簡易檢索 / 詳目顯示

研究生: 邱宇平
CHIU, Yu-Ping
論文名稱: 滇西高黎貢造山帶板塊架構與其構造動力之演化
The tectonic and geodynamic evolution of the Gaoligon orogeny belt, West Yunnan, China
指導教授: 葉孟宛
Yeh, Meng-Wan
李通藝
Lee, Tung-Yi
口試委員: 朱傚祖
CHU, Hao-Tsu
羅清華
LO, Ching-Hua
張中白
CHANG, Chung-Pai
李通藝
LEE, Tung-Yi
葉孟宛
YEH, Meng-Wan
口試日期: 2023/01/04
學位類別: 博士
Doctor
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 292
中文關鍵詞: 高黎貢碎裂流彎曲造山帶混雜岩構造反轉板片彎曲
英文關鍵詞: Gaoligong, cataclastic flow, orocline, migmatite, tectonic inversion, slab buckling
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300267
論文種類: 學術論文
相關次數: 點閱:28下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從東喜馬拉雅構造結(EHS)到滇西有著獨特的彎曲造山帶,它凸向被隱沒的歐亞板塊,這一點和西邊的印度-歐亞碰撞帶的其他邊界相異,也和東邊的新特提斯洋的海溝不同。位於滇西的騰沖地塊內有兩條彎曲造山帶,最顯眼的是位於騰沖地塊東緣的高黎貢造山帶;而在騰沖地塊西側有另一條規模較小的彎曲岩漿帶,其岩漿活動和特提斯洋隱沒作用相關。本研究藉由分析四期塑性變形事件的時間和動力機制,發現高黎貢造山帶是一條非典型的彎曲造山帶。最早的D1事件使早白堊紀(鋯石鈾鉛定年為118-78 Ma)的花岡岩變形,且在新特提斯洋閉合期間形成直立褶皺,在高黎貢造山帶北段為西北西-東南東走向,而在南段為南-北走向。淡色花岡岩質副片麻岩(06CG20)的鋯石鈾鉛定年結果結合主要元素分析結果顯示,沉積物源自124 Ma的花岡岩,之後經歷風化、侵蝕和沉積,在110 Ma到73 Ma之間沉積,然後在65 Ma深融形成S型花岡岩;隨後在45-40 Ma時於中度角閃岩相以上的環境發生混合作用(migmatization)。本研究對騰沖地塊南部東河岩體附近的角閃岩、花岡閃長岩、片麻岩和淡色花岡岩進行岩石學和地球化學分析。變質閃長岩和角閃岩等暗色體(melanosome)具有SiO2含量低 (50-60%)、融化溫度高(920-1100°C)和CaO/Na2O比值高 (變質閃長岩為4.35、角閃岩為1.40-2.03) 的特徵,代表這些暗色體是由角閃岩脫水之後的殘留物集合而成。中色體(mesosome)和新體(neosome)具有高Na2O+CaO含量但較低的K2O含量。本研究結合岩石學分析和板塊重建結果,提出在新特提斯洋板片回滾(rollback)和斷裂(break-off)造成地殼減薄時,地函熱源上湧,伴隨東河犁型斷層(D2)發生混合作用。
    隨後,由於Great India板塊的碰撞,東河滑脫面於40-28 Ma期間在高度角閃岩相的環境形成西北-東南走向、向東北逆衝的褶皺與逆衝斷層帶(D3),並產生近水平的S3A葉理。此為高黎貢造山帶成形的最初的階段。然而,位於東側的奧陶紀基盤阻擋此褶皺與逆衝斷層帶,因此形成了鏟型的逆衝剪切面。當這個鏟型的逆衝剪切面沿著奧陶紀基盤被侵蝕和出露後,使得高黎貢造山帶成為看似沿著奧陶紀基盤彎曲的造山帶,因此為一「非典型」的彎曲造山帶。在D3的後期(35-28 Ma),褶皺與逆衝斷層帶的前翼(forelimb)被高角度向東傾的左移走滑剪切帶(D3B)重利用,成為因印度向北擠壓而向東南拖曳的塊體邊界。左移走滑剪切帶(D3B)的S/C組構由白雲母和蠕狀石(myrmekite)所定義,顯示為中到低度角閃岩相的變質環境。之後,板塊架構因藏南下部地殼拆層而發生劇烈變化。
    從高黎貢片麻岩和同D4形成的長英質岩脈中挑出來的白雲母(34-31 Ma)、黑雲母(23 Ma)和鉀長石(33-21 Ma)的氬氬定結果可連結礦物的封存溫度建立降溫曲線,發現溫度從約34 Ma時的550°C降到32Ma時的350°C,在22 Ma時再降溫到275°C。再連結由同構造礦物定義的變形溫度和降溫曲線,結果發現了「從碰撞擠壓(collision-extrusion; D3B)過渡到地殼碎裂流(crustal cataclastic flow; D4)」的混合模式。陡峭的南-北走向、右移走滑斷層於28 Ma到15 Ma期間,在高黎貢造山帶北段形成高黎貢剪切帶(D4),並成為該區域最顯著的構造。綠泥石化的黑雲母和形成串腸的矽線石沿著D4的S/C組構排列,顯示環境從角閃岩相退變質到綠片岩相。這反應了增厚的西藏重力垮塌,造成沿著EHS順時針旋轉的碎裂流為中到上部地殼的變形環境。
    至於另一條規模較小的彎曲岩漿帶,XRF主要元素分析和鈾鉛鋯石定年結果顯示其為63-62 Ma形成的I型花崗岩(A/CNK值為0.94-1.02)。整合了整個區域的岩漿事件之後,發現岩漿活動有隨時間和空間向西從S型花崗岩過渡到I型花崗岩的現象,反應板片從低角度隱沒轉變為高角度隱沒的回滾過程;顯示新特提斯洋的隱沒作用的確發生在騰沖地塊下方,且可能導致彎曲的岩漿帶形成。因此,本研究提出不對稱的「不規則的板片側緣模型 (irregular lateral slab edges model)」來解釋騰沖地塊的彎曲岩漿帶。這個模式必須隨時間逐漸累積變化,最後在60 Ma時於隱沒帶兩側產生高角度的板片回滾和海溝後撤(retreat),而位於隱沒帶中段的騰沖地塊則是位於相對突出和板片低角度隱沒的位置,也因此會發生板片從低角度回滾演變為高角度回滾的狀況。然而,西藏下方的新特提斯洋板片斷裂(~50 Ma)和藏南下部地殼拆層(~28 Ma)使得這個「不規則的板片側緣模型」的隱沒系統被破壞,導致東南亞的地體架構在新生代發生劇烈改變,啟動數條地殼尺度的大型走滑斷層。

    The curvature from Eastern Himalayan syntaxis via East Myanmar to West Yunnan has a unique curvature of convex towards the mantle wedge, which is different from other boundaries of India, even the other trenches of Neo-Tethys. Such convex curvature is also strongly present in the Tengchong block, located in West Yunnan. The most apparent convex is along the boundary between Tengchong and Baoshan blocks called the Gaoligong orocline; the Neo-Tethys-related pluton presents the minor orocline at the western Tengchong block. The timing and kinematic mechanism of four deformation events are deciphered that the Gaoligong orocline is an atypical orocline which is sculptured by a long geological time. The earliest D1 event deformed the Early Cretaceous granit (zircon U-Pb ages of 118–78 Ma), forming the upright folds with a WNW-ESE–striking in the north and an N-S–striking in the south during the closure of the Neo-Tethyan ocean.
    Then, the Early Cretaceous granites underwent weathering and sedimentation, forming the granite after diagenesis and anatexis. Our U-Pb dating results from the leucogranitic gneiss (06CG20) indicated a sedimentary origin from the Cretaceous granites (124 Ma). They deposited during 110-73 Ma that later became an S-type granite during 65 Ma, followed by sillimanite-graded migmatization of Mogok metamorphic belt during 45-40 Ma. A suite of amphibolite, granodiorite, gneiss, and leucogranite in the vicinity of Donghe pluton in the southern Tengchong block are examined with petrological and geochemical analyses. The geochemical characteristics of low SiO2 (50-60%) content, relatively higher melting temperature (920-1100 °C), and CaO/Na2O ratio of metadiorite (4.35) and amphibolite (1.40-2.03) indicated that these rocks represent the concentrated restite with hornblende dehydration breakdown reaction of the melanosome portion. Most diatexite of neosome and mesosome showed high Na2O+CaO content but low K2O content compared to anatectic melt and melanosomes. This study proposes that the migmatization occurred along Donghe listric detachment (D2) development by crustal thinning and mantle upwelling as the Neo-Tethys slab rolled back and broke off.
    The Donghe detachment was reactivated as a thrust system (D3) between 40 and 28 Ma as the greater India hard collided with the Tengchong block. The Gaoligong orocline was first developed during this event, which formed a NW-SE trending, top-to-the-NE sense of shear that folded the once subhorizontal foliation (S3A) and formed a fold-thrust belt under upper-amphibolite-facies conditions. The Ordovician basement was the eastern boundary to block the D3A detachment, thus forming a shovel-shaped thrust belt. The convex part of the Gaoligong orocline is the intersection lineation between the topography and shovel-shaped thrust belt, resulting in a map-view geometry of curvature, hence an “atypical” orocline. In the later stages of D3, the locally left-lateral strike-slip shear zone reactivated and overprinted the front limb of the fold-thrust belt with moderate NE-dipping, NW-SE–striking, left-lateral shear zones (D3B) that accommodated the southeastward extrusion of Indochina around 35–28 Ma. The sinistral sense of shear S/C fabrics defined by muscovite folia with foliation-bounded myrmekite indicates that deformation occurred under middle- to lower-amphibolite-facies metamorphic conditions. Then the tectonic setting has undergone drastic changes after the delamination beneath Tibet.
    The new 40Ar/39Ar ages for muscovite (34–31 Ma), biotite (23 Ma), and K-feldspar (33–21 Ma) mineral separate from the Gaoligong group, and a matrix crosscutting quartzofeldspathic dyke produce a cooling path. By interlinking the synkinematic metamorphic conditions with the reconstructed cooling path, I find that the temperature dropped from 550 °C around ca. 34 Ma to 350 °C at ca. 32 Ma and dropped again to 275 °C around ca. 22 Ma, and a hybrid tectonic model indicating extrusion (D3B) followed by crustal flow (D4) is established. The 28 Ma to 15 Ma steep N-S–trending, right-lateral Gaoligong shear belt (D4 in the northern section) is the dominant structural feature in this region. Chloritization of biotite and boudinaged sillimanite along S/C1 fabrics indicate that the crystalline rocks retrograded from amphibolite-facies into greenschist-facies conditions. This reveals the mid- to up crustal environment of the clockwise cataclastic flow, which developed around the Eastern Himalaya syntaxis due to gravitational collapse after delamination of the thickened Tibetan Plateau.
    As for the minor orocline with the curved pluton, the XRF and U-Pb analyses determines the most eastern and older I-type affinity (A/CNK=0.94-1.02) magmatism (zircon U-Pb age of 63-62 Ma). Thus, the westward younger magmatism reveals the process of slab rollback from the flat to steep subduction, implying that the subduction of the Neo-Tethys slab beneath the Tengchong block was related to curvature magmatism. As a result, the asymmetric “irregular lateral slab edges model” was proposed to answer the unique curvature of the Tengchong block. The time-dependent slab buckling at the edges controls the irregularity of the subduction zone resulting in the convex towards the Tengchong block side because the Tengchong block was located at the center of the subduction zone. The delamination beneath the Lhasa blocks could further result in the transpressional stress field in Southeast Asia and gradually destroy the “irregular lateral slab edges model” by tearing the slab, triggering several crustal-scale strike-slip shear zones eventually.

    Chapter 1. Broad Introduction 1 Chapter 2. Previous studies 4 2.1 Geological background of the basement 4 2.2 Tectonic framework 6 2.2.1 The evolution of Tethys oceans since Paleozoic 6 2.2.2 The speculation for the interaction of the Meso-Tethys slabs 15 2.3 The structure after the Cenozoic India-Eurasia collision 17 2.3.1 The Gaoligong shear zone (GLSZ) 17 2.3.2 The Rayli shear zone (RSZ) 18 Chapter 3. Method 20 3.1 Microstructure 21 3.2 Petrography analysis 26 3.2.1 Deformation mechanism indicators 26 3.2.2 Energy dispersive X-ray spectrometer (EDS) analysis 32 3.2.3 Cathodoluminescence (CL) imagry 32 3.3 Geochronology analysis 33 3.3.1 ICP-MS Zircon U-Pb dating 33 3.3.2 Low blank furnace Ar-Ar step-heating 35 3.4 Whole rock major element analysis 37 Chapter 4. Transition from extrusion to flow tectonism around the Eastern Himalaya syntaxis: The tectonic evolution of the Gaoligong shear zone 40 Abstract 40 4.1 Introduction 42 4.2 Structural Evolution of northern section 50 4.3 Age Determination 62 4.3.1 U-Pb Dating 62 4.3.2 40Ar-39Ar Dating 66 4.4 Discussion 72 4.4.1 Tectonic Evolution of the Gaoligong Shear Zone during the Cretaceous to Eocene 73 4.4.2 Tectonic Evolution during the Eocene 74 4.4.3 Transition in the Kinematic Mechanism 78 4.5 Conclusion 83 Chapter 5. The “atipycal” Gaoligong orocline: its geodynamic origin and evolution 85 Abstract 85 5.1 Introduction 87 5.2 Reconstructed structural evolution of the southern section of Gaoligong orocline 92 5.3 The correlation of structural evolution among the northern and southern sections 105 5.4 Discussion 109 5.4.1 The timing of Gaoligong orocline formation 109 5.4.2 Structure geometry influenced by the Ordovician basement 111 5.4.3 The formation mechanism of Gaoligong orocline 114 5.5 Conclusion 115 Chapter 6. The post-Late Mesozoic tectonic evolution of the North Mogok metamorphic belt along with Neo-Tethys revealed by the stagnation of the migmatite complex 116 Abstract 116 6.1 Introduction 118 6.2 Study Material 122 6.3 Result and interpretation 124 6.3.1 U-Pb Age Determination 124 6.3.2 Whole-rock major elements 126 6.3.3 Petrological and geothermal evolution 131 6.4 Discussion 141 6.4.1 Reconstructed Petrogenesis Evolution 141 6.4.2 Structural controlled Mass transfer of subsolidus migmatites 147 6.4.3 Tectonic implication of stagnated Tengchong block 149 6.5 Conclusion 153 Chapter 7. The new geodynamic model for Tethys and India subduction zones —The hypothesis of “Irregular lateral slab edge model” 154 Abastract 154 7.1 Introduction 155 7.2 Geochemistry and Geochronology analyses 157 7.2.1 Major element determination 157 7.2.2 U-Pb age determination 158 7.3 Discussion 160 7.3.1 The evolution of curvature magmatism 160 7.3.2 The asymmetric “irregular lateral slab edges model” 166 7.3.3 The transition from the Neo-Tethys to the Great India subduction 169 7.3.4 The destroy of the irregular lateral slab edges model 172 7.4 Conclusion 176 Epilogues 177 Refferance 179 Appendix 1 Measurement data of the Northern section 209 Appendix 2 Measurement data of the Southern section 215 Appendix 3 Microstructure reconstruction by thin section 219 Appendix 4 The energy-dispersive X-ray spectrometer (EDS) analysis with the backscattered electron (BSE) images 260 Appendix 5 Zircon U-Pb ages from Gaoligong, Rayli region and Mangyun region 273 Appendix 6 40Ar/39Ar dating results of muscovite, biotite, and K-feldspar separates 281 Appendix 7 Major element oxides (wt%) of the samples from southern Tengchong, Yunnan, China 287 Appendix 8 GPS data of all samples 291

    Advokaata, E. L., Bongers, M. L. M., Rudyawan, A., BouDagher-Fadelc, M. K., Langereisa, C. G., van Hinsbergen, D. J. J. (2018a). Early Cretaceous origin of the Woyla Arc (Sumatra, Indonesia) on the Australian plate. Earth Planet. Sci. Lett. 498, 348-361. doi: 10.1016/j.epsl.2018.07.001.
    Advokaat, E. L., Marshall, N. T., Li, S., Spakman, W., Krijgsman, W., and van Hinsbergen, D. J. J. (2018b). Cenozoic Rotation History of Borneo and Sundaland, SE Asia Revealed by Paleomagnetism, Seismic Tomography, and Kinematic Reconstruction. Tectonics 37(8), 2486-2512. doi: 10.1029/2018TC005010.
    Aitken, J. D., Long, D. G. F. (1978). Mackenzie tectonic arc-Reflection of early basin configuration? Geology 6(10), 626-629. doi: 10.1130/0091-7613(1978)6<626:MTAOEB>2.0.CO;2
    Akciz, S., Burchfiel, B. C., Crowley, J. L., Jiyun, Y., Liangzhong, C. (2008). Geometry, kinematics, and regional significance of the Chong Shan shear zone, Eastern Himalayan Syntaxis, Yunnan, China. Geosphere 4, 292-314. doi: 10.1130/GES00111.1.
    Ali, J. R., Cheung, H. M. C., Aitchison, J. C., Sun, Y. (2013). Palaeomagnetic re-investigation of Early Permian rift basalts from the Baoshan Block, SW China: constraints on the site-of-origin of the Gondwana-derived eastern Cimmerian terranes. Geophys. J. Int. 193(2), 650-663. doi: 10.1093/gji/ggt012.
    Andersen, T., Elburg, M. A., Magwaza, B. N. (2019). Sources of bias in detrital zircon geochronology: Discordance, concealed lead loss and common lead correction. Earth Sci. Rev. 197, 102899. doi: 10.1016/j.earscirev.2019.102899.
    Armijo, R., Tapponnier, P., Han, T. L. (1989). Late Cenozoic right-lateral faulting in southern Tibet. J. Geophys. Res. 94, 2787-2838.
    Avouac, J. P., Tapponnier, P., Bai, M., You, H., Wang, G. (1993). Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J. Geophys. Res. Solid Earth 98(B4), 6755-6804. doi: 10.1029/92JB01963.
    Axen, G. J., Bartley, J. M., Selverstone, J. (1995). Structural expression of a rolling hinge in the footwall of the Brenner Line normal fault, eastern Alps. Tectonics 14(6), 1380-1392. doi: 10.1029/95TC02406.
    Azimov, P. Y., Bushmin, S. A. (2007). Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solutions of varying acidity: Thermodynamic modeling at 400–800°C and 1–5 kbar. Geochemistry Int. 45(12), 1210-1234. doi: 10.1134/S0016702907120038.
    Bajolet, F., Replumaz, A., Lainé, R. (2013). Orocline and syntaxes formation during subduction and collision. Tectonics 32(5), 1529-1546. doi: 10.1002/tect.20087.
    Barber, A. J., Crow, M. J., De Smet, M. E. M. (2005). Tectonic evolution. In: Barber, A. J., M. J. Crow, and J. S. Milsom (Eds.), Sumatra: Geology, Resources and Tectonic Evolution. Geological Society: London, Memoir 31.
    Barber, A. J., Crow, M. J. (2009). Structure of Sumatra and its implications for the tectonic assembly of Southeast Asia and the destruction of Paleotethys. Island Arc 18(1), 3-20. doi: 10.1111/j.1440-1738.2008.00631.x.
    Barckhausen, U., and Roeser, H. A. (2004). Seafloor spreading anomalies in the South China Sea revisited. Continent-ocean interactions within East Asian marginal seas 149, 121-125.
    Barraud, J., Gardien, V., Allemand, P., Grandjean, P. (2004). Analogue models of melt-flow networks in folding migmatites. Journal of Structural Geology 26(2), 307-324. doi: 10.1016/j.jsg.2003.06.002.
    Barrow, G. (1893). On an Intrusion of Muscovite-biotite Gneiss in the South-eastern Highlands of Scotland, and its accompanying Metamorphism. Quarterly Journal of the Geological Society 49(1-4), 330-358. doi: 10.1144/GSL.JGS.1893.049.01-04.52.
    Bendick, R., Bilham, R. (2001). How perfect is the Himalayan arc? Geology 29(9), 791-794. doi: 10.1130/0091-7613(2001)029<0791:HPITHA>2.0.CO;2.
    Bersan, S. M., Danderfer, A., Lagoeiro, L., Costa, A. F. O. (2017). The kinematic evolution of the Serra Central Salient, Eastern Brazil: a Neoproterozoic progressive arc in northern Espinhaço fold-thrust belt. J. South Am. Earth Sci. 80, 131-148. doi: 10.1016/j.jsames.2017.09.013.
    Bertrand, G., Rangin, C., Maluski, H., Bellon, H. (2001). Diachronous cooling along the Mogok Metamorphic Belt (Shan scarp, Myanmar): the trace of the northward migration of the Indian syntaxis. J. Asian Earth Sci. 19(5), 649-659.
    BGMRYP (1983). Geological Map of Yunnan, scale 1:1,000,000 scale. Kunming: Bureau of Geology and Mineral Resources of Yunnan Province.
    BGMRYP (1990). Regional Geology of the Yunnan Province. Beijing Bureau of Geology and Mineral Resources of Yunnan Province, Geological Publishing House, pp. 592.
    Booth, A. L., Zeitler, P. K., Kidd, W. S. F., Wooden, J., Liu, Y., Idleman, B., Hren, M., Chamberlain, C. P. (2004). U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa Area. Am. J. Sci. 304(10), 889-929. doi: 10.2475/ajs.304.10.889.
    Bortolotti, V., Principi, G. (2005). Tethyan ophiolites and Pangea break-up. Island Arc 14(4), 442-470. doi: 10.1111/j.1440-1738.2005.00478.x.
    Bowring, S. A., Erwin, D. H. (1998). A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology. GSA Today 8(9), 1-8.
    Briais, A., Patriat, P., and Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth 98(B4), 6299-6328. doi: 10.1029/92JB02280.
    Brown, M. (1973). The definition of metatexis, diatexis and migmatite. Proceedings of the Geologists' Association 84, 371-IN372. doi: 10.1016/S0016-7878(73)80021-5.
    Brown, M. (1994). The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth-Sci. Rev. 36(1), 83-130. doi: 10.1016/0012-8252(94)90009-4.
    Brown, M., Averkin, Y. A., McLellan, E. L., Sawyer, E. W. (1995). Melt segregation in migmatites. J. Geophys. Res. Solid Earth 100(B8), 15655-15679. doi: 10.1029/95JB00517.
    Brown, M., Solar, G. S. (1998). Granite ascent and emplacement during contractional deformation in convergent orogens. Journal of Structural Geology 20(9), 1365-1393. doi: 10.1016/S0191-8141(98)00074-1.
    Burchfiel, B. C. (2004). New Technology: New Geological Challenges. GSA Today 14, 4-10. doi: 10.1130/1052-5173(2004)014<0004:NTNGC>2.0.CO:2.
    Burg, J.-P., Vanderhaeghe, O. (1993). Structures and way-up criteria in migmatites, with application to the Velay dome (French Massif Central). J. Struct. Geol. 15, 1293-1301. doi: 10.1016/0191-8141(93)90103-H.
    Cao, H.-W., Zhang, Y.-H.,Tang, L., Hollis, S. P., Zhang, S. T., Pei, Q.-M., Yang, C., Zhu, X.-S. (2018). Geochemistry, zircon U-Pb geochronology and Hf isotopes of Jurassic-Cretaceous granites in the Tengchong terrane, SW China: implications for the Mesozoic tectono-magmatic evolution of the Eastern Tethyan Tectonic Domain. Int. Geol. Rev. 61(3), 257-279. doi: 10.1080/00206814.2017.1422445
    Capitanio, F. A., Faccenna, C., Zlotnik, S., Stegman, D. R. (2011). Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline. Nature 480, 83-86. doi: 10.1038/nature10596.
    Carey, S. W. (1955). The orocline concept in geotectonics-Part I. Papers and Proceedings of the Royal Society of Tasmania 89, 255-288.
    Carmichael, D. M. (1969). On the mechanism of prograde metamorphic reactions in quartz-bearing pelitic rocks. Contrib. to Mineral. Petrol. 20(3), 244-267. doi: 10.1007/BF00377479.
    Carrington, D. P., Watt, G. R. (1995). A geochemical and experimental study of the role of K-feldspar during water-undersaturated melting of metapelites. Chem. Geol. 122(1), 59-76. doi: 10.1016/0009-2541(95)00046-O.
    Carter, A., Roques, D., Bristow, C., Kinny, P. (2001). Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology 29(3), 211-214. doi: 10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2.
    Cawood, P. A., Johnson, M. R. W., Nemchin, A. A. (2007). Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet. Sci. Lett. 255(1), 70-84. doi: 10.1016/j.epsl.2006.12.006.
    Cawood, P. A. (2022). Untangling the history of oroclines and mountain belts. National Science Review 9(5). doi: 10.1093/nsr/nwab211.
    Cesare, B., Marchesi, C., Connolly, J. A. D. (2002). Growth of myrmekite coronas by contact metamorphism of granitic mylonites in the aureole of Cima di Vila, Eastern Alps, Italy. J. Metamorph. Geol. 20(1), 203-213. doi: 10.1046/j.0263-4929.2001.00351.x.
    Chappell, B. W., Bryant, C. J., Wyborn, D., White, A. J. R., and Williams, I. S. (1998). High- and Low-temperature I-type granites. Ressour. Geol. 48, 225–235. doi: 10.1111/j.1751-3928.1998.tb00020.x
    Chen, F. K., Li, X. H., Wang, X. L., Li, Q. L., Siebel, W. (2007). Zircon age and Nd–Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. Int. J. Earth. Sci. 96(6), 1179-1194. doi: 10.1007/s00531-006-0146-y.
    Chen, X.-C., Hu, R.-Z., Bi, X.-W., Zhong, H., Lan, J.-B., Zhao, C.-H., Zhu, J.-J. (2015). Petrogenesis of metaluminous A-type granitoids in the Tengchong–Lianghe tin belt of southwestern China: Evidences from zircon U–Pb ages and Hf–O isotopes, and whole-rock Sr–Nd isotopes. Lithos 212-215, 93-110. doi: 10.1016/j.lithos.2014.11.010.
    Chen, Y., Zhang, Z., Sun, C., Badal, J. (2013). Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions. Gondwana Res. 24(3–4), 946-957. doi: 10.1016/j.gr.2012.04.003.
    Chen, Z., Burchfiel, B. C., Liu, Y., King, R. W., Royden, L. H., Tang, W., Wang, E., Zhao, J., Zhang, X. (2000). Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. J. Geophys. Res. Solid Earth 105(B7), 16215-16227. doi: 10.1029/2000jb900092.
    Chiu, H.-Y., Chung, S.-L., Wu, F.-Y., Liu, D., Liang, Y.-H., Lin, I. J., Iizuka, Y., Xie, L.-W., Wang, Y., Chu, M.-F. (2009). Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics 477(1–2), 3-19. doi: 10.1016/j.tecto.2009.02.034.
    Chiu, Y. P., Yeh, M. W., Wu, K. H., Lee, T. Y., Lo, C. H., Chung, S. L., Iizuka, Y. (2018). Transition from extrusion to flow tectonism around the Eastern Himalaya syntaxis. Geol. Soc. Am. Bull. 130(9-10), 1675-1696. doi: 10.1130/B31811.1.
    Chu, M. F., Chung, S. L., Song, B., Liu, D. Y., O'Reilly, S. Y., Pearson, N. J., Ji, J. Q., Wen, D. J. (2006). Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 34, 745-748.
    Chu, Z. Y., Wang, W., Chen, F. K., Wang, X. L., Li, X. H., Ji, J. Q. (2009). Os-Nd-Pb-Sr isotopic compositions of the Santaishan ultramafic rock in western Yunnan and its geological significances. Acta Petrol. Sin. 23, 3221–3228 (in Chinese with English abstract).
    Chung, S.-L., Lo, C.-H., Lee, T.-Y., Zhang, Y., Xie, Y., Li, X., Wang, K.-L., Wang, P.-L., (1998). Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature 394(6695), 769-773. doi: 10.1038/29511.
    Chung, S. L., Chu, M. F., Zhang, Y. Q., Xie, Y. W., Lo, C. H., Lee, T. Y., Lan, C. Y., Li, X. H., Zhang, Q., Wang, Y. Z. (2005). Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth. Sci. Rev. 68, 173-196. doi: 10.1016/j.earscirev.2004.05.001.
    Chung, S. L., Chu, M. F., Ji, J., O'Reilly, S. Y., Pearson, N. J., Liu, D., Lee, T. Y., Lo, C. H. (2009). The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics 477(1–2), 36-48. doi: 10.1016/j.tecto.2009.08.008.
    Clark, M. K., Royden, L. H. (2000). Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology 28(8), 703-706. doi: 10.1130/0091-7613(2000)28<703:tobtem>2.0.co;2.
    Clemens, J. D., Vielzeuf, D. (1987). Constraints on melting and magma production in the crust. Earth and Planetary Science Letters 86(2), 287-306. doi: 10.1016/0012-821X(87)90227-5.
    Clemens, J. D., Droop, G. T. R. (1998). Fluids, P-T paths and the fates of anatectic melts in the Earth's crust. Lithos 44, 21-36. doi: 10.1016/S0024-4937(98)00020-6.
    Clemens, J. D. (2013). Granitic magmatism, from source to emplacement: a personal view. Appl. Earth Sci. 121(3), 107-136. doi: 10.1179/1743275813Y.0000000023.
    Collins, W. J., Sawyer, E. W. (1996). Pervasive granitoid magma transfer through the lower-middle crust during non-coaxial compressional deformation. Journal of Metamorphic Geology 14(5), 565-579. doi: 10.1046/j.1525-1314.1996.00442.x.
    Cong, F., Lin, S. L., Zou, G. F., Li, Z. H., Xie, T., Peng, Z. M., Liang, T. (2011). Magma mixing of granites at Lianghe: In-situ zircon analysis for trace elements, U-Pb ages and Hf isotopes. Sci. China Earth Sci. 54(9), 1346-1359. doi: 10.1007/s11430-011-4208-z.
    Copley, A., Avouac, J.-P., Royer, J.-Y. (2010). India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. J. Geophys. Res. Solid Earth 115(B3). doi: 10.1029/2009JB006634.
    Costa, S., Maluski, H., Lardeaux, J.-M. (1993). 40Ar-39Ar chronology of Variscan tectono-metamorphic events in an exhumed crustal nappe: the Monts du Lyonnais complex (Massif Central, France). Chemical Geology 105(4), 339-359. doi: 10.1016/0009-2541(93)90135-6.
    Coulon, C., Maluski, H., Bollinger, C., Wang, S. (1986). Mesozoic and cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth Planet. Sci. Lett. 79(3), 281-302. doi: 10.1016/0012-821X(86)90186-X.
    Davis, G. H., Coney, P. J. (1979). Geologic development of the Cordilleran metamorphic core complexes. Geology 7(3), 120-124. doi: 10.1130/0091-7613(1979)7<120:gdotcm>2.0.co;2.
    De Hoog, J. C. M., Savov, I. P. (2017). "Boron Isotopes as a Tracer of Subduction Zone Processes," in Advances in Isotope Geochemistry., ed. F.G. Marschall H. (Cham: Springer), 217-247.
    Deng, J., Wang, Q., Li, G., Li, C., Wang, C. (2013). Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res. 26, 419-437. doi: 10.1016/j.gr.2013.08.002.
    Dewey, J. F., Shackleton, R. M., Cheng, C., Sun, Y. (1988). The Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 327(1594), 379-413. doi: 10.1098/rsta.1988.0135.
    Dickin, A. P. (2018). Radiogenic Isotope Geology (3rd ed.). Cambridge: Cambridge University Press.
    Ding, L., Zhong, D. (1993). Deformation age for Miocene rightlateral movement along the Gaoligong strikeslip fault, Western Yunnan, in Memoir of Lithospheric Tectonic Evolution Research (I). Beijing, p. 68–73: Institute of Geology, Chinese Academy of Science Seismology.
    Ding, L., Kapp, P., Zhong, D., Deng, W. (2003). Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. J. Petrol. 44(10), 1833-1865. doi: 10.1093/petrology/egg061.
    Dingwell, D. B., Pichavant, M., Holtz, F. (2018). "Chapter 8. Experimental Studies Of Boron In Granitic Melts," in Boron: Mineralogy, Petrology, and Geochemistry, eds. M.A. Lawrence & S.G. Edward. (Berlin, Boston: De Gruyter), 331-386.
    Dodson, M. H. (1973). Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology 40(3), 259-274. doi: 10.1007/BF00373790.
    Dong, Y., Cao, S., Cheng, X., Liu, J., Cao, H. (2019). Grain-size reduction of feldspar and flow of deformed granites within the Gaoligong shear zone, southwestern Yunnan, China. Science China Earth Sciences 62. doi: 10.1007/s11430-018-9351-8.
    Dong, Y., Cao, S., Zhan, L., Li, W., Neubauer, F., Genser, J. (2022). Tectono-magmatism evolution in the Gaoligong orogen belt during Neoproterozoic to Paleozoic: Significance for assembly of East Gondwana. Precambrian Research 378, 106776. doi: 10.1016/j.precamres.2022.106776.
    Dycoco, J. M. A., Payot, B. D., Valera, G. T. V., Labis, F. A. C., Pasco, J. A., Perez, A. D. C., Tani, K. (2021). Juxtaposition of Cenozoic and Mesozoic ophiolites in Palawan island, Philippines: New insights on the evolution of the Proto-South China Sea. Tectonophysics 819, 229085. doi: 10.1016/j.tecto.2021.229085.
    Eroğlu, S., Siebel, W., Danišík, M., Pfänder, J. A., Chen, F. K. (2013). Multi-system geochronological and isotopic constraints on age and evolution of the Gaoligongshan metamorphic belt and shear zone system in western Yunnan, China. J. Asian Earth Sci. 73(0), 218-239. doi: 10.1016/j.jseaes.2013.03.031.
    Evans, D. A. D., Li, Z. X., Murphy, J. B. (2016). Four-dimensional context of Earth's supercontinents. Geological Society, London, Special Publications 424(1), 1-14. doi: 10.1144/SP424.12.
    Faccenna, C., Becker, T. W., Conrad, C. P., Husson, L. (2013). Mountain building and mantle dynamics. Tectonics 32(1), 80-93. doi: 10.1029/2012TC003176.
    Faccenna, C., Becker, T. W., Holt, A. F., Brun, J. P. (2021). Mountain building, mantle convection, and supercontinents: Holmes (1931) revisited. Earth Planet. Sci. Lett. 564, 116905. doi: 10.1016/j.epsl.2021.116905.
    Fan, C., Zhang, Y. (1994). The structure and tectonics of western Yunnan. J. Asian Earth Sci. 9(4), 355-361. doi: 10.1016/0743-9547(94)90047-7.
    Faryad, S. W., Hoinkes, G. (2004). Complex Growth Textures in a Polymetamorphic Metabasite from the Kraubath Massif (Eastern Alps). J. Petrol. 45(7), 1441-1451. doi: 10.1093/petrology/egh018.
    Faure, G. (1977). Principles of isotope geology. United States.
    Fergusson, C. L. (2019). Subduction accretion and orocline development in modern and ancient settings: Implications of Japanese examples for development of the New England Orogen of eastern Australia. J. Geodyn. 129, 117-130. doi: 10.1016/j.jog.2017.11.008.
    Fielding, E. J. (1996). Tibet uplift and erosion. Tectonophysics 260(55-84). doi: 10.1016/0040-1951(96)00076-5.
    Fleck, R. J., Sutter, J. F., Elliot, D. H. (1977). Interpretation of discordant 40Ar/39Ar age-spectra of mesozoic tholeiites from antarctica. Geochimica et Cosmochimica Acta 41(1), 15-32. doi: 10.1016/0016-7037(77)90184-3.
    Forster, M. A., Lister, G. S. (2004). The interpretation of 40Ar/39Ar apparent age spectra produced by mixing: application of the method of asymptotes and limits. J. Struct. Geol. 26(2), 287-305. doi: 10.1016/j.jsg.2003.10.004.
    Fountain, D. M., Salisbury, M. H. (1981). Exposed cross-sections through the continental crust: implications for crustal structure, petrology, and evolution. Earth Planet. Sci. Lett. 56(0), 263-277. doi: 10.1016/0012-821X(81)90133-3.
    Fuller, M., Ali, J. R., Moss, S. J., Frost, G. M., Richter, B., Mahfi, A. (1999). Paleomagnetism of Borneo. Journal of Asian Earth Sciences 17(1), 3-24. doi: 10.1016/S0743-9547(98)00057-9.
    Funiciello, F., Faccenna, C., Giardini, D., Regenauer-Lieb, K. (2003). Dynamics of retreating slabs: 2. Insights from three-dimensional laboratory experiments. J. Geophys. Res. 108(B4), 2207. doi: 10.1029/2001JB000896.
    Fyfe, W. S. C. (1973). The granulite facies, partial melting and the Archaean crust. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 273(1235), 457-461. doi: 10.1098/rsta.1973.0011.
    Gao, Y., Wei, R., Hou, Z., Tian, S., Zhao, R. (2008). Eocene high-MgO volcanism in southern Tibet: New constraints for mantle source characteristics and deep processes. Lithos 105(1), 63-72. doi: 10.1016/j.lithos.2008.02.008.
    Garber, J. M., Hacker, B. R., Kylander-Clark, A. R. C., Stearns, M., Seward, G. (2017). Controls on Trace Element Uptake in Metamorphic Titanite: Implications for Petrochronology. J. Petrol. 58(6), 1031-1057. doi: 10.1093/petrology/egx046.
    Gardiner, N. J., Searle, M. P., Morley, C. K., Robb, L. J., Whitehouse, M. J., Roberts, N. M. W., Kirkland, C. L., Spencer, C. J. (2018). The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: Tectonic and metallogenic implications. Gondwana Res. 62, 27-60. doi: 10.1016/j.gr.2018.02.008.
    Garfunkel, Z., Anderson, C. A., Schubert, G. (1986). Mantle circulation and the lateral migration of subducted slabs. J. Geophys. Res. Solid Earth 91(B7), 7205-7223. doi: 10.1029/JB091iB07p07205.
    Gasser, D., Rubatto, D., Bruand, E., Stüwe, K. (2012). Large-scale, short-lived metamorphism, deformation, and magmatism in the Chugach metamorphic complex, southern Alaska: A SHRIMP U-Pb study of zircons. Geol. Soc. Am. Bull. 124(5-6), 886-905. doi: 10.1130/B30507.1
    Gibbons, A. D., Zahirovic, S., Müller, R. D., Whittaker, J. M., Yatheesh, V. (2015). A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. Gondwana Res. 28(2), 451-492. doi: 10.1016/j.gr.2015.01.001.
    Gleadow, A. J. W., Duddy, I. R. (1981). A natural long-term track annealing experiment for apatite. Nuclear Tracks 5(1–2), 169-174. doi: 10.1016/0191-278X(81)90039-1.
    Goswami, S., Bhattacharjee, P., Swain, S., Sarbajna, C., Muralidharan, R. Choudhury, D. K., Pande, D., Sinha, D. K. (2021). Migmatite rheology of crustal catazone: An example from the SSE part of T. Sundupalle granite-greenstone terrain, Eastern Dharwar Craton, India. Geological Journal 56(8), 4217-4245. doi: 10.1002/gj.4159.
    Götze, J. (2012). Application of cathodoluminescence microscopy and spectroscopy in geosciences. Microsc. Microanal 18, 1270-1284. doi: 10.1017/S1431927612001122.
    Guillope, M., Poirier, J. P. (1979). Dynamic recrystallization during creep of single-crystalline halite: An experimental study. J. Geophys. Res. Solid Earth 84(B10), 5557-5567. doi: 10.1029/JB084iB10p05557.
    Guo, Z., Cheng, Z., Zhang, M., Zhang, L., Li, X., Liu, J. (2015). Post-collisional high-K calc-alkaline volcanism in Tengchong volcanic field, SE Tibet: constraints on Indian eastward subduction and slab detachment. J. Geol. Soc. London 172(5), 624-640. doi: 10.1144/jgs2014-078.
    Gutiérrez-Alonso, G., Johnston, S., Weil, A., Pastor-Galán, D., Fernández-Suárez, J. (2012). Buckling an orogen: The Cantabrian Orocline. GSA Today 22, 4-9. doi: 10.1130/GSATG141A.1.
    Gutiérrez-Alonso, G., Fernández-Suárez, J., Weil, A. B., Sussman, A. J., Weil, A. B. (2004). "Orocline triggered lithospheric delamination," in Orogenic curvature: Integrating paleomagnetic and structural analyses. Geological Society of America Special Paper 383), 121-131.
    Guynn, J. H., Kapp, P., Pullen, A., Heizler, M., Gehrels, G., Ding, L. (2006). Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology 34(6), 505-508. doi: 10.1130/g22453.1.
    Hacker, B. R., Kelemen, P. B., Behn, Mark D. (2011). Differentiation of the continental crust by relamination. Earth and Planetary Science Letters 307(3), 501-516. doi: 10.1016/j.epsl.2011.05.024.
    Hafkenscheid, E., Wortel, M. J. R., Spakman, W. (2006). Subduction history of Tethyan region derived from seismic tomography and tectonic reconstructions. J. Geophys. Res. Solid Earth 111, B08401. doi: 10.1029/2005JB003791.
    Haldar, S. K. (2020). "Chapter 3 - Basic mineralogy," in Introduction to Mineralogy and Petrology (Second Edition). (Oxford: Elsevier), 109-143.
    Hall, R. (2009). Hydrocarbon basins in SE Asia: understanding why they are there. Pet. Geosci. 15, 131-146.
    Hall, R. (2012). Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570-571, 1-41. doi: 10.1016/j.tecto.2012.04.021.
    Hall, R., Spakman, W. (2015). Mantle structure and tectonic history of SE Asia. Tectonophysics 658, 14-45. doi: 10.1016/j.tecto.2015.07.003.
    Hames, W. E., Hodges, K. V. (1993). Laser 40Ar/39Ar Evaluation of Slow Cooling and Episodic Loss of 40Ar from a Sample of Polymetamorphic Muscovite. Science 261(5129), 1721-1723. doi: 10.1126/science.261.5129.1721.
    Hand, M., Dirks, P. H. G. M. (1992). The influence of deformation on the formation of axial-planar leucosomes and the segregation of small melt bodies within the migmatitic napperby gneiss, central Australia. J. Struct. Geol. 14(5), 591-604. doi: 10.1016/0191-8141(92)90159-T.
    Hara, H., Kurihara, T., Kuroda, J., Adachi, Y., Kurita, H., Wakita, K., Hisada, K., Charusiri, P., Charoentitirat, T., Chaodumrong, P. (2010). Geological and geochemical aspects of a Devonian siliceous succession in northern Thailand: Implications for the opening of the Paleo-Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 297(2), 452-464. doi: 10.1016/j.palaeo.2010.08.029.
    Harris, N. B. W., Xu, R. H., Lewis, C. L., Hawkesworth, C. J., Zhang, Y. Q. (1988). Isotope geochemistry of the 1985 Tibet transverse: Lhasa to Golmud. Philos. Trans. Royal Soc. 327, 263-285.
    Harrison, T. M. (1982). Diffusion of 40Ar in hornblende. Contr. Mineral. and Petrol. 78(3), 324-331. doi: 10.1007/BF00398927.
    Harrison, T. M., McDougall, I. (1982). The thermal significance of potassium feldspar K-Ar ages inferred from 40Ar39Ar age spectrum results. Geochimica et Cosmochimica Acta 46(10), 1811-1820. doi: 10.1016/0016-7037(82)90120-X.
    Harrison, T. M., Duncan, I., McDougall, I. (1985). Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta 49(11), 2461-2468. doi: 10.1016/0016-7037(85)90246-7.
    Harrison, T. M., Zeitler, P. K. (2005). Fundamentals of Noble Gas Thermochronometry. Rev. Mineral Geochem. 58, 123-149. doi: 10.2138/RMG.2005.58.5.
    Haugerud, R. A., Kunk, M. J. (1988). ArAr*, a Computer Program for Reduction of 40Ar/39Ar. U.S. Geological Survey Open-File Report 88-261.
    Hayden, L., Watson, E., Wark, D. (2008). A thermobarometer for sphene (titanite). Contrib. to Mineral. Petrol. 155, 529-540. doi: 10.1007/s00410-007-0256-y.
    He, X., Liu, Z., Wang, G., Leonard, N., Tao, W., Tan, S. (2020). Petrogenesis and tectonic setting of the Early Cretaceous granitoids in the eastern Tengchong terrane, SW China: Constraint on the evolution of Meso-Tethys. Lithosphere 12(1), 150-165. doi: 10.1130/L1149.1
    He, X., Zhou, R., Tan, S., Liu, Z., Wang, G., Jiang, Z., Cao, Y. (2021). Late Cretaceous–Eocene magmatism induced by slab rollback and breakoff in the Tengchong terrane, SW China. Int. Geol. Rev. 63(3), 294-316. doi: 10.1080/00206814.2019.1709567
    Heine, C., Müller, D., Gaina, C. (2004). "Reconstructing the Lost Eastern Tethys Ocean Basin: Convergence History of the SE Asian Margin and Marine Gateways," ed. P. Clift, Kuhnt, W., Wang, P., Hayes D.), 37-54.
    Henry, D. J., Dutrow, B. L. (1996). Metamorphic tourmaline and its petrologic applications. Reviews in Mineralogy 33, 503-557.
    Hermann, J., Rubatto, D. (2003). Relating zircon and monazite domains to garnet growth zones: Age and duration of granulite facies metamorphism in the Val Malenco lower crust. Journal of Metamorphic Geology 21, 833-852. doi: 10.1046/j.1525-1314.2003.00484.x.
    Hirth, G., Tullis, J. (1992). Dislocation creep regimes in quartz aggregates. J. Struct. Geol. 14, 145-159. doi: 10.1016/0191-8141(92)90053-Y.
    Holt, W. E., Ni, J. F., Wallace, T. C. (1991). The active tectonics of the eastern Himalayan Syntaxis and surrounding regions. J. Geophys. Res. 96, 14595-14632.
    Hoskin, P. W. O., Schaltegger, U. (2003). The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 53(1), 27-62. doi: 10.2113/0530027.
    Hsu, F.-J. (2000). 40Ar/39Ar Thermochronological Study of the Gaoligong Shan Shear Zone in Western Yunnan Province. Unpubl. MSD thesis: National Taiwan University.
    Hsü, K. J., Pan, G. T., Sengör, A. M. C. (1995). Tectonic Evolution of the Tibetan Plateau: A Working Hypothesis Based on the Archipelago Model of Orogenesis. Int. Geol. Rev. 37(6), 473-508. doi: 10.1080/00206819509465414.
    Huang, F., Xu, J., Zeng, Y., Chen, J., Wang, B., Yu, H., Chen, L., Huang, W., Tan, R. (2017). Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred From Contemporaneous Melting of the Mantle and Crust. Geochemistry, Geophysics, Geosystems 18(11), 4074-4095. doi: 10.1002/2017GC007039.
    Hwang, B.-H., Son, M., Kim, J.-S., Yang, K., Kim, J.-S. (2012). Cenozoic wrench tectonics and oroclinal bending in SE Korea. Int. Geol. Rev. 54(6), 642-653. doi: 10.1080/00206814.2011.562389
    Ismat, Z., Mitra, G. (2005). Folding by cataclastic flow: evolution of controlling factors during deformation. J. Struct. Geol. 27(12), 2181-2203. doi: 10.1016/j.jsg.2005.08.005.
    Ismat, Z. (2006). Cataclastic Flow: A Means for Ensuring Ductility Within the Elastico-Frictional Regime. Geological Society of America Abstracts with Programs 38(7), 310.
    Jackson, S. E., Pearson, N. J., Griffin, W. L., Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211(1), 47-69. doi: 10.1016/j.chemgeo.2004.06.017.
    Ji, J. Q., Zhong, D. L., Zhang, L. S. (2000a). Kinematics and dating of Cenozoic strike-slip faults in the Tengchong area, west Yunnan: Implications for the block movement in the southeastern Tibet Plateau. Scientia Geologica Sinica 35, 336-349.
    Ji, J. Q., Zhong, D. L., Sang, H. Q., Zhang, L. S. (2000b). The western boundary of extrusion blocks in the southeastern Tibetan Plateau. Chinese Science Bulletin 45, 876-881. doi: 10.1007/bf02886191.
    Ji, W. Q., Wu, F. Y., Chung, S. L., Li, J. X., Liu, C. Z. (2009). Zircon U-Pb geochronology and Hf isotopic constraints on petrogeneisis of the Gangdese batholith, southern Tibet. Chem. Geol. 262, 229-245.
    Jian, P., Liu, D., Kröner, A., Zhang, Q., Wang, Y., Sun, X., Zhang, W. (2009). Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (I): Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks. Lithos 113(3–4), 748-766. doi: 10.1016/j.lithos.2009.04.004.
    Jiang, S.-Y. (1998). Stable and radiogenic isotope studies of tourmaline: An overview. Journal of the Czech Geological Society 43, 75-90.
    Jiang, X., Wang, Z. (2021). A critical review of existing models for the origin of the South China Sea and a new proposed model. Journal of Asian Earth Sciences: X 6, 100065. doi: 10.1016/j.jaesx.2021.100065.
    Johnston, S. T., Weil, A. B., Gutiérrez-Alonso, G. (2013). Oroclines: Thick and thin. Geol. Soc. Am. Bull. doi: 10.1130/B30765.1.
    Jung, S., Pfänder , J. A. (2007). Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. Eur. J. Mineral. 19(6), 859-870. doi: 10.1127/0935-1221/2007/0019-1774.
    Kapp, P., Murphy, M. A., Yin, A., Harrison, T. M., Ding, L., Guo, J. R. (2003). Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics 22(4), 1029. doi: 10.1029/2001TC001332.
    Kapp, P., Yin, A., Harrison, T. M., Ding, L. (2005). Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geol. Soc. Am. Bull. 117(7-8), 865-878. doi: 10.1130/B25595.1.
    Kapp, P., DeCelles, P. G., Gehrels, G. E., Heizier, M., Ding, L. (2007a). Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol. Soc. Am. Bull. 119, 917-932. doi: 10.1130/B26033.1.
    Kapp, P., DeCelles, P. G., Leier, A. L., Fabijanic, J. M., He, S, Pullen, A., Gehrels, G. E., Ding, L. (2007b). The Gangdese retroarc thrust belt revealed. GSA Today 17(7), 4-9. doi: 10.1130/GSAT01707A.1.
    Kay, S., Coira, B. (2009). Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano-Puna Plateau. Geological Society of America Memoirs 204, 229-259. doi: 10.1130/2009.1204(11).
    Kelley, S. P., Bartlett, J. M., Harris, N. B. W. (1997). Pre-metamorphic Ar-Ar ages from biotite inclusions in garnet. Geochimica et Cosmochimica Acta 61(18), 3873-3878. doi: 10.1016/S0016-7037(97)00208-1.
    Klootwijk, C. T., Conaghan, P. J., Powell, C. M. (1985). The Himalayan Arc: large-scale continental subduction, oroclinal bending and back-arc spreading. Earth Planet. Sci. Lett. 75(2), 167-183. doi: 10.1016/0012-821X(85)90099-8.
    Klootwijk, C. T., Gee, J. S., Peirce, J. W., Smith, G. M., McFadden, P. L. (1992). An early India-Asia contact: paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology 20, 395-398.
    Kobayashi, T., Obata, M., Yoshimura, Y. (2005). Diatexite and metatexite from the Higo metamorphic rocks, west-central Kyushu, Japan. J. Mineral. Petrol. Sci. 100(1), 1-25. doi: 10.2465/jmps.100.1.
    Koblinger, B. M., Pattison, D. R. M. (2017). Crystallization of Heterogeneous Pelitic Migmatites: Insights from Thermodynamic Modelling. J. Petrol. 58(2), 297-326. doi: 10.1093/petrology/egx017.
    Kohn, M. J., Parkinson, C. D. (2002). Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology 30, 591-594. doi: 10.1130/0091-7613(2002)030<0591:PCFESB>2.0.CO;2.
    Koons, P. O. (1995). Modeling the topographic evolution of collisional belts. Annu. Rev. Earth Planet Sci. 23(1), 375-408. doi: 10.1146/annurev.ea.23.050195.002111.
    Koppers, A. A. P. (2002). ArArCALC—software for 40Ar/39Ar age calculations. Comput. Geosci. 28(5), 605-619. doi: 10.1016/S0098-3004(01)00095-4.
    Kriegsman, L. M. (2001). Partial melting, partial melt extraction and partial back reaction in anatectic migmatites. Lithos 56(1), 75-96. doi: 10.1016/S0024-4937(00)00060-8.
    Kröner, A., Jaeckel, P., Williams, I. S. (1994). Pb-loss patterns in zircons from a high-grade metamorphic terrain as revealed by different dating methods: U-Pb and Pb-Pb ages for igneous and metamorphic zircons from northern Sri Lanka Precambrian Res. 66(1), 151-181. doi: 10.1016/0301-9268(94)90049-3.
    Kruse, R., Stünitz, H., Kunze, K. (2001). Dynamic recrystallization processes in plagioclase porphyroclasts. J. Struct. Geol. 23(11), 1781-1802. doi: 10.1016/S0191-8141(01)00030-X.
    Lacassin, R., Maluski, H., Leloup, P. H., Tapponnier, P., Hinthong, C., Siribhakdi, K., Chuaviroj, S., Charoenravat, A. (1997). Tertiary diachronic extrusion and deformation of western Indochina: Structural and 40Ar/39Ar evidence from NW Thailand. J. Geophys. Res. Solid Earth 102(B5), 10013-10037. doi: 10.1029/96jb03831.
    Lai, K.-Y., Chen, Y.-G., Lâm, D. Đ. (2012). Pliocene-to-present morphotectonics of the Dien Bien Phu fault in northwest Vietnam. Geomorphology 173–174(0), 52-68. doi: 10.1016/j.geomorph.2012.05.026.
    Lai, Y.-M., Chung, S.-L., Ghani, A. A., Murtadha, S., Lee, H.-Y., and Chu, M.-F. (2021). Mid-Miocene volcanic migration in the westernmost Sunda arc induced by India-Eurasia collision. Geology 49(6), 713-717. doi: 10.1130/g48568.1.
    Lallemand, S., Heuret, A., Boutelier, D. (2005). On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem. Geophys. Geosyt. 6, Q09006. doi: 10.1029/2005GC000917.
    Lambert, I. B., Heier, K. S. (1968). Geochemical investigations of deep-seated rocks in the Australian shield. Lithos 1, 30-53. doi: 10.1016/s0024-4937(68)80033-7.
    Lawrence, R. D., Yeats, R. S., Khan, S. H., Subhani, A. M., Bonelli, D. (1981). Crystalline rocks of the Spinatizha area, Pakistan. J. Struct. Geol. 3(4), 449-457. doi: 10.1016/0191-8141(81)90044-4.
    Lee, C., King, S. D. (2011). Dynamic buckling of subducting slabs reconciles geological and geophysical observations. Earth Planet. Sci. Lett. 312(3), 360-370. doi: 10.1016/j.epsl.2011.10.033.
    Lee, G., Lee, K., and Watkins, J. (2001). Geologic Evolution of the Cuu Long and Nam Con Son Basins, Offshore Southern Vietnam, South China Sea. AAPG Bulletin 85, 1055-1082. doi: 10.1306/8626CA69-173B-11D7-8645000102C1865D.
    Lee, H.-Y., Chung, S.-L., Lo, C.-H., Ji, J., Lee, T.-Y., Qian, Q., Zhang, Q. (2009). Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics 477(1–2), 20-35. doi: 10.1016/j.tecto.2009.02.031.
    Lee, H. Y., Chung, S. L., Wang, J. R., Wen, D. J., Lo, C. H., Yang, T. F., Zhang, Y. Q., Xie, Y. W., Lee, T. Y., Wu, G. Y., Ji, J. Q. (2003). Miocene Jiali faulting and its implications for Tibetan tectonic evolution. Earth Planet. Sci. Lett. 205, 185-194.
    Lee, J.-Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H.-S., Lee, J. B., Kim, J. S. (2006). A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta. 70(17), 4507-4512. doi: 10.1016/j.gca.2006.06.1563.
    Lee, T. Y., Lawver, L. A. (1995). Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 251, 85-138. doi: 10.1016/0040-1951(95)00023-2.
    Lei, J., Xie, F., Fan, Q., Santosh, M. (2013). Seismic imaging of the deep structure under the Chinese volcanoes: An overview. Phys. Earth Planet. Inter. 224, 104-123. doi: 10.1016/j.pepi.2013.08.008.
    Leier, A. L., Kapp, P., Gehrels, G. E., DeCelles, P. G. (2007a). Detrital zircon geochronology of Carboniferous–Cretaceous strata in the Lhasa terrane, Southern Tibet. Basin Res. 19(3), 361-378. doi: 10.1111/j.1365-2117.2007.00330.x.
    Leier, A. L., DeCelles, P. G., Kapp, P., Ding, L. (2007b). The Takena Formation of the Lhasa terrane, southern Tibet: the record of a Late Cretaceous retroarc foreland basin. Geol. Soc. Amer. Bull. 119, 31-48. doi: 10.1130/B25974.1.
    Leloup, P. H., Lasassin, R., Tapponnier, P., Scharer, U., Dalai, Z., Xiaohan, L., Liangshang, Z., Shaocheng, J., Trinh, P. T. (1995). The Ailao Shan-Red River shear zone (Yunnan, China), Cenozoic transform boundary of Indochina. Tectonophysics 251, 3-84.
    Lepvrier, C., Maluski, H., Tich, V. V., Leyreloup, A., Phan, T. T., Nguyen, V. V. (2004). The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics 393(1), 87-118. doi: 10.1016/j.tecto.2004.07.030.
    Lepvrier, C., Nguyen, V. V., Henri, M., Phan, T. T., Tich, V. V. (2008). Indosinian tectonics in Vietnam. CR Geosci. 340(2), 94-111. doi: 10.1016/j.crte.2007.10.005.
    Li, C., van der Hilst, R. D., Meltzer, A. S., Engdahl, E. R. (2008). Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274, 157-168.
    Li, C.-F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y., et al. (2014). Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems 15(12), 4958-4983. doi: 10.1002/2014GC005567.
    Li, P., Rui, G., Junwen, C., Ye, G. (2004). Paleomagnetic analysis of eastern Tibet: implications for the collisional and amalgamation history of the Three Rivers Region, SW China. J. Asian Earth Sci. 24(3), 291-310. doi: 10.1016/j.jseaes.2003.12.003.
    Li, S. M., Zhu, D. C., Wang, Q., Zhao, Z. D., Sui, Q. L., Liu, S. A., Liu, D., Mo, X. X. (2014). Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos 205, 284-297. doi: 10.1016/j.lithos.2014.07.010.
    Lin, I. J., Chung, S.-L., Chu, C.-H., Lee, H.-Y., Gallet, S., Wu, G., Ji, J., Zhang, Y. (2012). Geochemical and Sr–Nd isotopic characteristics of Cretaceous to Paleocene granitoids and volcanic rocks, SE Tibet: Petrogenesis and tectonic implications. J. Asian Earth Sci. 53(0), 131-150. doi: 10.1016/j.jseaes.2012.03.010.
    Lin, T.-H., Chung, S.-L., Kumar, A., Wu, F.-Y., Chiu, H.-Y., Lin, I. J. (2013). Linking a prolonged Neo-Tethyan magmatic arc in South Asia: Zircon U-Pb and Hf isotopic constraints from the Lohit Batholith, NE India. Terra Nova 25(6), 453-458. doi: 10.1111/ter.12056.
    Lin, T.-H., Mitchell, A. H. G., Chung, S.-L., Tan, X.-B., Oo, T., Tang, J.-T., Wu, F.-Y. (2018). Two parallel magmatic belts with contrasting isotopic characteristics from southern Tibet to Myanmar: Zircon U-Pb and Hf isotopic constraints. J. Geol. Soc. London 176, 574-587. doi: 10.1144/jgs2018-072.
    Lin, T. H., Lo, C. H., Chung, S. L., Hsu, F. J., Yeh, M. W., Lee, T. Y., Ji, J. Q., Wang, Y. Z., Liu, D. Y. (2009). 40Ar/39Ar dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis. J. Asian Earth Sci. 34, 674-685. doi: 10.1016/j.jseaes.2008.10.009.
    Lin, Y.-A., Colli, L., Wu, J., Schuberth, B. S. A. (2020). Where Are the Proto-South China Sea Slabs? SE Asian Plate Tectonics and Mantle Flow History From Global Mantle Convection Modeling. Journal of Geophysical Research: Solid Earth 125(12), e2020JB019758. doi: 10.1029/2020JB019758.
    Lin, Y.-L., Yeh, M.-W., Lee, T.-Y., Chung, S.-L., Iizuka, Y., Charusiri, P. (2013). First evidence of the Cambrian basement in Upper Peninsula of Thailand and its implication for crustal and tectonic evolution of the Sibumasu terrane. Gondwana Res. 24(3), 1031-1037. doi: 10.1016/j.gr.2013.05.014.
    Linzer, H.-G., Ratschbacher, L., Frisch, W. (1995). Transpressional collision structures in the upper crust: the fold-thrust belt of the Northern Calcareous Alps. Tectonophysics 242(1–2), 41-61. doi: 10.1016/0040-1951(94)00152-Y.
    Liu, B. P., Feng, Q. L., Chonglakmani, C., Helmcke, D. (2002). Framework of Paleotethyan Archipelago Ocean of western Yunnan and its elongation towards north and south. Earth Sci. Front. 9, 161–171 (in Chinese with English abstract).
    Liu, C.-Z., Chung, S.-L., Wu, F.-Y., Zhang, C., Xu, Y., Wang, J.-G., Chen, Y., Guo, S. (2016). Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology 44(4), 311-314. doi: 10.1130/G37342.1
    Liu, F., Wang, F., Liu, P., Yang, H., Meng, E. (2015). Multiple partial melting events in the Ailao Shan-Red River and Gaoligong Shan complex belts, SE Tibetan Plateau: Zircon U-Pb dating of granitic leucosomes within migmatites. J. Asian Earth Sci. 110. doi: 10.1016/j.jseaes.2014.06.025.
    Liu, G., Sun, Z., Zi, J., Santosh, M., Zhao, T., Feng, Q., Chen, G., Nie, X., Li, J., Zhang, S. (2021). Proto-Tethys ophiolitic mélange in SW Yunnan: Constraints from zircon U-Pb geochronology and geochemistry. Geosci. Front. 12(5), 101200. doi: 10.1016/j.gsf.2021.101200.
    Liu, S., Hu, R. Z., Gao, S., Feng, C. X., Huang, Z., Lai, S., Yuan, H., Liu, X., Coulson, I. M., Feng, G., Wang, T., Qi, Y. Q. (2009). U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong–Baoshan Block, Western Yunnan Province, SW China. J. Asian Earth Sci. 36(2), 168-182. doi: 10.1016/j.jseaes.2009.05.004.
    Liu, Z. Q., Li, X. Z., Ye, Q. T. (1993). Division of Tectono magmatic Zones and the Distribution of Deposits in the Sanjiang Area. Beijing, Geological Publishing House [in Chinese].
    Lo, C.-H., Onstott, T. C. (1989). 39Ar recoil artifacts in chloritized biotite. Geochim. Cosmochim. Ac. 53(10), 2697-2711. doi: 10.1016/0016-7037(89)90141-5.
    Lo, C.-H., Chung, S.-L., Lee, T.-Y., Wu, G. Y. (2002). Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth Planet. Sci. Lett. 198, 449-458. doi: 10.1016/S0012-821X(02)00535-6.
    Lovera, O. M., Grove, M., Harrison, T. M. (2002). Systematic analysis of K-feldspar 40Ar/39Ar step heating results II: relevance of laboratory argon diffusion properties to nature. Geochimica et Cosmochimica Acta 66(7), 1237-1255. doi: 10.1016/S0016-7037(01)00846-8.
    Ma, L., Wang, Y., Fan, W., Geng, H., Cai, Y., Zhong, H., Liu, H., Xing, X. (2014). Petrogenesis of the early Eocene I-type granites in west Yingjiang (SW Yunnan) and its implication for the eastern extension of the Gangdese batholiths. Gondwana Res. 25, 401-419. doi: 10.1016/j.gr.2013.04.010.
    Ma, L., Wang, Q., Wyman, D. A., Jiang, Z.-Q., Wu, F.-Y., Li, X.-H., Yang, J.-H., Gou, G.-N., Guo, H.-F. (2015). Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases. J. Geophys. Res. Solid Earth 120(9), 6159-6181. doi: 10.1002/2015JB011966.
    Ma, N., Deng, J., Wang, Q. F., Wang, C. M., Zhang, J., Li, G. J. (2013). Geochronology of the Dasongpo tin deposit, Yunnan Province: Evidence from zircon LA-ICP-MS U-Pb ages and cassiterite LA-ICP-MS U-Pb age: Yanshi Xuebao. Acta Geologica Sinica (English edition) 29, 1223–1235.
    Macedo, J., Marshak, S. (1999). Controls on the geometry of fold-thrust belt salients. GSA Bulletin 111(12), 1808-1822. doi: 10.1130/0016-7606(1999)111<1808:COTGOF>2.3.CO;2
    Mai, H. A., Chan, Y. L., Yeh, M. W., Lee, T. Y. (2018). Tectonic implications of Mesozoic magmatism to initiation of Cenozoic basin development within the passive South China Sea margin. Int J Earth Sci. 107, 1153. doi: 10.1007/s00531-017-1537-y.
    Maniar, P. D., Piccoli, P. M. (1989). Tectonic discriminations of granitoids. Geol. Soc. Amer. Bull. 101, 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2.
    Marschall, H. (2018). "Boron isotopes in the ocean floor realm and the mantle," in Advances in Isotope Geochemistry., ed. F.G. Marschall H. (Cham: Springer), 189-215.
    Marshak, S. (1988). Kinematics of orocline and arc formation in thin-skinned orogens. Tectonics 7(1), 73-86. doi: 10.1029/TC007i001p00073.
    Marshak, S. (2005). Salients, recesses, arcs, oroclines, and syntaxes - A review of ideas concerning the formation of map-view curves in fold-thrust belts. AAPG Memoir 82, 131-156. doi: 10.1306/M82813C9.
    Martínez Catalán, J. R. (2012). The Central Iberian arc, an orocline centered in the Iberian Massif and some implications for the Variscan belt. Int. J. Earth Sci. 101(5), 1299-1314. doi: 10.1007/s00531-011-0715-6
    Maurel, O., Monié, P., Respaut, J. P., Leyreloup, A. F., Maluski, H. (2003). Pre-metamorphic 40Ar/39Ar and U–Pb ages in HP metagranitoids from the Hercynian belt (France). Chem. Geol. 193(3–4), 195-214. doi: 10.1016/S0009-2541(02)00351-0.
    McDougall, I., Harrison, T. M. (1999). Geochronology and Thermochronology by the 40Ar–39Ar Method, second ed. New York.: Oxford University Press.
    McLellan, E. L. (1988). Migmatite structures in the Central Gneiss Complex, Boca de Quadra, Alaska. J. Metamorph. Geol 6, 517-542. doi: 10.1111/J.1525-1314.1988.TB00437.X.
    McQuarrie, N. (2004). Crustal scale geometry of the Zagros fold–thrust belt, Iran. Journal of Structural Geology 26(3), 519-535. doi: 10.1016/j.jsg.2003.08.009.
    Mehnert, K. R. (1968). Migmatites and the Origin of Granitic Rocks. Amsterdam: Elsevier.
    Metcalfe, I. (1994). Gondwanaland origin, dispersion, and accretion of East and Southeast Asian continental terranes. J. South Am. Earth Sci. 7(3–4), 333-347. doi: 10.1016/0895-9811(94)90019-1.
    Metcalfe, I. (1996). Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Aust. J. Earth Sci. 43(6), 605-623. doi: 10.1080/08120099608728282.
    Metcalfe, I. (2000). The Bentong–Raub Suture Zone. J. Asian Earth Sci. 18(6), 691-712. doi: 10.1016/S1367-9120(00)00043-2.
    Metcalfe, I. (2002). Permian tectonic framework and palaeogeography of SE Asia. J. Asian Earth Sci. 20(6), 551-566. doi: 10.1016/S1367-9120(02)00022-6.
    Metcalfe, I. (2011). Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res. 19(1), 3-21. doi: 10.1016/j.gr.2010.02.016.
    Metcalfe, I. (2013). Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 66(0), 1-33. doi: 10.1016/j.jseaes.2012.12.020.
    Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews 37(3), 215-224. doi: 10.1016/0012-8252(94)90029-9.
    Miller, C., Thöni, M., Frank, W., Grasemann, B., Klötzli, U., Guntli, P., Draganits, E. (2001). The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement. Geological Magazine 138(3), 237-251. doi: 10.1017/S0016756801005283.
    Mitchell, A., Htay, M. T., Htun, K. M. (2021). Middle Jurassic arc reversal, Victoria–Katha Block and Sibumasu Terrane collision, jadeite formation and Western Tin Belt generation, Myanmar. Geological Magazine 158(8), 1487-1503. doi: 10.1017/S0016756821000066.
    Mitchell, A. H. G. (1981). Phanerozoic plate boundaries in mainland SE Asia, the Himalayas and Tibet. J. Geol. Soc. London 138(2), 109-122. doi: 10.1144/gsjgs.138.2.0109
    Mitchell, A. H. G. (1993). Cretaceous–Cenozoic tectonic events in the western Myanmar (Burma)–Assam region. J. Geol. Soc. London 150(6), 1089-1102. doi: 10.1144/gsjgs.150.6.1089.
    Mitchell, A. H. G., Chung, S. L., Oo, T., Lin, T. H., Hung, C. H. (2012). Zircon U–Pb ages in Myanmar: Magmatic–metamorphic events and the closure of a neo-Tethys ocean? J. Asian Earth Sci. 56(0), 1-23. doi: 10.1016/j.jseaes.2012.04.019.
    Mo, X., Hou, Z., Niu, Y., Dong, G., Qu, X., Zhao, Z., Yang, Z. (2007). Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96(1), 225-242. doi: 10.1016/j.lithos.2006.10.005.
    Morley, C. K., Arboit, F. (2019). Dating the onset of motion on the Sagaing fault: Evidence from detrital zircon and titanite U-Pb geochronology from the North Minwun Basin, Myanmar. Geology 47(6), 581-585. doi: 10.1130/G46321.1.
    Mundil, R., Metcalfe, I., Ludwig, K. R., Renne, P. R., Oberli, F., Nicoll, R. S. (2001). Timing of the Permian–Triassic biotic crisis: implications from new zircon U/Pb age data (and their limitations). Earth Planet. Sci. Lett. 187(1–2), 131-145. doi: 10.1016/S0012-821X(01)00274-6.
    Muñoz, J.-A., Beamud, E., Fernández, O., Arbués, P., Dinarès-Turell, J., Poblet, J. (2013). The Ainsa Fold and thrust oblique zone of the central Pyrenees: Kinematics of a curved contractional system from paleomagnetic and structural data. Tectonics 32(5), 1142-1175. doi: 10.1002/tect.20070.
    Obata, M., Yoshimura, Y., Nagakawa, K., Odawara, S., Osanai, Y. (1994). Crustal anatexis and melt migrations in the Higo metamorphic terrane, west-central Kyushu, Kumamoto, Japan. Lithos 32, 135-147. doi: 10.1016/0024-4937(94)90026-4.
    Odin, G. S., Adams, C. J., Armstrong, R. L., Bagdasaryan, G. P., Baksi, A. K., Balogh, K., Barnes, I. L., Boelrijk, N. A. I. M., Bonadonna, F. P., Bonhomme, M. G., Cassignol, C., et al. (1982). Interlaboratory standards for dating purposes, (G.S. Odin, ed.). Chichester: John Wiley & Sons.
    Owona, S., Ondoa, J. M., Ekodeck, G. E. (2013). Evidence of Quartz, Feldspar and Amphibole Crystal Plastic Deformations in the Paleoproterozoic Nyong Complex Shear Zones Under Amphibolite to Granulite Conditions (West Central African Fold Belt, SW Cameroon). Journal of Geography and Geology 5(3), 186-201. doi: 10.5539/jgg.v5n3p186.
    Palin, R. M., Searle, M. P., St-Onge, M. R., Waters, D. J., Roberts, N. M. W., Horstwood, M. S. A., Parrish, R. R., Weller, O. M. (2015). Two-stage cooling history of pelitic and semi-pelitic mylonite (sensu lato) from the Dongjiu–Milin shear zone, northwest flank of the eastern Himalayan syntaxis. Gondwana Res. 28(2), 509-530. doi: 10.1016/j.gr.2014.07.009.
    Pan, G. T., Mo, X. X., Hou, Z. Q., Zhu, D. C., Wang, L. Q., Li, G. M., Zhao, Z. D., Geng, Q. R., Liao, Z. L. (2006). Spatial–temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrol. Sin. 22(3), 521-533 (in Chinese with English abstract).
    Passchier, C. W., Trouw, R. A. J. (1996). Microtectonics Berlin: Springer-Verlag, pp. 289.
    Patin˜o Douce, A. E., Humphreys, E. D., Johnston, A. D. (1990). Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America. Earth Planet. Sci. Lett. 97, 290. doi: 10.1016/0012-821x(90)90048-3.
    Pawley, M., Reid, A., Dutch, R., Preiss, W. (2015). Demystifying migmatites: introduction for field-based geologist. Appl. Earth Sci. 124(3), 147-174. doi: 10.1179/1743275815Y.0000000014.
    Peng, X., Li, C.-F., Shen, C., Li, K., Zhao, Z., and Xie, X. (2020). Anomalous lower crustal structure and origin of magmatism in the southeastern margin of the South China Sea. Marine and Petroleum Geology 122, 104711. doi: 10.1016/j.marpetgeo.2020.104711.
    Piromallo, C., Becker, T. W., Funiciello, F., Faccenna, C. (2006). Three-dimensional instantaneous mantle flow induced by subduction. Geophys. Res. Lett. 33(8). doi: 10.1029/2005GL025390.
    Pullen, A., Kapp, P., Gehrels, G. E., Vervoort, J. D., Ding, L. (2008). Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology 36(5), 351-354. doi: 10.1130/g24435a.1.
    Qi, X., Zhu., L., Grimmer, J. C., Hu, Z. (2015). Tracing the Transhimalayan magmatic belt and the Lhasa block southward using zircon U–Pb, Lu–Hf isotopic and geochemical data: Cretaceous–Cenozoic granitoids in the Tengchong block, Yunnan, China. J. Asian Earth Sci. 110, 170-188. doi: 10.1016/j.jseaes.2014.07.019.
    Qi, X., Wei, C., Zhang, C., Zhang, S., Hu, Z, Ji, F. (2019). Southward extension of the Bangonghu–Nujiang Suture: Evidence from Early Cretaceous intermediate and felsic magmatism in the Gaoligong Orogen, China. J. Asian Earth Sci. 175. doi: 10.1016/j.jseaes.2018.09.007.
    Qi, X. X., Zhu, L. H., Hu, Z. C., Li, Z. Q. (2011). Zircon SHRIMP U-Pb dating and Lu-Hf isotopic composition for Early Cretaceous plutonic rocks in Tengchong block, southeastern Tibet, and its tectonic implications. Acta Petrol. Sin. 27, 3409-3421.
    Rajesh, H. M., Belyanin, G. A., Safonov, O. G., Kovaleva, E. I., Golunova, M. A., Van Reenen, D. D. (2013). Fluid-induced Dehydration of the Paleoarchean Sand River Biotite-hornblende Gneiss, Central Zone, Limpopo Complex, South Africa. J. Petrol. 54(1), 41-74. doi: 10.1093/petrology/egs062.
    Ramsay, J. G. (1967). Folding and Fracturing of Rocks. New York.
    Regenauer-Lieb, K., Yuen, D. A. (2003). Modeling shear zones in geological and planetary sciences: solid- and fluid-thermal–mechanical approaches. Earth Sci. Rev. 63(3–4), 295-349. doi: 10.1016/S0012-8252(03)00038-2.
    Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L., DePaolo, D. J. (1998). Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem. Geol. 145, 117-152.
    Replumaz, A., Kárason, H., van der Hilst, R. D., Besse, J., Tapponnier, P. (2004). 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography. Earth Planet. Sci. Lett. 221, 103-115. doi: 10.1016/S0012-821X(04)00070-6.
    Rickwood, P. C. (1989). Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos 22, 247-263. doi: 10.1016/0024-4937(89)90028-5.
    Robin, P.-Y. F. (1979). Theory of metamorphic segregation and related processes. Geochim. Cosmochim. Acta 43(10), 1587-1600. doi: 10.1016/0016-7037(79)90179-0.
    Roger, F., Calassou, S., Lancelot, J., Malavieille, J., Mattauer, M., Zhiqin, X., Ziwen, H., Liwei, H. (1995). Miocene emplacement and deformation of the Konga Shan granite (Xianshui He fault zone, west Sichuan, China): Geodynamic implications. Earth Planet. Sci. Lett. 130, 201-216.
    Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., Liu, Y. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science 276, 788-790. doi: 10.1126/science.276.5313.788.
    Royden, L. H., Burchfiel, B. C., van der Hilst, R. D. (2008). The Geological Evolution of the Tibetan Plateau. Science 321, 1054-1058.
    Rubatto, D., Hermann, J., Berger, A., Engi, M. (2009). Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps. Contrib. to Mineral. Petrol. 158(6), 703-722. doi: 10.1007/s00410-009-0406-5.
    Rutter, E. H. (1986). On the nomenclature of mode of failure transitions in rocks. Tectonophysics 122(3–4), 381-387. doi: 10.1016/0040-1951(86)90153-8.
    Sacchi, R., Cadoppi, P. (1988). Oroclines and pseudo-oroclines. Tectonophysics 146(1), 47-58. doi: 10.1016/0040-1951(88)90080-7.
    Sashida, K., Igo, H., Adachi, S., Ueno, K., Kajiwara, Y., Nakornsri, N., Sardsud, A. (2000). Late Permian to Middle Triassic radiolarian faunas from northern Thailand. J. Palaeontol. 74, 789–811. doi: 10.1017/S0022336000033011.
    Sashida, K., Salyapongse, S. (2002). Permian radiolarian faunas from Thailand and their paleogeographic significance. J. Asian Earth Sci. 20(6), 691-701. doi: 10.1016/S1367-9120(02)00005-6.
    Sawyer, E. W. (1994). Melt segregation in the continental crust. Geology 22(11), 1019-1022. doi: 10.1130/0091-7613(1994)022<1019:msitcc>2.3.co;2.
    Sawyer, E. W., Dombrowski, C., Collins, W. J. (1999). "Movement of melt during synchronous regional deformation and granulite-facies anatexis, an example from the Wuluma Hills, central Australia," in Understanding Granites: Integrating New and Classical Techniques, ed. A. Castro, Fernandez, C., Vigneresse, J. L.: Geological Society of London), 221-237.
    Sawyer, E. W. (2008). Atlas of Migmatites. Canadian Science Publishing.
    Scaillet, S. (1998). "K-Ar (40Ar/39Ar) Geochronology of Ultrahigh Pressure Rocks," in When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks, ed. B.R. Hacker, Liou, J. G.: Springer Netherlands), 161-201.
    Schaltegger, U., Fanning, C. M., Günther, D., Maurin, J. C., Schulmann, K., Gebauer, D. (1999). Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contrib. to Mineral. Petrol. 134, 186–201. doi: 10.1007/s004100050478.
    Schellart, W. P., Freeman, J., Stegman, D. R., Moresi, L., May, D. (2007). Evolution and diversity of subduction zones controlled by slab width. Nature 446(7133), 308-311. doi: 10.1038/nature05615.
    Schellart, W. P. (2010a). Evolution of Subduction Zone Curvature and its Dependence on the Trench Velocity and the Slab to Upper Mantle Viscosity Ratio. J. Geophys. Res. 115, B11406. doi: 10.1029/2009JB006643.
    Schellart, W. P. (2010b (2017)). Andean mountain building and magmatic arc migration driven by subduction-induced whole mantle flow. Nat. Commun. 8. doi: 10.1038/s41467-017-01847-z.
    Schellart, W. P., Stegman, D. R., Farrington, R. J., Moresi, L. (2011). Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning. J. Geophys. Res. 116, B10408. doi: 10.1029/2011JB008535.
    Scheuber, E., Hammerschmidt, K., Friedrichsen, H. (1995). 40Ar/39Ar and Rb-Sr analyses from ductile shear zones from the Atacama Fault Zone, northern Chile: the age of deformation. Tectonophysics 250(1–3), 61-87. doi: 10.1016/0040-1951(95)00044-8.
    Searle, D. L., Haq, B. T. (1964). The Mogok Belt of Burma and its relationship to the Himalayan orogeny. Proceedings of the International Geological Conference, Delhi 22, 132-168.
    Searle, M. P., Noble, S. R., Cottle, J. M., Waters, D. J., Mitchell, A. H. G., Hlaing, Tin, Horstwood, M. S. A. (2007). Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks. Tectonics 26(3), TC3014. doi: 10.1029/2006TC002083.
    Searle, M. P., Cottle, J. M., Streule, M. J., Waters, D. J. (2010). Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms. Geol. Soc. Am. Spec. Pap 472, 219-233. doi: 10.1130/2010.2472(15).
    Searle, M. P., Elliott, J. R., Phillips, R. J., Chung, S.-L. (2011). Crustal–lithospheric structure and continental extrusion of Tibet. J. Geol. Soc. London 168(3), 633-672. doi: 10.1144/0016-76492010-139.
    Searle, M. P., Morley, C. K., Waters, D. J., Gardiner, N. J., Htun, U. K., Nu, T. T., Robb, L. J., Barber, A. J., Zaw, K., Crow, M. J. (2017). "Tectonic and metamorphic evolution of the Mogok Metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar)," in Myanmar: Geology, Resources and Tectonics. The Geological Society of London.
    Sengör, A. M. C. (1984). The Cimmeride Orogenic System and the Tectonics of Eurasia. Geological Society of America Special Paper 195, 1-82. doi: 10.1130/SPE195-p1.
    Shahzeidi, M., Moayyed, M., Murata, M., Yui, T.-F., Arai, S., Chen, F., Pirnia, T., Ahmadian, J. (2016). Late Ediacaran crustal thickening in Iran: Geochemical and isotopic constraints from the ~550 Ma Mishu granitoids (northwest Iran). Int. Geol. Rev. 59, 1-19. doi: 10.1080/00206814.2016.1198728.
    Shellnutt, J., Lee, T. Y., Torng, P. K., Yang, C.-C., Lee, Y.-H. (2016). Late Cretaceous intraplate silicic volcanic rocks from the Lake Chad region: An extension of the Cameroon volcanic line. Geochemistry, Geophysics, Geosystems 17, 2803-2824. doi: 10.1002/2016GC006298.
    Shen, F., Royden, L. H., Burchfiel, B. C. (2001). Large-scale crustal deformation of the Tibetan Plateau. J. Geophys Res. 106, 6793-6816. doi: 10.1029/2000JB900389.
    Shen, Z.-K., Lü, J., Wang, M., Bürgmann, R. (2005). Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res. Solid Earth 110(B11), B11409. doi: 10.1029/2004JB003421.
    Shi, M. F., Lin, F. C., Li, Z., Ling, X. M., Shi, H. Z. (2011). Stratigraphic zoning and tectonic events in Indochina and adjacent areas of southwest China. Geology in China 38(5), 1244-1256 (in Chinese with English abstract).
    Sibuet, J.-C., Yeh, Y.-C., and Lee, C.-S. (2016). Geodynamics of the South China Sea. Tectonophysics 692, 98-119. doi: 10.1016/j.tecto.2016.02.022.
    Socquet, A., Pubellier, M. (2005). Cenozoic deformation in western Yunnan (China-Myanmar border). J. Asian Earth Sci. 24, 495-515.
    Sone, M., Metcalfe, I. (2008). Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. CR Geosci. 340(2–3), 166-179. doi: 10.1016/j.crte.2007.09.008.
    Sone, M., Metcalfe, I., Chaodumrong, P. (2012). The Chanthaburi terrane of southeastern Thailand: Stratigraphic confirmation as a disrupted segment of the Sukhothai Arc. J. Asian Earth Sci. 61(0), 16-32. doi: 10.1016/j.jseaes.2012.08.021.
    Song, S. G., Niu, Y. L., Wei, C. J., Ji, J. Q., Su, L. (2010). Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent- An eastern extension of the Lhasa Block. Lithos 120, 327-346. doi: 10.1016/j.lithos.2010.08.021.
    Speer, J. A., Becker, S. W. (1992). Evolution of magmatic and subsolidus AFM mineral assemblages in granitoid rocks: Biotite, muscovite, and garnet in the Cuffytown Creek Pluton, South Carolina. Am. Mineral. 77(7-8), 821-833.
    Stegman, D. R., Farrington, R., Capitanio, F. A., Schellart, W. P. (2010). A regime diagram for subduction styles from 3-D numerical models of free subduction. Tectonophysics 483(1-2), 29-45. doi: 10.1016/j.tecto.2009.08.041.
    Stevenson, D. J. (1989). Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophys. Res. Lett. 16(9), 1067-1070. doi: 10.1029/GL016i009p01067.
    Stipp, M., Stünitz, H., Heilbronner, R., Schmid, S. M. (2002). The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. J. Struct. Geol. 24(12), 1861-1884. doi: 10.1016/S0191-8141(02)00035-4.
    Sun, Z., Dong, G., Santosh, M., Mo, X., Dong, P., Wang, W., Fu, B. (2020). A Late Cretaceous felsic magmatic suite from the Tengchong Block, western Yunnan: integrated geochemical and isotopic investigation and implications for Sn mineralization. Geological Magazine 157(8), 1316-1332. doi: 10.1017/S0016756819001493.
    Sun, Z., Lin, J., Qiu, N., Jian, Z., Wang, P. X., Pang, X., Zheng, J., Zhu, B. (2019). The role of magmatism in the thinning and breakup of the South China Sea continental margin: Special Topic: The South China Sea Ocean Drilling. Natl. Sci. Rev. 6(5), 871-876. doi: 10.1093/nsr/nwz116.
    Sylvester, P. J. (1998). Post-collisional strongly peraluminous granites. Lithos 45(1), 29-44. doi: 10.1016/S0024-4937(98)00024-3.
    Tan, M., Zhan, W. D. (1990). Preliminary research of ophiolite belt in south Nujiang belt, western Yunnan. Expl. Geosci. 3, 91–96 (in Chinese with English abstract).
    Tan, M. T. (1995). Seismic-stratigraphic studies of the continental shelf of southern Vietnam. Journal of Petroleum Geology 18(3), 345-354. doi: 10.1111/j.1747-5457.1995.tb00910.x.
    Tao, Y., Hu, R. Z., Zhu, F. L., Ma, Y. S., Ye, Lin, Cheng, Z. T. (2010). Ore-forming age and the geodynamic background of the Hetaoping lead-zinc deposit in Baoshan, Yunnan. Acta Petrol. Sin. 26, 1760-1772.
    Tapponnier, P., Peltzer, G., Armijo, R. O., Le Dain, A. Y., Cobbold, P. (1982). Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10, 611-616.
    Tapponnier, P., Peltzer, G., Armijo, R. O. (1986). On the mechanics of the collision between India and Asia. Collision Tectonics 19, 115-157. doi: 10.1144/GSL.SP.1986.019.01.07.
    Taylor, B., Hayes, D. E. (1980). "The Tectonic Evolution of the South China Basin," in The tectonic and geologic evolution of Southeast Asian Seas and Islands, Part 1, ed. D.E. Hayes.), 89-104.
    Taylor, B., Hayes, D. E. (1983). "Origin and history of the South China Sea basin," in The tectonic and geologic evolution of Southeast Asian Seas and Islands, Part 2, ed. D.E. Hayes.), 23-56.
    Teyssier, C., Whitney, D. L. (2002). Gneiss domes and orogeny. Geology 30(12), 1139-1142. doi: 10.1130/0091-7613(2002)030<1139:gdao>2.0.co;2.
    Thiede, R., Bookhagen, B., Arrowsmith, J. R., Sobel, E. R., Strecker, M. R. (2004). Climatic control on rapid exhumation along the Southern Himalayan Front. Earth and Planetary Science Letters 222, 791-806. doi: 10.1016/j.epsl.2004.03.015.
    Thompson, A. B. (1982). Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. American Journal of Science 282(10), 1567-1595. doi: 10.2475/ajs.282.10.1567.
    Thomson, J. (2006). A rare garnet-tourmaline-sillimanite-biotite-ilmenite-quartz assemblage from the granulite-facies region of south-central Massachusetts. Am. Mineral. 91, 1730-1738. doi: 10.2138/am.2006.2231.
    Ueno, K. (2003). The Permian fusulinoidean faunas of the Sibumasu and Baoshan blocks: their implications for the paleogeographic and paleoclimatologic reconstruction of the Cimmerian Continent. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193(1), 1-24. doi: 10.1016/S0031-0182(02)00708-3.
    Van Bemmelen, R. W. (1954). Mountain Building. The Hague: Martinus Nijhoff.
    Van der Molen, I. (1985a). Interlayer material transport during layer-normal shortening. Part I. The model. Tectonophysics 115(3), 275-295. doi: 10.1016/0040-1951(85)90142-8.
    Van der Molen, I. (1985b). Interlayer material transport during layer-normal shortening. Part II. Boudinage, pinch-and-swell and migmatite at Søndre Strømfjord Airport, West Greenland. Tectonophysics 115(3), 297-313. doi: 10.1016/0040-1951(85)90143-X.
    Van der Voo, R., Spakman, W., Bijwaard, H. (1999). Tethyan subducted slabs under India. Earth Planet. Sci. Lett. 171, 7-20. doi: 10.1016/S0012-821X(99)00131-4.
    Van Hinsbergen, D. J. J., Steinberger, B. S., Doubrovine, P. V., Gassmöller, R. (2011). Acceleration and deceleration of India‐Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. J. Geophys. Res. 116, B06101, pp.20.
    Van Hinsbergen, D. J. J., Lippert, P. C., Li, S., Huang, W., Advokaat, E. L., Spakman, W. (2019). Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics 760, 69-94. doi: 10.1016/j.tecto.2018.04.006.
    Van Reenen, D. D., Barton Jr., J. M., Roering, C., Smith, C. A., Van Schalkwyk, J. F. (1987). Deep crystal response to continental collision: The Limpopo belt of southern Africa. Geology 15(1), 11-14. doi: 10.1130/0091-7613(1987)15<11:dcrtcc>2.0.co;2.
    Verts, L. A., Chamberlain, K. R., Frost, C. D. (1996). U-Pb sphene dating of metamorphism: the importance of sphene growth in the contact aureole of the Red Mountain pluton, Laramie Mountains, Wyoming. Contrib. to Mineral. Petrol. 125(2), 186-199. doi: 10.1007/s004100050215.
    Wang, D., Li, B., Ji, J., Song, S., Wei, C., Gong, J. (2013). The thermal evolution and deformation time limit of the Gaoligong metamorphic belt in Western Yunnan. Acta Geologica Sinica (English edition) 87(12), 1887-1900.
    Wang, E. Q., Burchfiel, B. C. (1997). Interpretation of Cenozoic Tectonics in the Right-Lateral Accommodation Zone Between the Ailao Shan Shear Zone and the Eastern Himalayan Syntaxis. Int. Geol. Rev. 39, 191-219. doi: 10.1080/00206819709465267.
    Wang, G., Wan, J., Wang, E. (2006). Extensional Collapse of the Southern Part of the Gaoligong Range in the Western Yunnan, China and Its Tectonic Origin. Acta Geologica Sinica (English edition) 80(9), 1262-1273.
    Wang, G., Wan, J. L., Wang, E. Q., Zheng, D. W., Li, F. (2008). Late Cenozoic to recent transtensional deformation across the Southern part of the Gaoligong shear zone between the Indian plate and SE margin of the Tibetan plateau and its tectonic origin. Tectonophysics 460, 1-20. doi: 10.1016/j.tecto.2008.04.007.
    Wang, Q., Zhang, P. Z., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X., You, X., Niu, Z., , Wu, J., Li, Y., Liu, J., Yang, Z., Chen, Q. (2001). Present-day crustal deformation in China constrained by global positioning system measurements. Science 294, 574-577.
    Wang, S., Fan, C., Wang, G., Wang, E. (2008). Late Cenozoic deformation along the northwestern continuation of the Xianshuihe fault system, Eastern Tibetan Plateau. Geol. Soc. Am. Bull. 120(3-4), 312-327. doi: 10.1130/b25833.1.
    Wang, X., Metcalfe, I., Jian, P., He, L., Wang., C. (2000). The Jinshajiang–Ailaoshan suture zone, tectono-stratigraphy, age and evolution. J. Asian Earth Sci. 18(6), 675-690. doi: 10.1016/S1367-9120(00)00039-0.
    Wang, X., Zhang, G., Fang, H., Luo, W., Zhang, W., Zhong, Q., Cai, X., Luo, H. (2014). Crust and upper mantle resistivity structure at middle section of Longmenshan, eastern Tibetan plateau. Tectonophysics 619-620, 143-148. doi: 10.1016/j.tecto.2013.09.011.
    Wang, Y., Xing, X., Cawood, P. A., Lai, S., Xia, X., Fan, W., Liu, H., Zhang, F. (2013). Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana. Lithos 182-183, 67-85. doi: 10.1016/j.lithos.2013.09.010.
    Wang, Y., Zhang, L., Cawood, P. A., Ma, L., Fan, W., Zhang, A., Zhang, Y., Bi, X. (2014). Eocene supra-subduction zone mafic magmatism in the Sibumasu Block of SW Yunnan: Implications for Neotethyan subduction and India–Asia collision. Lithos 206–207(0), 384-399. doi: 10.1016/j.lithos.2014.08.012.
    Wang, Y., Li, S., Ma, L., Fan, W., Cai, Y., Zhang, Y., Zhang, F. (2015). Geochronological and geochemical constraints on the petrogenesis of Early Eocene metagabbroic rocks in Nabang (SW Yunnan) and its implications on the Neotethyan slab subduction. Gondwana Res. 27(4), 1474-1486. doi: 10.1016/j.gr.2014.01.007.
    Wang, Y. J., Fan, W. M., Zhang, Y. H., Peng, T. P., Chen, X. Y., Xu, Y. G. (2006). Kinematics and 40Ar/39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: Implications for early Oligocene tectonic extrusion of SE Asia. Tectonophysics 418, 235-254. doi: 10.1016/j.tecto.2006.02.005.
    Weil, A., Sussman, A. (2004). Classifying curved orogens based on timing relationships between structural development and vertical-axis rotations. Spec. Pap. Geol. Soc. Am. 383, 1-17. doi: 10.1130/0-8137-2383-3(2004)383[1:CCOBOT]2.0.CO;2.
    Weil, A. B., Van der Voo, R., van der Pluijm, B. A. (2001). Oroclinal bending and evidence against the Pangea megashear: The Cantabria-Asturias arc (northern Spain). Geology 29(11), 991-994. doi: 10.1130/0091-7613(2001)029<0991:OBAEAT>2.0.CO;2
    Wen, D.-R., Chung, S.-L., Song, B., Iizuka, Y., Yang, H.-J., Ji, J., Liu, D., Gallet, S. (2008b). Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos 105(1–2), 1-11. doi: 10.1016/j.lithos.2008.02.005.
    Wen, D. R., Liu, D. Y., Chung, S. L., Chu, M. F., Ji, J. Q., Zhang, Q., Song, B., Lee, T. Y., Yeh, M. W., Lo, C. H. (2008a). Zircon SHRIMP U–Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet. Chem. Geol. 252, 191-201. doi: 10.1016/j.chemgeo.2008.03.003.
    Westerweel, J., Licht, A., Cogné, N., Roperch, P., Dupont-Nivet, G., Kay Thi, M., et al. (2020). Burma Terrane Collision and Northward Indentation in the Eastern Himalayas Recorded in the Eocene-Miocene Chindwin Basin (Myanmar). Tectonics 39(10), e2020TC006413. doi: 10.1029/2020TC006413.
    Whitehead, J., Reynolds, P. H., Spray, J. G. (1996). 40Ar/39Ar age constraints on Taconian and Acadian events in the Quebec Appalachians. Geology 24(4), 359-362. doi: 10.1130/0091-7613(1996)024<0359:AAACOT>2.3.CO;2.
    Whitmeyer, S. J., Wintsch, R. P. (2005). Reaction localization and softening of texturally hardened mylonites in a reactivated fault zone, central Argentina. J. Metamorph. Geol. 23(6), 411-424. doi: 10.1111/j.1525-1314.2005.00588.x.
    Wolf, R. A., Farley, K. A., Kass, D. M. (1998). Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer. Chem. Geol. 148(1–2), 105-114. doi: 10.1016/S0009-2541(98)00024-2.
    Wonganan, N., Caridroit, M. (2005). Middle and Upper Devonian radiolarian faunas from Chiang Dao area, Chiang Mai province, northern Thailand. Micropaleontology 51(1), 39-57. doi: 10.2113/51.1.39.
    Wonganan, N., Randon, C., Caridroit, M. (2007). Mississippian (early Carboniferous) radiolarian biostratigraphy of northern Thailand (Chiang Dao area). Geobios 40(6), 875-888. doi: 10.1016/j.geobios.2007.04.001.
    Wopfner, H. (1996). Gondwana origin of the Baoshan and Tengchong terranes of west Yunnan. Geol. Soc. Spec. Publ. 106(1), 539-547. doi: 10.1144/gsl.sp.1996.106.01.34.
    Wortel, M. J. R., Spakman, W. (2000). Subduction and Slab Detachment in the Mediterranean-Carpathian Region. Science 290(5498), 1910-1917. doi: 10.1126/science.290.5498.1910.
    Wu, J., Suppe, J. (2018). Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography. Journal of Earth Science 29(6), 1304-1318. doi: 10.1007/s12583-017-0813-x.
    Xie, J.-C., Zhu, D.-C., Dong, G., Zhao, Z., Wang, Q., Mo, X. (2016). Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in southern Tibet through magmatic correlation. Gondwana Res. 39, 217-229. doi: 10.1016/j.gr.2016.02.007.
    Xie, T., Lin, S. L., Cong, F., Li, Z. H., Zou, G. F., Li, J. M., Liang, T. (2010). LA-ICP-MS zircon U-Pb dating for K-feldspar granites in Lianghe region, western Yunnan and its geological significance. Geotecton. et Metallog. 34, 419-428.
    Xu, R. H., Scharer, U., Allègre, C. J. (1985). Magmatism and Metamorphism in the Lhasa Block (Tibet): A Geochronological Study. J. Geol. 93(1), 41-57.
    Xu, X. B., Zhang, Y. Q., Shu, L. S., Jia, D. (2011). La-ICP-MS U–Pb and 40Ar/39Ar geochronology of the sheared metamorphic rocks in the Wuyishan: Constraints on the timing of Early Paleozoic and Early Mesozoic tectono-thermal events in SE China. Tectonophysics 501(1–4), 71-86. doi: 10.1016/j.tecto.2011.01.014.
    Xu, Y. G., Lan, J. B., Yang, Q. J., Huang, X. L., Qiu, H. N. (2008). Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet. Chem. Geol. 255(3–4), 439-453. doi: 10.1016/j.chemgeo.2008.07.016.
    Xu, Y. G., Yang, Q. J., Lan, J. B., Luo, Z. Y., Huang, X. L., Shi, Y. R., Xie, L. W. (2012). Temporal–spatial distribution and tectonic implications of the batholiths in the Gaoligong–Tengliang–Yingjiang area, western Yunnan: Constraints from zircon U–Pb ages and Hf isotopes. J. Asian Earth Sci. 53, 151-175. doi: 10.1016/j.jseaes.2011.06.018.
    Xu, Z., Wang, Q., Cai, Z., Dong, H., Li, H., Chen, X., Duan, X., Cao, H., Li, J., Burg, J.-P. (2015). Kinematics of the Tengchong Terrane in SE Tibet from the late Eocene to early Miocene: Insights from coeval mid-crustal detachments and strike-slip shear zones. Tectonophysics 665, 127-148. doi: 10.1016/j.tecto.2015.09.033.
    Yamaoka, K., Fukao, Y., and Kumazawa, M. (1986). Spherical shell tectonics: Effects of sphericity and inextensibility on the geometry of the descending lithosphere. Rev. Geophys. 24(1), 27-53. doi: 10.1029/RG024i001p00027.
    Ye, T., Huang, Q., Chen, X., Zhang, H., Chen, Y. J., Zhao, L., Zhang, Y. (2018). Magma chamber and crustal channel flow structures in the Tengchong volcano area from 3-D MT inversion at the intracontinental block boundary southeast of the Tibetan Plateau. J. Geophys. Res. Solid Earth 123(12), 11,112-111,126. doi: 10.1029/2018JB015936.
    Ye, T., Chen, X., Huang, Q., Zhao, L., Zhang, Y., Uyeshima, M. (2020). Bifurcated crustal channel flow and seismogenic structures of intraplate earthquakes in Western Yunnan, China as revealed by three-dimensional magnetotelluric imaging. J. Geophys. Res. Solid Earth 125(9), e2019JB018991. doi: 10.1029/2019JB018991.
    Yeh, M.-W. (2007). Deformation sequence of Baltimore gneiss domes, USA, assessed from porphyroblast Foliation Intersection Axes. Journal of Structural Geology 29(5), 881-897. doi: 10.1016/j.jsg.2006.12.003.
    Yeh, M. W., Bell, T. H. (2004). Significance of dextral reactivation of an E-W transfer fault in the formation of the Pennsylvania orocline, central Appalachians. Tectonics 23(5), TC5009. doi: 10.1029/2003TC001593.
    Yeh, M. W., Lee, T. Y., Lo, C. H., Chung, S. L., Lan, C. Y., Anh, T. T. (2008). Structural evolution of the Day Nui Con Voi metamorphic complex: implications on the development of the Red River Shear Zone, Northern Vietnam. J. Struct. Geol. 30, 1540–1553.
    Yeh, M. W., Wintsch, R. P., Liu, Y.-C., Lo, C. H., Chung, S.-L., Lin, Y.-L., Lee, T.-Y., Wang, Y. C., Stokes, M. R. (2014). Evidence for Cool Extrusion of the North Indochina Block along the Ailao Shan Red River Shear Zone, a Diancang Shan Perspective. J. Geol. 122, 567-590.
    Yin, A., Harrison, T.M. (2000). Geologic evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet Sci. 28, 211-280. doi: 10.1146/annurev.earth.28.1.211.
    Yin, F. G., Zhang, H., Huang, Y., Ye, P. S., Yang, X. J., Lu, Y., Lin, S. L. (2012). Advances in the basic geological survey along Dali-Ruili section of Fanya railway, western Yunnan Province. Geol. Bull. China 31, 218–226 (in Chinese with English abstract).
    Yin, J., Xu, J., Lin, C., Huan, L. (1988). The Tibetan Plateau: regional stratigraphic context and previous work. Philos. Trans. R. Soc. Lond. Ser. A 327, 5-52. doi: 10.1098/rsta.1988.0121.
    Zaw, K. (1990). Geological, petrological and geochemical characteristics of granitoids rocks in Myanmar: with special reference to the associated W–Sn mineralization and their tectonic setting. J. Asian Earth Sci. 4, 293–335. doi: 10.1016/0743-9547(90)90004-W.
    Zhai, Q.-G., Jahn, B.-M., Zhang, R.-Y., Wang, J., Su, L. (2011). Triassic Subduction of the Paleo-Tethys in northern Tibet, China: Evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block. J. Asian Earth Sci. 42(6), 1356-1370. doi: 10.1016/j.jseaes.2011.07.023.
    Zhang, B., Zhang, J. J., Zhong, D. L. (2010). Structure, kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone, western Yunnan, China. J. Struct. Geol. 32, 445-463.
    Zhang, B., Zhang, J. J., Zhong, D. L., Yang, L. K., Yue, Y. H., Yan, S. Y. (2012). Polystage deformation of the Gaoligong metamorphic zone: Structures, 40Ar/39Ar mica ages, and tectonic implications. J. Struct. Geol. 37, 1-18. doi: 10.1016/j.jsg.2012.02.007.
    Zhang, B., Chai, Z., Yin, C. Y., Huang, W. T., Wang, Y., Zhang, J. J., Wang, X. X., Cao, K. (2017). Intra-continental transpression and gneiss doming in an obliquely convergent regime in SE Asia. J. Struct. Geol. 97, 48-70. doi: 10.1016/j.jsg.2017.02.010.
    Zhang, C., Sun, Z., Manatschal, G., Pang, X., Li, S., Sauter, D., Péron-Pinvidic, G., Zhao, M. (2021). Ocean-continent transition architecture and breakup mechanism at the mid-northern South China Sea. Earth-Sci. Rev. 217, 103620. doi: 10.1016/j.earscirev.2021.103620.
    Zhang, C.-L., Zou, H.-B., Ye, X.-T., Chen, X.-Y. (2018). Timing of subduction initiation in the Proto-Tethys Ocean: Evidence from the Cambrian gabbros from the NE Pamir Plateau. Lithos 314-315, 40-51. doi: 10.1016/j.lithos.2018.05.021.
    Zhang, J., Ji, J., Zhong, D., Ding, L., He, S. (2004). Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process. Sci. China Ser. D-Earth Sci. 47(2), 138-150. doi: 10.1360/02yd0042.
    Zhang, K.-J., Xia, B.-D., Wang, G.-M., Li, Y.-T., Ye, H.-F. (2004). Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geol. Soc. Amer. Bull. 116, 1202-1222. doi: 10.1130/B25388.1.
    Zhang, K. J., Zhang, Y. X., Tang, X. C., Xia, B. (2012). Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth Sci. Rev. 114(3–4), 236-249. doi: 10.1016/j.earscirev.2012.06.001.
    Zhang, P., Mei, L., Hu, X., Li, R., Wu, L., Zhou, Z., Qiu, H. (2017). Structures, uplift, and magmatism of the Western Myanmar Arc: Constraints to mid-Cretaceous-Paleogene tectonic evolution of the western Myanmar continental margin. Gondwana Res. 52, 18-38. doi: 10.1016/j.gr.2017.09.002.
    Zhang, P.-Z., Shen, Z., Wang, M., Gan, W., Bürgmann, R., Molnar, P., Wang, Q., Niu, Z., Sun, J., Wu, J., Hanrong, S., and Xinzhao, Y. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32(9), 809-812. doi: 10.1130/g20554.1.
    Zhang, R., Wu, Y., Gao, Z., Fu, Y. V., Sun, L., Wu, Q., Ding, Z. (2017). Upper mantle discontinuity structure beneath eastern and southeastern Tibet: New constraints on the Tengchong intraplate volcano and signatures of detached lithosphere under the western Yangtze Craton. J. Geophys. Res. Solid Earth 122(2), 1367-1380. doi: 10.1002/2016JB013551.
    Zhang, X., Chung, S.-L., Lai, Y.-M., Ghani, A. A., Murtadha, S., Lee, H.-Y., Hsu, C.-C. (2019). A 6000-km-long Neo-Tethyan arc system with coherent magmatic flare-ups and lulls in South Asia. Geology 47, 573–576. doi: 10.1130/G46172.1.
    Zhang, Z., Dong, X., Santosh, M., Liu, F., Wang, W., Yiu, F., He, Z., Shen, K. (2012). Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Res. 21(1), 123-137. doi: 10.1016/j.gr.2011.02.002.
    Zhang, Z., Gao, Y. (2019). Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau. Earth and Planetary Physics 3, 69-84. doi: 10.26464/epp2019008.
    Zhao, G., Unsworth, M. J., Zhan, Y., Wang, L., Chen, X., Jones, A. G., Tang, J., Xiao, Q., Wang, J., Cai, J., Li, T., Wang, Y., Zhang, J. (2012). Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data. Geology 40(12), 1139-1142. doi: 10.1130/G33703.1
    Zhao, S.-W., Lai, S.-C., Qin, J.-F., Zhu, R.-Z. (2014). Zircon U-Pb ages, geochemistry, and Sr-Nd-Pb-Hf isotopic compositions of the Pinghe pluton, Southwest China: implications for the evolution of the early Palaeozoic Proto-Tethys in Southeast Asia. Int. Geol. Rev. 56(7), 885-904. doi: 10.1080/00206814.2014.905998
    Zhong, D., Wang, Y., Ding, L. (1991). The Tertiary Gaoligong intracontinental strike-slip fault and its associated extensional structure in western Yunnan, China. Institute of Geology and Geophysics Chinese Academy of Sciences.
    Zhong, D. (1998). Paleo-Tethyan orogenic belt in the western parts of the Sichuan and Yunnan Provinces. Beijing: Science Press, pp. 231.
    Zhong, D. L., Ji, J. Q., Hu, S. L. (1999). Subduction age of Neo-Tethys oceanic crust in southwest Yunnan, China: Laser micro-area 40Ar-39Ar dating. Chi. Sci. Bull. 44(23), 2196-2199. doi: 10.1007/BF03182708.
    Zhu, D.-C., Zhao, Z.-D., Niu, Y., Dilek, Y., Wang, Q., Ji, W.-H., Dong, G.-C., Sui, Q.-L., Liu, Y.-S., Yuan, H.-L., Mo, X.-X. (2012). Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chem. Geol. 328, 290-308. doi: 10.1016/j.chemgeo.2011.12.024.
    Zhu, D. C., Mo, X. X., Zhao, Z. D., Xu, J. F., Sun, C. G., Zhou, C. Y., Wang, L. Q., Chen, H. H., Dong, G. C., Zhou, S. (2008a). Zircon U-Pb geochronology of Zenong Group volcanic rocks in Coqen area of the Gangdese, Tibet, and tectonic significance. Yanshi Xuebao 24, 401–412 (in Chinese with English abstract).
    Zhu, D. C., Pan, G. T., Wang, L. Q., Mo, X. X., Zhao, Z. D., Zhou, C. Y., Liao, Z. L., Dong, G. C., Yuan, S. H. (2008b). Tempospatial variations of Mesozoic magmatic rocks in the Gangdese belt, Tibet, with a discussion of geodynamic setting–related issues. Geological Bulletin of China 27, 1535–1550 (in Chinese with English abstract).
    Zhu, D. C., Mo, X. X., Niu, Y., Zhao, Z. D., Wang, L. Q., Liu, Y. S., Wu, F. Y. (2009). Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet. Chem. Geol. 268(3–4), 298-312. doi: 10.1016/j.chemgeo.2009.09.008.
    Zhu, D. C., Zhao, Z. D., Niu, Y., Mo, X. X., Chung, S. L., Hou, Z. Q., Wang, L. Q., Wu, F. Y. (2011). The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 301(1–2), 241-255. doi: 10.1016/j.epsl.2010.11.005.
    Zhu, D. C., Zhao, Z. D., Niu, Y., Dilek, Y., Hou, Z. Q., Mo, X. X. (2013). The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 23(4), 1429-1454. doi: 10.1016/j.gr.2012.02.002.
    Zhu, R.-Z., Lai, S., Qin, J., Zhao, S., Wang, J.-B. (2017). Late Early-Cretaceous quartz diorite-granodiorite-monzogranite association from the Gaoligong belt, southeastern Tibet Plateau: Chemical variations and geodynamic implications. Lithos 288, 311-325. doi: 10.1016/j.lithos.2017.07.021.
    Zhu, T. X., Zhang, Q. Y., Dong, H., Wang, Y. J., Yu, Y. S., Feng, X. T. (2006). Discovery of the Late Devonian and Late Permian radiolarian cherts in tectonic mélanges in the Cêdo Caka area, Shuanghu, northern Tibet, China. Geol. Bull. China 25, 1413–1418.
    Zou, G. F., Lin, S. L., Li, Z. H., Cong, F., Xie, T, Tang, W. Q. (2011). SHRIMP zircon U-Pb dating of bangmu admellite in Luxi, western Yunnan, and its tectonic implications. Geology in China 38, 77-85.

    下載圖示
    QR CODE