簡易檢索 / 詳目顯示

研究生: 蘇秉權
SU, PING-CHUAN
論文名稱: 不同強度慣性式阻力訓練對競技體操選手空翻和落地運動表現之影響
Effects of Different Intensities of Flywheel Resistance Training on Somersault and Landing Performance of Artistic Gymnasts
指導教授: 翁士航
Weng, Shih-Hang
口試委員: 翁士航
Weng, Shih-Hang
俞智贏
Yu, Chih-Ying
曾國維
Tseng, Kuo-Wei
口試日期: 2023/02/13
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 61
中文關鍵詞: 離心收縮飛輪訓練體操技術下肢
英文關鍵詞: Eccentrics, flywheel training, gymnastics technique, lower extremity
DOI URL: http://doi.org/10.6345/NTNU202300279
論文種類: 學術論文
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討六週不同強度慣性式阻力訓練對競技體操選手空翻和落地運動表現之影響。方法:招募12名體操運動員為本研究對象,會先進行前測以平衡次序法(balanced order)依據體重平均值將研究對象配對分為0.025慣量組及0.05慣量組,兩組分別以0.025 kg·m2 及0.05 kg·m2 之轉動慣量、接受為期六週、每週訓練2次、每次4組、每組8下的慣性式阻力訓練、組間休息2分鐘。6週訓練期開始前及後結束後進行前、後測驗、運動表現檢測項目包括後空翻、前空翻、1公尺及2公尺後空落地,並使用混合設計二因子變異式分析來進行組間後測之比較以及組內前後測之比較,顯著水準設為α=.05。結果:後空翻及前空翻表現,於起跳力量、起跳期衝量、起跳期時間、空翻高度以及發力率五種變項中,組間和組內比較皆無顯著差異。1公尺後空落地表現,於落地力量、第一階段衝量、第二階段衝量以及第三階段衝量四種變項中,組間和組內比較皆無顯著差異。2公尺後空落地表現,在0.025慣量組內發現落地力量變項前、後測達顯著差異 (10.49bw→14.74bw),其餘則並無任何顯著差異。結論:後測之組間比較發現兩種 (0.025、0.05 kg·m2) 轉動慣量的慣性式阻力訓練對體操選手後空翻、前空翻、1公尺後空落地和2公尺後空落地並無任何差異,組內之前、後測比較發現,在0.025kg·m2轉動慣量的慣性式阻力訓練對體操選手2公尺高台後空落地表現中的落地力量變項有產生差異之影響。

    Purpose: We explore the effects of six-week flywheel resistance training with different intensities on somersault and landing performance of artistic gymnasts. Methods: 12 gymnasts were recruited as the subjects of this research, and the pre-test will be conducted first. The subjects will be divided into two groups according to the average weight of the balance order method (0.025 kg·m2 group and 0.05 kg·m2 group). The two groups received flywheel resistance training with a moment of inertia of 0.025 kg·m2 and 0.05 kg·m2 for six weeks, 2 times a week, 4 groups each time, 8 reps per group, and 2minute rest between groups. Before and after the 6week training period, before and after test were conducted. Athletic performance testing items included back somersaults, front somersaults, 1meter and two meters back somersaults landing. A two-way mixed design ANOVA analysis of variance was used to compare the post-test between groups and the comparison between period, before and after test within groups, and the significance level was set at α=.05. Results: In the performance of back somersaults and front somersaults, there were no significant differences between groups or within groups in the five variables of propulsion, propulsive impulse, flight time, somersault height, and rate of force development. In terms of back somersault landing performance after 1 meter, there were no significant differences between groups or within groups in the four variables of landing force, first stage impulse, second stage impulse, and third stage impulse. In terms of back somersault landing performance after 2 meter, in the 0.025 kg·m2 group, a significant difference was found in the landing force variable before and after the test (10.49bw→14.74bw), and there were no significant differences in other variables. Conclusion: The post test group comparison found that the flywheel resistance training with two kinds of moment of inertia did not have any difference in gymnasts' back somersault, front somersault, 1meter back somersault landing and 2meter back somersault landing. The comparison before and after test within the group found that flywheel resistance training with a moment of inertia of 0.025kg·m2 had a different impact on the landing force variable in the back somersault landing performance of gymnasts on 2meter high platform.

    第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 6 第三節 研究假設 6 第四節 研究範圍與限制 7 第五節 名詞解釋 8   第貳章 文獻探討 9 第一節 競技體操肌力體能訓練 9 第二節 空翻體能訓練之探討 12 第三節 落地體能訓練之探討 14 第四節 慣性式阻力訓練理論與研究探討 16 第五節 文獻總結 21 第參章 研究方法 23 第一節 研究對象 23 第二節 研究日期與地點 24 第三節 研究與設備 24 第四節 研究流程 26 第五節 資料收集與處理 33 第六節 統計分析 35 第肆章 結果與討論 36 第一節 後空翻分析結果 36 第二節 前空翻分析結果 39 第三節 1公尺後空落地分析結果 42 第四節 2公尺後空落地分析結果 44 第五節 綜合討論 46 第伍章 結論與建議 50 第一節 結論 50 第二節 建議 51 參考文獻 52

    陳光輝、陳漢棟、高明峰(2005)。男子競技體操短木馬併腿全旋動作之訓練方法探討。國立體育學院論叢,16(3),319-331。
    俞智贏(2006)。我國與世界優秀跳馬選手「前手翻直體前空翻轉體900°」之運動學比較研究。運動教練科學,7,79-86。
    翁士航(2009)。大專跳馬選手實施振動式訓練後25公尺衝刺與第二飛程騰空時間之比較。2009國際跆拳道運動訓練科學研討會優秀論文集。臺北市:師大書苑。
    翁士航 (2011)。成年女子體操選手透過震動訓練後下肢能力表現之分析。運動教練科學,(24),109-116。
    翁士航、俞智贏 (2012)。透過增強式訓練改善體操基礎動作之探討。中華體育季刊,26(2),191-196。
    陳智郁、陳光輝(2013)。吊環靜止性力量連 接動作的保護要領探討。台灣體育論壇,6, 49-62。doi:10.6592/TSF.2013.03.05
    翁士航、俞智贏、謝富秀 (2015)。複合式訓練對改善競技體操表現之應用。大專體育,(135),45-52。
    邱茂華、林高正、李敏華(2015)。影響後空翻動作著地穩定性因素及肌力訓練之探討。運動教練科學,38,71-81。
    黃哲奎、林高正、陳光輝(2017)。男子競技體操地板項目後手翻動作之訓練方法。大專體育,143,32-42。
    Arampatzis, A., Morey-Klapsing, G., & Brüggemann, G. P. (2003). The effect of falling height on muscle activity and foot motion during landings. Journal of Electromyography and Kinesiology, 13(6), 533-544.
    Allana Slater, A., Campbell, A., Smith, A., & Straker, L. (2015). Greater lower limb flexion in gymnastic landings is associated with reduced landing force: a repeated measures study. Sports biomechanics, 14(1), 45–56.
    Brüggemann, G.P., Assheuer, J., & Eckhardt, R. (2000). Belastungen und Belastungsfolgen der Wirbelsäule im Sport unter besonderer Berücksichtigung des Kunstturnens. In S. Alt. W., P., Schuhmann, H. (Ed.), Neue Wege zur Unfallverhütung im Sport (pp. 183-204). Köln: Sport und Buch Strauß.
    Bencke, J., Damsgaard, R., Saekmose, A., Jørgensen, P., Jørgensen, K., & Klausen, K. (2002). Anaerobic power and muscle strength characteristics of 11 years old elite and non-elite boys and girls from gymnastics, team handball, tennis and swimming. Scandinavian journal of medicine & science in sports, 12(3), 171–178.
    Bartlett R. Introduction to sports biomechanics: Analysing Human Movement Patterns. London: Routledge; 2009. second edn.
    Behm, D. G., Drinkwater, E. J., Willardson, J. M., & Cowley, P. M. (2010). The use of instability to train the core musculature. Applied physiology, nutrition, and metabolism, 35(1), 91-108.
    Bompa, T. O., & Haff, G. (2011). Periodization: Training theory and method. Ankara: Spor Yayınevi ve Kitabevi.
    Bradshaw, E. J., & Hume, P. A. (2012). Biomechanical approaches to identify and quantify injury mechanisms and risk factors in women’s artistic gymnastics. Sports Biomechanics, 11(3), 324–341.
    Christoforidou, Α., Patikas, D. A., Bassa, E., Paraschos, I., Lazaridis, S., Christoforidis, C., & Kotzamanidis, C. (2017). Landing from different heights: Biomechanical and neuromuscular strategies in trained gymnasts and untrained prepubescent girls. Journal of electromyography and kinesiology: official journal of the International Society of Electrophysiological Kinesiology, 32, 1–8.
    Cormie, P., McCaulley, G. O., Triplett, N. T., & McBride, J. M. (2007). Optimal loading for maximal power output during lower-body resistance exercises. Medicine and science in sports and exercise, 39(2), 340-349.
    Cormie, P., McCaulley, G. O., & McBRIDE, J. M. (2007). Power versus strength-power jump squat training: influence on the load-power relationship. Medicine and science in sports and exercise, 39(6), 996.
    Claflin, D. R., Larkin, L. M., Cederna, P. S., Horowitz, J. F., Alexander, N. B., Cole, N. M., Galecki, A. T., Chen, S., Nyquist, L. V., Carlson, B. M., Faulkner, J. A., & Ashton-Miller, J. A. (2011). Effects of high- and low-velocity resistance training on the contractile properties of skeletal muscle fibers from young and older humans. Journal of applied physiology (Bethesda, Md. : 1985), 111(4), 1021–1030.
    Cuk, I., & Marinšek, M. (2013). Landing quality in artistic gymnastics is related to landing symmetry. Biology of sport, 30(1), 29–33.
    Delecluse, C., Roelants, M., & Verschueren, S. (2003). Strength increase after whole-body vibration compared with resistance training. Medicine and science in sports and exercise, 35(6), 1033–1041.
    Douglas, J., Pearson, S., Ross, A., & McGuigan, M. (2017). Chronic Adaptations to Eccentric Training: A Systematic Review. Sports medicine (Auckland, N.Z.), 47(5), 917–941. https://doi.org/10.1007/s40279-016-0628-4.
    Douglas, J., Pearson, S., Ross, A., and McGuigan, M. (2017). Eccentric exercise: physiological characteristics and acute Responses. Sport. Med. 47, 663–675. doi: 10.1007/s40279-016-0624-8
    de Hoyo, M., Sañudo, B., Carrasco, L., Domínguez-Cobo, S., Mateo-Cortes, J., Cadenas- Sánchez, M. M., & Nimphius, S. (2015). Effects of traditional versus horizontal inertial flywheel power training on common sport-related tasks. Journal of human kinetics, 47(1), 155-167.
    Esteban-García, P., Jiménez-Díaz, J. F., Abián-Vicén, J., Bravo-Sánchez, A., & Rubio-Arias, J. Á. (2021). Effect of 12 Weeks Core Training on Core Muscle Performance in Rhythmic Gymnastics. Biology, 10(11), 1210.
    Gittoes, M. J. R., & Irwin, G. (2012). Biomechanical approaches to understanding the potentially injurious demands of gymnastic-style impact landings. SMARTT, 4(4), 1–9.
    Gault, M. L., & Willems, M. E. (2013). Aging, functional capacity and eccentric exercise training. Aging and disease, 4(6), 351–363.
    Groeller, H., Burley, S., Orchard, P., Sampson, J. A., Billing, D. C., & Linnane, D. (2015). How effective is initial military-specific training in the development of physical performance of soldiers?. The Journal of Strength & Conditioning Research, 29, S158-S162.
    International Gymnastics Federation. (2021). 2022~2024 Code of points for men’s artistic gymnastics competitions. Lausanne, Switzerland: Author.
    Krosshaug, T., Nakamae, A., Boden, B. P., Engebretsen, L., Smith, G., Slauterbeck, J. R., Bahr, R. (2007). Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. American Journal of Sports Medicine, 35, 359–367.
    Król, H., Klyszcz-Morciniec, M., Sobota, G., & Nowak, K. (2016). The Complex Analysis of Movement in the Evaluation of the Backward Somersault Performance. Physical Activity Review, (4), 28–39.
    Lindstedt, S. L., LaStayo, P. C., & Reich, T. E. (2001). When active muscles lengthen: properties and consequences of eccentric contractions. News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society, 16, 256–261.
    Malisoux, L., Francaux, M., Nielens, H., & Theisen, D. (2006). Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. Journal of applied physiology (Bethesda, Md. : 1985), 100(3), 771–779. https://doi.org/10.1152/japplphysiol.01027.2005
    Meyer, G., & Ayalon, M. (2006). Biomechanical aspects of dynamic stability. European Review of Aging and Physical Activity, 3(1), 29–33.
    Mills, C., Yeadon, M. R., & Pain, M. T. (2010). Modifying landing mat material properties may decrease peak contact forces but increase forefoot forces in gymnastics landings. Sports biomechanics, 9(3), 153–164.
    Minganti, C., Capranica, L., Meeusen, R., Amici, S., & Piacentini, M. F. (2010). The validity of sessionrating of perceived exertion method for quantifying training load in teamgym. The Journal of Strength & Conditioning Research, 24(11), 3063-3068.
    Marinsek, Miha. (2010). Basic landing characteristics and their application in artistic gymnastics. Science of Gymnastics Journal. 2
    Mills, C., Yeadon, M. R., & Pain, M. T. (2010). Modifying landing mat material properties may decrease peak contact forces but increase forefoot forces in gymnastics landings. Sports biomechanics, 9(3), 153–164.
    Mickiewicz, A., & Jaskólski, A. (2012). Muscle activity during inertial and free weights exercise. Occupational Therapy: the International Perspective, 6, 217-224.
    Maroto-Izquierdo, S., García-López, D., & de Paz, J. A. (2017). Functional and muscle-size effects of flywheel resistance training with eccentric-overload in professional handball players. Journal of human kinetics, 60(1), 133-143.
    Maroto-Izquierdo, S., García-López, D., Fernandez-Gonzalo, R., Moreira, O. C., González-Gallego, J., and de Paz, J. A. (2017). Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: a systematic review and meta-analysis. J. Sci. Med. Sport 20, 943–951. doi: 10.1016/j.jsams.2017.03.004
    Martinez-Aranda, L. M., & Fernandez-Gonzalo, R. (2017). Effects of Inertial Setting on Power, Force, Work, and Eccentric Overload During Flywheel Resistance Exercise in Women and Men. Journal of strength and conditioning research, 31(6), 1653–1661.
    Norrbrand, L. (2008). Acute and early chronic responses to resistance exercise using flywheel or weights. Institutionen för fysiologi och farmakologi/Department of Physiology and Pharmacology.
    Norrbrand, L., Pozzo, M., & Tesch, P. A. (2010). Flywheel resistance training calls for greater eccentric muscle activation than weight training. European journal of applied physiology, 110(5), 997-1005.
    Nyman, E. (2020). Biomechanics of Gymnastics. In Gymnastics Medicine (pp. 27-54). Springer, Cham.
    O Brien, J., Browne, D., & Earls, D. (2020). The Effects of Different Types of Eccentric Overload Training on Strength, Speed, Power and Change of Direction in Female Basketball Players. Journal of Functional Morphology and Kinesiology, 5(3), 50.
    Petré, H., Wernstål, F., and Mattsson, C. M. (2018). Effects of flywheel training on strength-related variables: a meta-analysis. Sport. Med. Open 4:55. doi: 10.1186/s40798-018-0169-5。
    Peng, H. T., Song, C. Y., Chen, Z. R., Wang, I. L., Gu, C. Y., & Wang, L. I. (2019). Differences Between Bimodal and Unimodal Force-time Curves During Countermovement Jump. International journal of sports medicine, 40(10), 663–669.
    Romero-Rodriguez, D., Gual, G., & Tesch, P. A. (2011). Efficacy of an inertial resistance training paradigm in the treatment of patellar tendinopathy in athletes: a case-series study. Physical Therapy in Sport, 12(1), 43-48.
    R. Farana, G. Williams, T. Fujihara, H. E. Wyatt, F. Naundorf, G. Irwin. (2021) Current issues and future directions in gymnastics research: biomechanics, motor control and coaching interface. Sports Biomechanics 0:0, pages 1-25.
    Rebecca Straker, Timothy A. Exell, Roman Farana, Joseph Hamill & Gareth Irwin (2021) Biomechanical responses to landing strategies of female artistic gymnasts, European Journal of Sport Science, DOI: 10.1080/17461391.2021.1976842
    Sands, W., Mcneal, J., Jemni, M., & Delong, T. H. (2000). Should female gymnasts lift weights? SportScience, 4. https://sportsci.org/jour/0003/was.pdf
    Stone, M., Plisk, S., & Collins, D. (2002). Strength and conditioning: Training principles: evaluation of modes and methods of resistance training‐a coaching perspective. Sports Biomechanics, 1(1), 79-103.
    Seegmiller, J. G., & McCaw, S. T. (2003). Ground Reaction Forces Among Gymnasts and Recreational Athletes in Drop Landings. Journal of athletic training, 38(4), 311–314.
    Szymanski, D. J., Szymanski, J. M., Molloy, J. M., & Pascoe, D. D. (2004). Effect of 12 weeks of wrist and forearm training on high school baseball players. The Journal of Strength & Conditioning Research, 18(3), 432-440.
    Serra‐Rexach, J. A., Bustamante‐Ara, N., Hierro Villarán, M., González Gil, P., Sanz Ibanez, M. J., Blanco Sanz, N., ... & Rodríguez Romo, G. (2011). Short‐term, light‐to moderate‐intensity exercise training improves leg muscle strength in the oldest old: a randomized controlled trial. Journal of the American Geriatrics Society, 59(4), 594-602.
    Slater, A., Campbell, A., Smith, A., & Straker, L. (2015). Greater lower limb flexion in gymnastic landings is associated with reduced landing force: a repeated measures study. Sportsbiomechanics, 14(1), 45–56.
    Sabido, R., Hernández-Davó, J. L., Botella, J., Navarro, A., & Tous-Fajardo, J. (2017). Effects of adding a weekly eccentric-overload training session on strength and athletic performance in team-handball players. European journal of sport science, 17(5), 530-538.
    Sabido, R., Hernández-Davó, J. L., & Pereyra-Gerber, G. T. (2018). Influence of different inertial loads on basic training variables during the flywheel squat exercise. International journal of sports physiology and performance, 13(4), 482-489.
    Sabido, R., Pombero, L., & Hernández-Davó, J. L. (2019). Differential effects of low vs. high inertial loads during an eccentric-overload training intervention in rugby union players: a preliminary study. The Journal of sports medicine and physical fitness, 59(11), 1805–1811.
    Sergio Maroto-Izquierdo, Jeffrey M. McBride, Nacho Gonzalez-Diez, David García-López, Javier González-Gallego & José Antonio de Paz (2022) Comparison of Flywheel and Pneumatic Training on Hypertrophy, Strength, and Power in Professional Handball Players, Research Quarterly for Exercise and Sport, 93:1, 1-15, DOI: 10.1080/02701367.2020.1762836
    Toji, H., & Kaneko, M. (2004). Effect of multiple-load training on the force-velocity relationship. Journal of strength and conditioning research, 18(4), 792-795.
    Vicens-Bordas, J., Esteve, E., Fort-Vanmeerhaeghe, A., Bandholm, T., & Thorborg, K. (2018). Is inertial flywheel resistance training superior to gravity-dependent resistance training in improving muscle strength? A systematic review with meta-analyses. Journal of science and medicine in sport, 21(1), 75-83.
    Weng, S. H., & Kao, Y. H. (2014, March). Athletic performance of general players in men’s gymnastics athletics sports team after applying vibration training [Abstract]. Poster session presented at the International Symposium on Education, Psychology, Society and Tourism, Tokyo.
    Zamparo, P., Bolomini, F., Nardello, F., and Beato, M. (2015). Energetics (and kinematics) of short shuttle runs. Eur. J. Appl. Physiol. 115, 1985–1994. doi: 10.1007/s00421-015-3180-2.

    無法下載圖示 電子全文延後公開
    2028/02/15
    QR CODE