簡易檢索 / 詳目顯示

研究生: 汪鎮瑋
Wang, Chen-Wei
論文名稱: 國中學生科學觀察與生物分類能力的教學案例探討
A Case Study on Middle School Students ' Abilities of Scientific Observation and Biological Classification
指導教授: 方素琦
Fang, Su-Chi
口試委員: 劉湘瑤
Liu, Shang-Yao
林樹聲
Lin, Shu-Sheng
方素琦
Fang, Su-Chi
口試日期: 2023/01/02
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 123
中文關鍵詞: 科學觀察生物分類觀察行為發展架構
英文關鍵詞: scientific observation, biological classification, observation behavior development framework
研究方法: 個案研究法混合研究
DOI URL: http://doi.org/10.6345/NTNU202300148
論文種類: 學術論文
相關次數: 點閱:114下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討國中生科學觀察能力的學習,及其對生物分類表現的影響。為深入探討以上主題,本研究採混合研究取向。研究者依據「科學觀察行為發展架構 (Eberbach & Crowley, 2009) 」與生物分類相關文獻發展「學習科學觀察」、「龜鱉目的生物分類」兩階段的課程與相對應之學習單,以新北市一所公立國中32位科學社團學生為研究對象,進行為期四週的教學與蒐料蒐集,並在課程實施完畢後進行學生課後訪談。本研究參考科學行為發展架構發展評分標準,針對學生注意與預期向度的表現評分,並對研究結果進行量性與質性的分析與討論。
    研究結果發現:(1)學生注意、預期兩個向度的科學觀察能力在第一階段課程後顯著提升。(2) 學生在第二階段課程中的生物分類能力與科學觀察能力預期向度之間有顯著正相關,顯示學生科學觀察預期向度能力愈高,其生物分類能力也愈高,反之亦然。但研究者亦發現學生未必會運用其學科知識架構進行生物分類。學生作答與訪談質性分析顯示,連結學生日常觀察經驗的課程設計與促進科學對話的教學策略,可有效支持學生進行更加科學的觀察,由「日常觀察」轉變為「科學觀察」。然而,研究者反思,觀察機會與練習時間的不足可能限制了學生知識架構的發展,導致學生在進行生物分類時採用較直覺的分類標準,而未運用其學科知識。研究者認為良好的課程設計與教師支持為培養學生科學觀察能力,以及運用學科知識進行生物分類的關鍵。在學生科學觀察能力學習的基礎上,教師應明確引導學生以關鍵特徵進行生物分類,並提供學生足以遷移學習成果的練習時間與實作活動。

    This study aims to explore middle school students' learning of scientific observation ability and its influence on their biological classification performance. This study adopts a mixed method approach. Based on the “Scientific Observation Behavior Development Framework (Eberbach & Crowley, 2009)” and related literature, the study developed a learning module including two phases: learning scientific observation and biological classification. This learning module was implemented in a science club course with 32 students, in a public junior high school in New Taipei City. Data included students’ worksheets and student interviews. Focusing on noticing and expectation, the data was analyzed and discussed quantitatively and qualitatively.
    The results show that: (1) The students' noticing and expectation were significantly improved after the first phase of the learning module. (2) During the second phase, the students’ biological classification was significantly corelated with their expectation. This indicated that the students who had better expectation ability would perform better on biological classification. However, the results also show that when performing biological classification, students did not necessarily use disciplinary knowledge. The analysis of students’ performances and interviews shows that connecting to students’ everyday observation experiences and scientific conversations were useful for improving students’ observation ability, shifting from “ everyday observation” to “scientific observation”. Students’ use of multiple criteria including intuition when performing biological classification may be due to insufficient observation opportunities and practice. With limited learning opportunities, students may not be able to develop solid disciplinary knowledge foundation, and thus limits their ability to apply relevant knowledge to biological classification. The study suggests that well-designed curricula and teacher support are the key to cultivating students' scientific observation and biological classification abilities. Also, together with students' learning of scientific observation, teachers need to provide explicit guidance on how to use critical features to classify organisms and sufficient time and learning opportunities to achieve transfer of learning.

    第一章 緒論 1 第一節 研究背景與研究目的 1 第二節 名詞釋義 2 一、 科學觀察 2 二、 科學觀察行為發展架構 2 三、 注意 3 四、 預期 3 五、 生物分類 3 第二章 文獻探討 3 第一節 科學觀察 4 一、 科學觀察的基本假定 4 二、 科學觀察作為探究歷程的技能 5 三、 科學觀察學習與學科領域知識 (disciplinary knowledge)之緊密關係 6 四、 科學觀察能力的發展 6 五、 學習進行科學的觀察(Learning to observe scientifically) 8 第二節 生物分類 11 一、 生物學中的分類 11 二、 生物觀察與生物分類 13 三、 幫助學生進行生物分類 13 第三章 研究方法 17 第一節 研究對象與研究情境 17 第二節 課程、教學活動與研究工具 18 一、 課程設計 18 二、 研究工具 29 第三節 資料蒐集與分析 32 一、 資料蒐集 32 二、 資料分析 33 三、 課後個別學生訪談 46 第四章 研究結果 47 第一節 學生在 「 學習科學觀察 」 課程前後科學觀察能力的表現 47 一、 「注意(Noticing)」向度 47 二、 「預期(Expectation)」向度 56 第二節 學生如何運用科學觀察(預期向度的能力)進行生物分類 67 第三節 學生課後訪談分析 72 一、 學生觀察之根據 72 二、 科學觀察能力改變與課程的關聯 73 三、 學生是否以及如何運用科學觀察進行生物分類 74 第五章 討論 78 第一節 如何創造支持性的學習環境培養學生的科學觀察能力 78 一、 課程設計— 建立將日常觀察經驗與學科知識連結的教學情境 78 二、 教學策略—以科學對話和科學方法形塑師生「共同視野」 79 第二節 如何支持學生運用科學觀察能力進行生物分類 81 一、 學生的學科知識架構在生物分類扮演重要的角色 81 二、 教師如何支持學生利用科學觀察能力進行生物分類 82 第六章 結論與建議 84 一、 結論 84 二、 建議 84 參考文獻 86 附錄 90 附錄一:生物觀察筆記 90 附錄二:分類學習單 91 附錄三:烏龜小檔案 92 附錄四:學生訪談逐字稿 116

    王美芬、熊召弟 (2011)。國小階段自然與生活科技教材教法。臺北:心理。
    邱玉枝 (2006)。探討實物觀察教學策略對國中生學習生物分類的效益(未出版碩士論文)。國立彰化師範大學,彰化縣。
    張春興 (2007)。教育心理學: 三化取向的理論與實踐。臺灣東華.
    莊志彥、蘇育任 (1999)。國小學童知覺選擇與動物分類概念之研究。科學教育學刊,7(2),135-156。
    陳世輝 (1996)。原住民兒童對國小自然科教材「生物」概念理解之分析。花蓮師院學報,6(8547),217-240。
    黃台珠(1984a)。概念的研究及其意義。科學教育月刊,66,p44-51。
    黃達三 (2004)。學生動物分類及脊椎動物概念的發展:跨年齡研究。科學教育學刊,12(3),289-310。
    楊凱悌、邱美虹、王子華 (2009)。應用數位影音融入POE教學改善國小高年級學童脊椎動物分類另有概念之效益研究。科學教育學刊,,17(5),87-407。
    葛梅芳 (2002)。國一學生動物分類之另有概念及電腦簡易施測之研究(未出版碩士論文)。國立彰化師範大學,彰化縣。
    謝郁如、陳輝雲 (2016)。 美術班與普通班學童的科學觀察覺知與表現之差異。屏東大學科學教育,2,46-61.
    Bell, B. F. (1981). When is an animal, not an animal?. Journal of biological Education, 15(3), 213-218.
    Braund, M. (1991). Children's ideas in classifying animals. Journal of Biological Education, 25(2), 103-110.
    Chyleńska, Z. A., & Rybska, E. (2018). Understanding students ideas about animal classification. EURASIA Journal of Mathematics, Science and Technology Education, 14(6), 2145-2155.
    Connor, M., & Lawrence, A. B. (2017). Understanding adolescents’ categorisation of animal species. Animals, 7(9), 65.
    Driver, R. (1983). Pupil as scientist. McGraw-Hill Education (UK).
    Eberbach, C., & Crowley, K. (2009). From everyday to scientific observation: How children learn to observe the biologist’s world. Review of Educational Research, 79(1), 39-68.
    Eberbach, C., & Crowley, K. (2017). From seeing to observing: How parents and children learn to see science in a botanical garden. Journal of the Learning Sciences, 26(4), 608-642.
    Enghoff, H. (2009). What is taxonomy?–An overview with myriapodological examples. Soil organisms, 81(3), 441-451.
    Frøyland, M., Remmen, K. B., & Sørvik, G. O. (2016). Name‐Dropping or Understanding?: Teaching to Observe Geologically. Science Education, 100(5), 923-951.
    Futuyma, D. J. (2001). Ecological specialization and generalization. Evolutionary ecology: concepts and case studies, 177-189.
    Geschwind, N. (1974). Disconnexion syndromes in animals and man. Selected papers on language and the brain, 105-236.
    Gopnik, A. (1996). The scientist as child. Philosophy of science, 63(4), 485-514.
    Hacking, I. (1983). Representing and intervening: Introductory topics in the philosophy of natural science. Cambridge university press.
    Hanson, N. R. (1965). Patterns of discovery: An inquiry into the conceptual foundations of science. CUP Archive.
    Hanson, N. R., & Humphreys, W. C. (1969). Perception and discovery (p. 150). San Francisco: Freeman, Cooper & Company.
    Haslam, F., & Gunstone, R. (1998). The Influence of Teachers on Student Observation in Science Classes.
    Haury, D. L. (2002). Fundamental skills in science: Observation. Columbus: ERIC Clearinghouse for Science Mathematics and Environmental Education.
    Hmelo‐Silver, C. E., & Pfeffer, M. G. (2004). Comparing expert and novice understanding of a complex system from the perspective of structures, behaviors, and functions. Cognitive science, 28(1), 127-138.
    Howes, E. V. (2008). Educative experiences and early childhood science education: A Deweyan perspective on learning to observe. Teaching and teacher education, 24(3), 536-549.
    Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., & Donoghue, M. J. (2008). Plant systematics: a phylogenetic approach. Plant systematics: a phylogenetic approach., (Ed. 3).
    Piaget, J., & Cook, M. T. (1952). The origins of intelligence in children.
    Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological review, 96(4), 674.
    Lehrer, R., & Schauble, L. (2004). Modeling natural variation through distribution. American Educational Research Journal, 41(3), 635-679.
    Lisowski, M., Padilla, M. J., Miaoulis, I., Cyr, M., & Jones, L. C. (2005). Environmental science. Pearson Prentice Hall.
    Mayr, E. (1968). Theory of biological classification. Nature, 220(5167), 545-548.
    Mayr, E. (1982). The growth of biological thought: Diversity, evolution, and inheritance. Harvard University Press.
    Mayr, E. (2017). 這就是生物學(涂可欣譯)。台北:天下文化。(原著出版於 1998)。
    Musonda, K., & Chituta, D. (2020). Impact of Problem Based Learning on Learner Achievement and attitude in Animal Taxonomy: A case at Kasama College of Education. Multidisciplinary Journal of Language and Social Sciences Education (2664-083X, Online ISSN: Print ISSN: 2616-4736), 3(3), 92-110.
    Norris, S. P. (1985). The philosophical basis of observation in science and science education. Journal of Research in Science Teaching, 22(9), 817-833.
    Oguz-Unver, A., & Yurumezoglu, K. (2009). A Teaching Strategy for Developing the Power of Observation in Science Education. Online Submission.
    Pella, M. O. (1975). Concept of concept. Unpublished manuscript. University of Wisconsin-Madison. Madison, WI.
    Remmen, K. B., & Frøyland, M. (2013). How students can be supported to apply geoscientific knowledge learned in the classroom to phenomena in the field: An example from high school students in Norway. Journal of Geoscience Education, 61(4), 437-452.
    Rosch, E. (1999). Principles of categorization. Concepts: core readings, 189, 312-322.
    Smith, E. E. (1995). Concepts and categorization. An invitation to cognitive science: Thinking, 3, 35.
    Smith, B. K., & Reiser, B. J. (2005). Explaining behavior through observational investigation and theory articulation. The Journal of the Learning Sciences, 14(3), 315-360.
    Trowbridge, J. E., & Mintzes, J. J. (1985). Students' Alternative Conceptions of Animals and Animal Classification. School Science and Mathematics, 85(4), 304-16.
    Trumbull, D. J., Bonney, R., & Grudens‐Schuck, N. (2005). Developing materials to promote inquiry: Lessons learned. Science Education, 89(6), 879-900.

    下載圖示
    QR CODE