D. A. (1987). Educating the reflective practitioner. SF: Jossey-Bass.
    Sherman, H. J., & Christian, M. (1999). Mathematics attitudes and global self-concept: An investigation of the relationship.
    Smalley, L., & Brady, S. (1984). Technological literacy test. Unpublished report supported by a grant form the American Council on Industrial Arts Teacher Education. Menomonie, WI: Author, University of Wisconsin -Stout. ERIC ED 255637.
    Stashak, G. (1981). Technological literacy: The publisher’s role. ERIC ED 206915.
    Stockhausen, L. (2006). Metier artistry: Revealing reflection-in-action in everyday practice. Nurse Education Today, 26(1), 54–62.
    Stocklmayer, S. M., Rennie, L. J., & Gilbert, J. K. (2010). The roles of the formal and informal sectors in the provision of effective science education. Studies in Science Education, 46(1), 1- 44.
    Sudman, S. (1976). Applied Sampling. New York: Academic Statistics (2nd ed.). New York: Harper & Row.
    Tapia, M., & Marsh, G. E. (2004). An instrument to measure mathematics attitudes. Academic Exchange Quarterly, 8(2), 16-21.
    Tapia, M., & Marsh, G. E. (2004). An instrument to measure mathematics attitudes. Academic Exchange Quarterly, 8(2), 16–21.
    Tempelman, E., & Pilot, A. (2010). Strengthening the link between theory and practice in teaching design engineering: an empirical study on a new approach. International Journal of Technology and Design Education. doi:10.1007/s10798-010-9118-4
    United Nations Educational, Scientific and Cultural Organization, UNESCO (2000). The Dakar Framework for Action Education for All: Meeting Our Collective Commitments。
    Voke, K.S., & Yip, W. M. (1999). Gender and technology in Hong Kong: A study of pupils’ attitudes toward technology. International Journal of Technology and Design Education, 9, 57-71.
    Voke, K.S., Yip, W. M., & Lo, T.K. (2003). Hong Kong pupils’ attitudes toward technology: The impact of design and technology programs. Journal of Technology Education, 15(1), 48-63.
    Volk, K. S. (2007). Attitudes. In M. de Vries, R. Custer, J. Dakers, & G. Martin (Eds.), International journal of technology education series (pp. 191–202). Rotterdam: Sense Publishers.
    Warner, S. A., & Morford, L. L. (2004). The status of design in technology teacher education in the United States. Journal of Technology Education, 15(2), 33-45.
    Weber, K. & Custer, R.(2005). Gender-Based Preferences toward Technology Education Content, Activities, and Instructional Methods. Journal of Technology Education, 16(2), 55-71.
    Weinberger, N., Anderson, T., & Schumacher, P. (2009). Young children’s access and use of computers in family child care and child care centers. Computers in Human Behavior, 25(1), 183-190.
    Wolk, S. (2007). Why go to school? Phi Delta Kappan, 88(9), 648–658.
    Wu, K.-C., Shein, P.-P., Tsai, C.-Y., Chou, C.-Y., Wu, Y.-Y., Liu, C.-J., Chiu, H.-L., Hung, J.-F., Chao, D., & Huang, T.-C. (2012). An investigation of Taiwan's public attitudes toward science and technology. International Journal of Science Education, Part B: Communication and Public Engagement, 2(1),1-22.
    Wynne, B. (2001). “Creating Public Alienation Expert Cultures of Risk and Ethics on GMOs.” Science as Culture 10(4): 445-481.
    Yu, K. C., Lin, K. Y., & Hung, K. F.(2010). Teaching science through technology: A confluence of knowledge, design and construction. World Transactions on Engineering and Technology Education,8(4), 436-441.
    Yu, K. C., Lin, K. Y., Han, F. N., & Hsu, I. Y. (2012). A model of junior high school students' attitudes toward technology. International Journal of Technology and Design Education, 22(4), 423-436.
    Zimmerman, B. J. (1998). Developing self-fulfilling cycles of academic regulation: An analysis of exemplary instructional models. In D. H. Schunk & B. J. Zimmerman (Eds.), Self-regulated learning from teaching to self-reflective practice (pp. 1–19). New York: The Guilford Press.
    Zimmerman, B. J. (2011). Motivational sources and outcomes of self-regulated learning and performance. In B. J. Zimmerman & D. H. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 49–64). London: Routledge.

    下載圖示
    QR CODE