簡易檢索 / 詳目顯示

研究生: 張煒騰
Wei-Tang Chang
論文名稱: 應用強健性重複滑動模型控制於機械手臂定位追跡控制器設計
Design a Robust Repetitive Sliding Mode Controller for Robot Manipulator Position and Tracking Control
指導教授: 陳美勇
Chen, Mei-Yung
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 57
中文關鍵詞: 重複控制滑動模型控制機械手臂
英文關鍵詞: Repetitive Control, Sliding Mode Control, Manipulator
DOI URL: https://doi.org/10.6345/NTNU202205451
論文種類: 學術論文
相關次數: 點閱:133下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用非線性控制理論實現重複控制結合滑動模型控制於非線性系統之四軸機械手臂上,使得輸出的追跡效能具有較高精度,且在外部干擾訊號以及系統未知項影響下有較佳的強健性。

    機械手臂精密運動控制在實際的應用上經常面對不同型態的負載,如不可預測的外部干擾訊號、系統未知項(System Uncertainty),或是系統模型自身的影響:重力、柯氏力、慣性力等等,在不同型態的負載影響下使得系統輸出效能的精準度與穩定性受到影響。為了有效提高系統的輸出效能,必須對外部干擾訊號以及系統未知項的影響加以抑制。本研究致力於機械手臂的精密運動控制。其中滑動模型控制設計用來消除外部干擾訊號以及系統模型的影響,增加系統的強健性。結合重複控制抑制系統未知項的影響,即使系統包含未知項依然能夠達成追跡控制。

    In this study, the Repetitive Control (RC) combine with Sliding Mode Control (SMC) by nonlinear control theorem is applied on four axis manipulator, making the tracking performance more precisely and the system uncertainty have better robustness under the effect of outloop disurbances.

    Manipulator preciseness control is mostly applied in many diffirent types of payload, such as the unpredictability outloop disturbance, system uncertainty or the impact of the model itself gravity, goriolis force, inertia force. Diffirent types of payload impact effect and cause system preciseness and stability loss. In order to improve the output efficiency of the system, suppressing the influence of outloop disturbances and systems uncertainty is necessary. This paper proposes the SMC that have hight performance combined with the RC has high performance on to suppressing the disterbances and enhancing the robustness.

    摘要………………………………………………………………………………………………………………………………………i Abstract…………………………………………………………………………………………………………………………ii 致謝……………………………………………………………………………………………………………………………………iii 目錄……………………………………………………………………………………………………………………………………iv 圖目錄………………………………………………………………………………………………………………………………viii 表目錄……………………………………………………………………………………………………………………………xiv 第一章 緒論 1.1 前言…………………………………………………………………………………………………………………1 1.2 文獻回顧………………………………………………………………………………………………………3 1.3 研究動機與目的…………………………………………………………………………………………9 1.4 本論文之貢獻……………………………………………………………………………………………10 1.5 本論文之架構……………………………………………………………………………………………11 第二章 機械手臂系統模型 2.1 D-H座標系統………………………………………………………………………………………………12 2.2 正向運動學…………………………………………………………………………………………………15 2.3 逆向運動學…………………………………………………………………………………………………19 2.4 動力學模型…………………………………………………………………………………………………21 第三章 系統控制器理論及設計 3.1控制系統…………………………………………………………………………………………………………27 3.2滑動模型控制………………………………………………………………………………………………28 3.3重複控制理論………………………………………………………………………………………………31 3.4Lyapunov穩定性理論………………………………………………………………………………34 第四章 實驗設備 4.1AI直流伺服馬達…………………………………………………………………………………………37 4.2 PXI 6230 DAQ資料擷取卡…………………………………………………………………40 4.3 H-Bride………………………………………………………………………………………………………41 4.4 人機介面及圖形化程式軟體…………………………………………………………………42 第五章 實驗結果 5.1 實驗結果………………………………………………………………………………………………………45 第六章 結論及未來展望……………………………………………………………………………………………55 參考文獻……………………………………………………………………………………………………………………………56

    [1] T. Inoue, M. Nakano, T. Kubo, and S. Mastsumoto, “High accuracy control of a proton synchrotron magnet power supply,” Procceedings of the 8th IFAC World Congress, vol. 20, pp.216-221, 1981.
    [2] B. A. Francis and W. M. Wonham, “The inernal model principle for linear multivariable regulators,” Applied Mathematics & Optimization, vol. 2, no. 2, pp.170-194, 1975.
    [3] S. Hara, Y. Yamammoto, T. Omata, and M. Nakano, “Repetitive control system : A new type servo system for periodic exogenous signals,” IEEE Transactions on Automatic Control, vol. 33, no. 7, pp. 659-668,July 1988.
    [4] K. Kaneko and R. Horowitz, “Repetitive and Adaptive Control of Robot Manipulators with Velocity Estimation,” IEEE Trans. Robotics and Automation, Vol. 13, No. 2, pp. 204-217, Apr. 1997.
    [5] L. Xiao-Dong, Tommy W. S. Chow, John K. L. Ho, and Hong-Zhou Tan, “Repetitive learning control of nonlinear continuous-time systems using quasi-sliding mode,” IEEE Trans. on Control Systems Technology , vol. 15, No. 2, March 2007.
    [6] E. Bajonero Canonico, E. van der Laan, S. Koekebakker and M. Steinbuch,” A new Robust Delay-Variable Repetitive Controller with application to media transport in a printer,” IEEE International Symposlum on Intelligent Control, pp. 1261-1266, Oct. 2012.
    [7] C.H. Chung, M.S. Chen, “A robust adaptive feedforward control in repetitive control design for linear systems,” Automatica vol. 48, pp.183–190, Jan 2012.

    [8] S. Islam and X. Liu, “Robust sliding mode control for robot manipulators,” IEEE Trans. Ind. Electron, vol. 58, no. 6, pp. 2444–2453, Jun. 2011.
    [9] S. Islam, “Adaptive output feedback for robot manipulators using linear observer,” presented at the Int. Conf. Intell. Syst. Control, Orlando, FL, Nov. 16–18, 2008.
    [10] X. R. Han , E. Fridman , S. K. Spurgeon and C. Edwards "On the design of sliding-mode static-output-feedback controllers for systems with state delay", IEEE Trans. Ind. Electron, vol. 56, no. 9, pp.3656 -3664 2009
    [11] M. S. Branicky "Multiple Lyapunov functions and other analysis tools for switched and hybrid systems", IEEE Trans. Autom. Control, vol. 43, no. 4, pp.475 -482 1998
    [12] M. S. De Queiroz , J. Hu , D. Dawson , T. Burg and S. Donepudi "Adaptive position/force control of robot manipulators without velocity measurements: Theory and experimentation", IEEE Trans. Syst, Man, Cybern. B, Cybern., vol. 27, no. 5, pp.796 -809 1997
    [13] X.-G. Yan and C. Edwards "Adaptive sliding-mode-observer-based fault reconstruction for nonlinear systems with parametric uncertainties", IEEE Trans. Ind. Electron., vol. 55, no. 11, pp.4029 -4036 2008

    下載圖示
    QR CODE