簡易檢索 / 詳目顯示

研究生: 蔡璋逸
Tsai, Chang-Yi
論文名稱: 不同訓練量之急性阻力健身運動對於抑制控制之影響:事件關聯電位研究
The Effect of Different Training Volume of Acute Resistance Exercise on Inhibitory Control: An ERP Study
指導教授: 張育愷
Chang, Yu-Kai
口試委員: 王駿濠
Wang, Chun-Hao
洪聰敏
Hong, Tsung-Min
張育愷
Chang, Yu-Kai
口試日期: 2023/01/05
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 56
中文關鍵詞: 急性健身運動訓練量執行功能抑制功能
英文關鍵詞: acute exercise, training volume, executive function, inhibitory control
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300192
論文種類: 學術論文
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 統合分析已發現對於抑制控制具有中等的正面效果,然過去研究大多針對強度進行探討,較少探討訓練量 (training volume) 對抑制控制之影響,且目前的發現仍不一致。因此,本研究之目的為探討不同訓練量之急性阻力健身運動對抑制控制之影響。本研究招募120位年輕成年人,分為低訓練量組 (LTV)、中訓練量組 (MTV)、高訓練量組 (MTV),以及控制組 (CON),以硬舉、深蹲、臥推,以及划船作為阻力健身運動介入,控制組則進行35分鐘閱讀,並使用叫色測驗於介入前和後測量抑制控制,以反應時間和準確率作為指標,同時測量P3振幅,並在介入前、後以及認知後測前進行血乳酸的採集。結果發現,在叫色測驗反應時間方面,中性情境下,HTV組之反應時間顯著優於控制組;不一致情境下則是HTV組和MTV組之反應時間皆顯著優於控制組,而HTV組和MTV組沒有顯著差異;一致情境則是四組間沒有顯著差異;準確率以及P3振幅方面同樣發現四組間沒有顯著差異。雖然血乳酸在運動組進行運動介入後皆有顯著提升,但並無急性阻力健身運動影響抑制控制之中介效果。本研究發現在中訓練量以及高訓練量之急性阻力健身運動後,抑制控制之表現有顯著提升,而血乳酸並非急性阻力健身運動提升抑制控制之中介因子。本研究拓展ACSM針對一般健康成年人建議之運動處方,在中訓練量 (3組) 以及高訓練量 (4組) 之全身性多關節阻力健身運動有助於提升認知表現,然其背後機制仍須進一部探討,除了結合神經電生理指標外,亦可往藍班核-正腎上腺素系統之方向進行探討。

    Meta analysis showed that acute resistance exercise had a positive and moderate affect to inhibitory control. Most of the studies were focus on the variable of intensity, but seldom focus on the training volume. The finding of these studies was inconsistent. So the purpose of this study aim to find the effect of the different training volume of acute resistance exercise on inhibitory control. Ninety six adults (Mage= 22.5, SD= 1.9) was recruited and assigned to low training volume group (LTV), Medium training volume group (MTV), High training volume group (HTV), and control group (CON). Stroop test was access inhibitory control before pre-test, immediately after intervention, and before post-test, and collected lactate at the same time. P3 was also measured during the Stroop test. The ANCOVA for reaction time demonstrated that significant decrease for the HTV and MTV group in the inconsistent condition, but no effect on accuracy and P3. Nevertheless, mediation analysis showed that blood lactate was not a mediator. Our study expanded the benefit of resistance exercise guideline of ACSM for health adults. Future study could investigate the mechanism of resistance exercise to inhibitory control.

    第壹章 緒論1 第一節 問題背景1 第二節 研究目的4 第三節 研究假設5 第四節 操作性名詞定義解釋5 第貳章 文獻探討7 第一節 抑制控制7 第二節 急性阻力健身運動與抑制控制8 第三節 急性阻力健身運動之訓練量與抑制控制10 第四節 急性阻力健身運動、抑制控制與血乳酸12 第五節 急性阻力健身運動、抑制控制與P3振幅13 第六節 文獻總結14 第參章 研究方法與步驟16 第一節 研究設計16 第二節 研究參與者16 第三節 研究流程16 第四節 6-RM測量17 第五節 實驗介入18 第六節 抑制控制測量20 第七節 血乳酸測量20 第八節 事件關聯電位測量21 第九節 統計分析22 第肆章 研究結果24 第一節 研究參與者個人變項24 第二節 急性阻力健身運動對抑制控制之影響30 第三節 急性阻力健身運動對P3振幅之影響33 第四節 急性阻力健身運動對血乳酸之影響34 第五節 血乳酸對於急性阻力健身運動對抑制控制之中介效果37 第伍章 討論40 第一節 急性阻力健身運動對抑制控制之影響41 第二節 急性阻力健身運動對P3振幅之影響42 第三節 急性阻力健身運動對血乳酸之影響45 第四節 血乳酸對抑制控制反應時間之中介效果46 第五節 研究限制47 第陸章 結論與未來建議48 參考文獻49 附 錄55 附錄一 PAR-Q+55 附錄二 記憶廣度測驗56

    蔡璋逸, 李瑞鴻, & 王俊智. (2022). 急性阻力健身運動與抑制控制:強度與訓練量之觀點 [Effect of acute resistance exercise to inhibitory control: Perspective of intensity and training]. 中華體育季刊, 36(3), 291-299. doi: 10.6223/qcpe.202209_36(3).0007
    王俊智、黃啟彰、石家豪、祝堅恆、張育愷 (2016)。急性健身運動對執行功能之影響:事件相關電位與大腦神經滋養因子之研究。[Effect of acute exercise on executive function: An event-related potential and brain-derived neurotropic factor study]。體育學報,49(S),47-60。doi: 10.3966/10247297201606490s004
    Allman, B. R., Morrissey, M. C., Kim, J. S., Panton, L. B., Contreras, R. J., Hickner, R. C., & Ormsbee, M. J. (2019). Fat metabolism and acute resistance exercise in trained women. J Appl Physiol (1985), 126(3), 739-745. doi: 10.1152/japplphysiol.00752.2018
    American College of Sports Medicine. (2009). Progression Models in Resistance Training for Healthy Adults. Medicine & Science in Sports & Exercise, 41(3), 687-708. doi: 10.1249/MSS.0b013e3181915670
    American College of Sports Medicine. (2017). ACSM's guidelines for exercise testing and prescription (10th edition ed.). Philadelphia, United States: Lippincott Williams and Wilkins.
    Ando, S., Komiyama, T., Tanoue, Y., Sudo, M., Costello, J. T., Uehara, Y., & Higaki, Y. (2022). Cognitive Improvement After Aerobic and Resistance Exercise Is Not Associated With Peripheral Biomarkers. Front Behav Neurosci, 16, 853150. doi: 10.3389/fnbeh.2022.853150
    Best, J. R., Chiu, B. K., Liang Hsu, C., Nagamatsu, L. S., & Liu-Ambrose, T. (2015). Long-Term Effects of Resistance Exercise Training on Cognition and Brain Volume in Older Women: Results from a Randomized Controlled Trial. J Int Neuropsychol Soc, 21(10), 745-756. doi: 10.1017/s1355617715000673
    Benarroch, E. E. (2009). The locus ceruleus norepinephrine system: functional organization and potential clinical significance. Neurology, 73(20), 1699-1704. doi: 10.1212/WNL.0b013e3181c2937c.
    Borella, E., Carretti, B., & Pelegrina, S. (2010). The specific role of inhibition in reading comprehension in good and poor comprehenders. J Learn Disabil, 43(6), 541-552. doi: 10.1177/0022219410371676
    Bouchard Jr, T. J. (2004). Genetic influence on human psychological traits: A survey. Current directions in psychological science, 13(4), 148-151. doi: 10.1111/j.0963-7214.2004.00295.x
    Cameron, F. J., Northam, E. A., & Ryan, C. M. (2019). The effect of type 1 diabetes on the developing brain. Lancet Child Adolesc Health, 3(6), 427-436. doi: 10.1016/s23524642(19)30055-0
    Chang, Y. K., Alderman, B. L., Chu, C. H., Wang, C. C., Song, T. F., & Chen, F. T. (2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology, 54(2), 289-300. doi: 10.1111/psyp.12784
    Chang, Y. K., & Etnier, J. L. (2009). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. J Sport Exerc Psychol, 31(5), 640-656. doi: 10.1123/jsep.31.5.640
    Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res, 1453, 87-101. doi: 10.1016/j.brainres.2012.02.068
    Chang, Y. K., Tsai, C. L., Huang, C. C., Wang, C. C., & Chu, I. H. (2014). Effects of acute resistance exercise on cognition in late middle-aged adults: general or specific cognitive improvement? J Sci Med Sport, 17(1), 51-55. doi: 10.1016/j.jsams.2013.02.007
    Cho, H. S., Lee, W. S., Yoon, K. J., Park, S. H., Shin, H. E., Kim, Y. S., . . . Moon, H. Y. (2020). Lactate consumption mediates repeated high-intensity interval exercise-enhanced executive function in adult males. Phys Act Nutr, 24(4), 15-23. doi: 10.20463/pan.2020.0023
    Chu, C. H., Kramer, A. F., Song, T. F., Wu, C. H., Hung, T. M., & Chang, Y. K. (2017). Acute Exercise and Neurocognitive Development in Preadolescents and Young Adults: An ERP Study. Neural Plast, 2017, 2631909. doi: 10.1155/2017/2631909de
    Almeida, S. S., Teixeira, E. L., Merege-Filho, C. A. A., Dozzi Brucki, S. M., & de Salles Painelli, V. (2021). Acute effects of resistance and functional-task exercises on executive function of obese older adults: Two counterbalanced, crossover, randomized exploratory studies. Sport, Exercise, and Performance Psychology, 10(1), 102-113. doi: 10.1037/spy0000203
    Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. doi: 10.1146/annurev-psych-113011-143750
    Dora, K., Suga, T., Tomoo, K., Sugimoto, T., Mok, E., Tsukamoto, H., . . . Isaka, T. (2021). Effect of very low-intensity resistance exercise with slow movement and tonic force generation on post-exercise inhibitory control. Heliyon, 7(2), e06261. doi: 10.1016/j.heliyon.2021.e06261
    Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: an ERP study of individual differences in inhibitory control capacity. Dev Cogn Neurosci, 7, 53-64. doi: 10.1016/j.dcn.2013.11.001
    Engeroff, T., Niederer, D., Vogt, L., & Banzer, W. (2019). Intensity and workload related dose-response effects of acute resistance exercise on domain-specific cognitive function and affective response – A four-armed randomized controlled crossover trial. Psychology of Sport and Exercise, 43, 55-63. doi: 10.1016/j.psychsport.2018.12.009
    Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: a review using an integrative framework. Psychol Bull, 134(1), 31-60. doi: 10.1037/0033-2909.134.1.31
    Gibala, M. J., MacDougall, J. D., Tarnopolsky, M. A., Stauber, W. T., & Elorriaga, A. (1995). Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise. J Appl Physiol (1985), 78(2), 702-708. doi: 10.1152/jappl.1995.78.2.702
    Gordon, B. R., McDowell, C. P., Hallgren, M., Meyer, J. D., Lyons, M., & Herring, M. P. (2018). Association of Efficacy of Resistance Exercise Training With Depressive Symptoms: Meta-analysis and Meta-regression Analysis of Randomized Clinical Trials. JAMA Psychiatry, 75(6), 566-576. doi: 10.1001/jamapsychiatry.2018.0572
    Gusatovic, J., Gramkow, M. H., Hasselbalch, S. G., & Frederiksen, K. S. (2022). Effects of. aerobic exercise on event-related potentials related to cognitive performance: a systematic review. PeerJ, 10, e13604. doi: 10.7717/peerj.13604
    Hashimoto, T., Tsukamoto, H., Takenaka, S., Olesen, N. D., Petersen, L. G., Sørensen, H., . . . Ogoh, S. (2018). Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. Faseb j, 32(3), 1417-1427. doi: 10.1096/fj.201700381RR
    Hillman, C. H., Snook, E. M., & Jerome, G. J. (2003). Acute cardiovascular exercise and executive control function. International Journal of Psychophysiology, 48(3), 307-314. doi: 10.1016/s0167-8760(03)00080-1
    Hofmann, W., Friese, M., & Roefs, A. (2009). Three ways to resist temptation: The. independent contributions of executive attention, inhibitory control, and affect regulation to the impulse control of eating behavior. Journal of Experimental Social Psychology, 45(2), 431-435. doi: 10.1016/j.jesp.2008.09.013
    Huang, F., Qian, Q., & Wang, Y. (2015). Cognitive behavioral therapy for adults with. attention-deficit hyperactivity disorder: study protocol for a randomized controlled trial. Trials, 16, 161. doi: 10.1186/s13063-015-0686-1
    Jonkman, L. M., Lansbergen, M., & Stauder, J. E. (2003). Developmental differences in. behavioral and event-related brain responses associated with response preparation and inhibition in a go/nogo task. Psychophysiology, 40(5), 752-761. doi: 10.1111/1469-8986.00075
    Kao, S.-C., Drollette, E. S., Ritondale, J. P., Khan, N., & Hillman, C. H. (2018). The acute. effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychology of Sport and Exercise, 38, 90-99. doi: 10.1016/j.psychsport.2018.05.011
    Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute. Effects of Aerobic Exercise on Cognitive Function in Older Adults. The Journals of Gerontology: Series B, 64B(3), 356-363. doi: 10.1093/geronb/gbp030
    Kraemer, W. J., Adams, K., Cafarelli, E., Dudley, G. A., Dooly, C., Feigenbaum, M. S., . . . Triplett-McBride, T. (2002). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc, 34(2), 364-380. doi: 10.1097/00005768-200202000-00027
    Kraemer, W. J., & Ratamess, N. A. (2005). Hormonal responses and adaptations to resistance. exercise and training. Sports Med, 35(4), 339-361. doi: 10.2165/00007256-200535040-00004
    Kotikangas, J., Walker, S., Toivonen, S., Peltonen, H., & Häkkinen, K. (2022). Acute Neuromuscular and Hormonal Responses to Power, Strength, and Hypertrophic Protocols and Training Background. Front Sports Act Living, 4, 919228. doi: 10.3389/fspor.2022.919228
    Kutas, M., McCarthy, G., & Donchin, E. (1977, Aug 19). Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science, 197(4305), 792-795. doi: 10.1126/science.887923
    Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on. cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12-24. doi: 10.1016/j.brainres.2010.03.091
    Levinger, I., Goodman, C., Hare, D. L., Jerums, G., Morris, T., & Selig, S. (2009). Psychological responses to acute resistance exercise in men and women who are obese. J Strength Cond Res, 23(5), 1548-1552. doi: 10.1519/JSC.0b013e3181a026e5
    Ligeza, T. S., Maciejczyk, M., Kałamała, P., Szygula, Z., & Wyczesany, M. (2018, May). Moderate-intensity exercise boosts the N2 neural inhibition marker: A randomized and counterbalanced ERP study with precisely controlled exercise intensity. Biol Psychol, 135, 170-179. doi: 10.1016/j.biopsycho.2018.04.003
    Linnamo, V., Häkkinen, K., & Komi, P. V. (1998). Neuromuscular fatigue and recovery in maximal compared to explosive strength loading. Eur J Appl Physiol Occup Physiol, 77(1-2), 176-181. doi: 10.1007/s004210050317
    Marques, D. L., Neiva, H. P., Faíl, L. B., Gil, M. H., & Marques, M. C. (2019, Oct 1). Acute effects of low and high-volume resistance training on hemodynamic, metabolic and neuromuscular parameters in older adults. Exp Gerontol, 125, 110685. doi: 10.1016/j.exger.2019.110685
    Mischel, W., Ayduk, O., Berman, M. G., Casey, B. J., Gotlib, I. H., Jonides, J., . . . Shoda, Y. (2011). 'Willpower' over the life span: decomposing self-regulation. Soc Cogn Affect Neurosci, 6(2), 252-256. doi: 10.1093/scan/nsq081
    Miyake, A., & Friedman, N. P. (2012). The Nature and Organization of Individual. Differences in Executive Functions: Four General Conclusions. Curr Dir Psychol Sci, 21(1), 8-14. doi: 10.1177/0963721411429458
    Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., . . . Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proc Natl Acad Sci U S A, 108(7), 2693-2698. doi: 10.1073/pnas.1010076108
    Morton, R. W., Murphy, K. T., McKellar, S. R., Schoenfeld, B. J., Henselmans, M., Helms, E., . . . Phillips, S. M. (2018). A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. British journal of sports medicine, 52(6), 376-384. doi: 10.1136/bjsports-2017-097608
    Pontifex, M. B., McGowan, A. L., Chandler, M. C., Gwizdala, K. L., Parks, A. C., Fenn, K., & Kamijo, K. (2019). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise, 40, 1-22. doi: 10.1016/j.psychsport.2018.08.015
    Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical. Neurophysiology, 118(10), 2128-2148. doi: 10.1016/j.clinph.2007.04.019
    Price, R. B., & Duman, R. (2020). Neuroplasticity in cognitive and psychological. mechanisms of depression: an integrative model. Mol Psychiatry, 25(3), 530-543. doi: 10.1038/s41380-019-0615-x
    Sanei, S., & Chambers, J. A. (2013). EEG Signal Processing.
    Schoenfeld, B. J., Ogborn, D., & Krieger, J. W. (2017). Dose-response relationship between. weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J Sports Sci, 35(11), 1073-1082.doi: 10.1080/02640414.2016.1210197
    Schwarz, L. A., & Luo, L. (2015, Nov 2). Organization of the locus coeruleus-norepinephrine system. Curr Biol, 25(21), R1051-r1056. doi: 10.1016/j.cub.2015.09.039
    Sih, A., & Del Giudice, M. (2012, Oct 5). Linking behavioural syndromes and cognition: a behavioural ecology perspective. Philos Trans R Soc Lond B Biol Sci, 367(1603), 2762-2772. doi: 10.1098/rstb.2012.0216
    Tomoo, K., Suga, T., Sugimoto, T., Tanaka, D., Shimoho, K., Dora, K., . . . Isaka, T. (2020). Work volume is an important variable in determining the degree of inhibitory control improvements following resistance exercise. Physiol Rep, 8(15), e14527. doi: 10.14814/phy2.14527
    Tsai, C. L., Ukropec, J., Ukropcová, B., & Pai, M. C. (2018). An acute bout of aerobic or. strength exercise specifically modifies circulating exerkine levels and neurocognitive functions in elderly individuals with mild cognitive impairment. Neuroimage Clin, 17, 272-284. doi: 10.1016/j.nicl.2017.10.028
    Tsai, C. L., Wang, C. H., Pan, C. Y., Chen, F. C., Huang, T. H., & Chou, F. Y. (2014). Executive function and endocrinological responses to acute resistance exercise. Front Behav Neurosci, 8, 262. doi: 10.3389/fnbeh.2014.00262
    Tsukamoto, H., Suga, T., Takenaka, S., Takeuchi, T., Tanaka, D., Hamaoka, T., . . . Isaka, T. (2017). An acute bout of localized resistance exercise can rapidly improve inhibitory control. PLoS One, 12(9), e0184075. doi: 10.1371/journal.pone.0184075
    Wang, C. C., Alderman, B., Wu, C. H., Chi, L., Chen, S. R., Chu, I. H., & Chang, Y. K. (2019). Effects of Acute Aerobic and Resistance Exercise on Cognitive Function and Salivary Cortisol Responses. J Sport Exerc Psychol, 41(2), 73-81. doi: 10.1123/jsep.2018-0244
    Wilke, J., Stricker, V., & Usedly, S. (2020). Free-Weight Resistance Exercise Is More. Effective in Enhancing Inhibitory Control than Machine-Based Training: A Randomized, Controlled Trial. Brain Sciences, 10(10), 702. doi: 10.3390/brainsci10100702
    Wilke, J., Giesche, F., Klier, K., Vogt, L., Herrmann, E., & Banzer, W. (2019, Jun). Acute Effects of Resistance Exercise on Cognitive Function in Healthy Adults: A Systematic Review with Multilevel Meta-Analysis. Sports Med, 49(6), 905-916. doi: 10.1007/s40279-019-01085-x
    Woolard, A., Stratton, E., Demetriou, E. A., Boulton, K. A., Pellicano, E., Glozier, N., . . . Guastella, A. J. (2021). Perceptions of social and work functioning are related to social anxiety and executive function in autistic adults. Autism, 25(7), 2124-2134. doi: 10.1177/13623613211013664
    Xie, C., Alderman, B. L., Meng, F., Ai, J., Chang, Y. K., & Li, A. (2020). Acute High-Intensity Interval Exercise Improves Inhibitory Control Among Young Adult Males With Obesity. Front Psychol, 11, 1291. doi: 10.3389/fpsyg.2020.01291

    無法下載圖示 電子全文延後公開
    2025/01/13
    QR CODE