簡易檢索 / 詳目顯示

研究生: 賴玟均
Lai, Wen-Chun
論文名稱: 一步驟常壓微電漿法合成氧化石墨烯包覆銀奈米粒子負載於中孔洞沸石材料以應用於小分子的表面增強拉曼檢測
One-step Atmospheric Pressure Microplasma Synthesis of Graphene Oxide-coated Silver Nanoparticles Loaded on Mesoporous Zeolite Materials for Surface-Enhanced Raman Detection of Small Molecules
指導教授: 劉沂欣
Liu, Yi-Hsin
口試委員: 陳珮珊
Chen, Pai-Shan
江偉宏
Chiang, Wei-Hung
劉沂欣
Liu, Yi-Hsin
口試日期: 2023/01/31
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 86
中文關鍵詞: 表面增強拉曼濫用藥物常壓微電漿中孔洞沸石粒子銀奈米粒子氧化石墨烯
英文關鍵詞: surface enhanced Raman spectroscopy, abuse drug, microplasma, mesoporous zeolite nanoparticles, silver nanoparticles, graphene-oxide
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300326
論文種類: 學術論文
相關次數: 點閱:39下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電漿法方式改善原先以化學法合成銀奈米粒子於孔洞上負載量低的問題,利用電漿形成高濃度活性自由基的存在下,幫助在同樣具有自由基的MZNs上還原銀奈米粒子,並促進了有機配子石墨烯化的發生,合成奈米銀-氧化石墨烯-沸石複合材料(Ag-GO@MZNs)。與過去使用化學法相比,銀的附載量有大於50倍的顯著提升(0.550 wt%29.20 wt%),進而使藥物感測有低於100倍的檢測濃度(25000 ppm250 ppm)。電漿法具有簡單合成的的優勢,省去過去實驗室先以化學氣相沉積法在高溫(825°С)氬氣環境下裂解乙烯生成氧化石墨烯後,再以還原劑合成銀奈米粒子,電漿法以一步驟同時生長氧化石墨烯包覆銀奈米粒子。目前已成功應用於咖啡包中主要的毒品成分檢測,可測得10 ppm 下的mephedrone,未來將積極投入結合自動化技術分離尿液中濫用藥物同時作SERS偵測,作為第一現場藥物檢測應用。

    In this study, atmospheric pressure microplasma synthesis was used to improve the problem of low loading of silver nanoparticles synthesized by chemical methods on the pores, and to use plasma to form a high concentration of active free radicals to help reduce silver on MZNs that also have free radicals. nanoparticles, and promoted the graphitization of organic gametes, and synthesized silver nanoparticles-graphene oxide-zeolite composites (Ag-GO@MZNs). Compared with the chemical method used in the past, the loading amount of silver has been significantly increased by more than 50 times (0.550 wt% to 29.20 wt%), and the detection concentration of drug sensing is lower than 100 times (25000 ppm to 250 ppm). The microplasma method has the advantage of simple synthesis, eliminating the need to first use chemical vapor deposition in the laboratory to crack ethylene at high temperature (825°С) in an argon environment to generate graphene oxide, and then use a reducing agent to synthesize silver nanoparticles , the plasma method simultaneously grows graphene oxide-coated silver nanoparticles in one step. At present, it has been successfully applied to the detection of the main drug components in coffee pods, and mephedrone can be measured at 10 ppm. In the future, it will actively invest in the combination of automated technology to separate drugs of abuse in urine and perform SERS detection as the first on-site drug detection application.

    第1章 緒論 1 1.1 藥物檢測技術 1 1.1.1 濫用藥物概述 1 1.1.2 藥物檢測方式 2 1.1.3 SERS檢測技術發展困難 5 1.2 SERS感測材料 8 1.2.1 SERS 感測濫用藥物 8 1.2.2 SERS孔洞材料 9 1.2.3 SERS電漿材料 11 1.3 研究動機與目的 13 第2章 實驗方法 14 2.1 化學藥品 14 2.2 中孔洞材料合成 16 2.2.1 沸石晶種合成(BZS) 16 2.2.2 中孔沸石奈米粒子 (MZNs) 16 2.3 銀複合孔洞材料之合成 17 2.3.1 孔洞表面官能基化 18 2.3.2 孔洞吸附銀前驅物 18 2.3.3 銀奈米粒子之還原 19 2.4 SERS晶片製作與光譜量測 20 2.4.1 SERS晶片製作 20 2.4.2 拉曼光譜校正及QC 20 2.5 材料合成及分析儀器 21 2.5.1 常壓微電漿電化學反應器(Atmospheric-pressure microplasma electrochemical reactor) 21 2.5.2 反射式紫外-可見光光譜儀 (diffused reflectance ultraviolet–visible spectroscopy, DRS) 22 2.5.3 穿透式電子顯微鏡 (transmission electron microscopy, TEM) 22 2.5.4 場發射掃描穿透式球差修正電子顯微鏡 (spherical-aberration corrected field emission TEM) 23 2.5.5 NCHS元素分析儀 23 2.5.6 感應耦合電漿質譜分析儀 (Inductively coupled plasma mass spectrometry, ICP-MS) 24 2.5.7 X光粉末繞射儀 (powder X-ray diffraction, PXRD) 25 2.5.8 拉曼光譜儀 (Raman spectrometer) 25 2.5.9 顯微共軛焦拉曼光譜系統 (Confocal Microscope Raman Spectroscopy System) 26 2.5.10 電子順磁共振光譜儀 (electron paramagnetic resonance spectrometer, EPR) 27 第3章 結果與討論 28 3.1電漿輔助生長銀奈米粒子 28 3.1.1 電漿條件控制 28 3.1.2 電漿電流控制 31 3.1.3 有機配子比較 33 3.2 中孔洞限制生長銀奈米粒子 35 3.2.1 表面吸附對銀附載量的控制 36 3.2.2 合成時間對銀附載量的控制 44 3.2.3 電漿電流對銀奈米粒子探討 48 3.2.4 材料石墨化探討 54 3.3 SERS技術於化學結構辨識 62 3.3.1 SERS晶片製作優化 62 3.3.2 商用SERS晶片使用優化 66 3.3.2.1 激發波長選擇 66 3.3.2.2 比較不同光譜儀分析差異 70 3.3.3 藥物測試 72 3.3.3.1 常見藥物 72 3.3.3.2 卡西酮類 74 3.3.3.3 NPS 75 3.3.3.4 生物蛋白 76 第4章 結論與未來展望 78 參考文獻 80

    (1) Fernández-Serrano, M. J.; Pérez-García, M.; Verdejo-García, A. What are the specific vs. generalized effects of drugs of abuse on neuropsychological performance? Neuroscience & Biobehavioral Reviews 2011, 35 (3), 377-406. DOI: https://doi.org/10.1016/j.neubiorev.2010.04.008.
    (2) Welter-Luedeke, J.; Maurer, H. H. New Psychoactive Substances: Chemistry, Pharmacology, Metabolism, and Detectability of Amphetamine Derivatives With Modified Ring Systems. Therapeutic Drug Monitoring 2016, 38 (1).
    (3) 衛生福利部食品藥物管理目. 管制藥品分級及品項. 2017. https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0030010.
    (4) 法務部檢查目. 毒品危害防制條例. 2022. https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=C0000008.
    (5) 陳素琴, 張. 認識新興濫用藥物---卡西酮類合成毒品. 中山醫學大學 醫學研究所, 中山醫學大學附設醫院 檢驗科 藥物檢測中心, 2017. https://www.labmed.org.tw/encycl_detail.asp?mno=87.
    (6) UNODC Early Warning Advisory on New Psychoactive Substances, Synthetic cathinones. https://www.unodc.org/LSS/SubstanceGroup/Details/67b1ba69-1253-4ae9-bd93-fed1ae8e6802.
    (7) Arntson, A.; Ofsa, B.; Lancaster, D.; Simon, J. R.; McMullin, M.; Logan, B. Validation of a Novel Immunoassay for the Detection of Synthetic Cannabinoids and Metabolites in Urine Specimens. Journal of Analytical Toxicology 2013, 37 (5), 284-290. DOI: 10.1093/jat/bkt024.
    (8) Castaing-Cordier, T.; Ladroue, V.; Besacier, F.; Bulete, A.; Jacquemin, D.; Giraudeau, P.; Farjon, J. High-field and benchtop NMR spectroscopy for the characterization of new psychoactive substances. Forensic Science International 2021, 321, 110718. DOI: https://doi.org/10.1016/j.forsciint.2021.110718.
    (9) Stewart, S. P.; Bell, S. E. J.; Fletcher, N. C.; Bouazzaoui, S.; Ho, Y. C.; Speers, S. J.; Peters, K. L. Raman spectroscopy for forensic examination of β-ketophenethylamine “legal highs”: Reference and seized samples of cathinone derivatives. Analytica Chimica Acta 2012, 711, 1-6. DOI: https://doi.org/10.1016/j.aca.2011.10.018.
    (10) 台視新聞網. 遭爆驗毒出包害冤獄 高醫澄清:絕非誤判. 2022. https://news.ttv.com.tw/news/11012140003500W/amp.
    (11) 自由時報. 三級毒品高醫誤判二級 監委申請自動調查. 2021. https://news.ltn.com.tw/news/politics/breakingnews/3778952.
    (12) Spinelli, E.; Barnes, A. J.; Young, S.; Castaneto, M. S.; Martin, T. M.; Klette, K. L.; Huestis, M. A. Performance characteristics of an ELISA screening assay for urinary synthetic cannabinoids. Drug testing and analysis 2015, 7 (6), 467-474.
    (13) Betz, J. F.; Yu, W. W.; Cheng, Y.; White, I. M.; Rubloff, G. W. Simple SERS substrates: powerful, portable, and full of potential. Physical Chemistry Chemical Physics 2014, 16 (6), 2224-2239, 10.1039/C3CP53560F. DOI: 10.1039/C3CP53560F.
    (14) Muhamadali, H.; Watt, A.; Xu, Y.; Chisanga, M.; Subaihi, A.; Jones, C.; Ellis, D. I.; Sutcliffe, O. B.; Goodacre, R. Rapid Detection and Quantification of Novel Psychoactive Substances (NPS) Using Raman Spectroscopy and Surface-Enhanced Raman Scattering. Frontiers in Chemistry 2019, 7, Original Research. DOI: 10.3389/fchem.2019.00412.
    (15) Chen, P.-C.; Zhang, W.-Z.; Chen, W.-R.; Jair, Y.-C.; Wu, Y.-H.; Liu, Y.-H.; Chen, P.-Z.; Chen, L.-Y.; Chen, P.-S. Engineering an integrated system with a high pressure polymeric microfluidic chip coupled to liquid chromatography-mass spectrometry (LC-MS) for the analysis of abused drugs. Sensors and Actuators B: Chemical 2022, 350, 130888.
    (16) Tuschel, D. Photoluminescence spectroscopy using a Raman spectrometer. Spectroscopy 2016, 31 (9), 14–21-14–21.
    (17) Campion, A.; Kambhampati, P. Surface-enhanced Raman scattering. Chemical society reviews 1998, 27 (4), 241-250.
    (18) Zong, C.; Xu, M.; Xu, L.-J.; Wei, T.; Ma, X.; Zheng, X.-S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical reviews 2018, 118 (10), 4946-4980.
    (19) Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews 2017, 46 (13), 4042-4076.
    (20) Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annual review of physical chemistry 2007, 58 (1), 267-297.
    (21) Hattori, L.; Guerrero, D.; Figueiredo, J.; Brunet, J.; Damásio, J. On the precision and accuracy of impact analysis techniques. In Seventh IEEE/ACIS International Conference on Computer and Information Science (icis 2008), 2008; IEEE: pp 513-518.
    (22) Ng, B.; Quinete, N.; Gardinali, P. R. Assessing accuracy, precision and selectivity using quality controls for non-targeted analysis. Science of The Total Environment 2020, 713, 136568.
    (23) Streiner, D. L.; Norman, G. R. “Precision” and “accuracy”: two terms that are neither. Journal of clinical epidemiology 2006, 59 (4), 327-330.
    (24) Limwichean, S.; Nakajima, H.; Lertvanithphol, T.; Seawsakul, K.; Chananonnawathorn, C.; Botta, R.; Eiamchai, P.; Patthanasettakul, V.; Chindaudom, P.; Klamchuen, A.; et al. Self-depositing passivation layer investigations on stability improvement of the Ag NRs SERS substrate. Vacuum 2022, 196, 110734. DOI: https://doi.org/10.1016/j.vacuum.2021.110734.
    (25) Liu, F.; Cao, Z.; Tang, C.; Chen, L.; Wang, Z. Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy. Acs Nano 2010, 4 (5), 2643-2648.
    (26) Yu, B.; Ge, M.; Li, P.; Xie, Q.; Yang, L. Development of surface-enhanced Raman spectroscopy application for determination of illicit drugs: Towards a practical sensor. Talanta 2019, 191, 1-10.
    (27) Bao, L.; Han, S.; Sha, X.; Zhao, H.; Liu, Y.; Lin, D.; Hasi, W. Detection of Alternative Drugs for Illegal Injection Based on Surface-Enhanced Raman Spectroscopy. Journal of Spectroscopy 2019, 2019, 7458371. DOI: 10.1155/2019/7458371.
    (28) Assi, S.; Osselton, D.; Wallis, B. The evaluation of dual laser handheld Raman spectroscopy for identifying novel psychoactive substances. American Pharmaceutical Review 2016, 19 (6).
    (29) Li, P.; He, H.; Lin, D.; Yang, L. Highly sensitive detection of an antidiabetic drug as illegal additives in health products using solvent microextraction combined with surface-enhanced Raman spectroscopy. Analyst 2019, 144 (24), 7406-7411.
    (30) Du, Y.; Shi, L.; He, T.; Sun, X.; Mo, Y. SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template. Applied Surface Science 2008, 255 (5), 1901-1905.
    (31) Zeiri, L.; Rechav, K.; Porat, Z. e.; Zeiri, Y. Silver nanoparticles deposited on porous silicon as a surface-enhanced Raman scattering (SERS) active substrate. Applied Spectroscopy 2012, 66 (3), 294-299.
    (32) Roguska, A.; Kudelski, A.; Pisarek, M.; Opara, M.; Janik-Czachor, M. Raman investigations of SERS activity of Ag nanoclusters on a TiO2-nanotubes/Ti substrate. Vibrational Spectroscopy 2011, 55 (1), 38-43.
    (33) Chang, H.-J.; Chen, T.-Y.; Zhao, Z.-P.; Dai, Z.-J.; Chen, Y.-L.; Mou, C.-Y.; Liu, Y.-H. Ordered Mesoporous Zeolite Thin Films with Perpendicular Reticular Nanochannels of Wafer Size Area. Chemistry of Materials 2018, 30 (22), 8303-8313. DOI: 10.1021/acs.chemmater.8b03789.
    (34) 王心妤(2021)。石墨烯化中孔洞沸石粒子複合電漿材料於表面增強拉曼之 應用(未出版碩士論文)。國立臺灣師範大學,臺北市..
    (35) Bruggeman, P.; Kushner, M. J.; Locke, B. R.; Gardeniers, J. G.; Graham, W.; Graves, D. B.; Hofman-Caris, R.; Maric, D.; Reid, J. P.; Ceriani, E. Plasma–liquid interactions: a review and roadmap. Plasma sources science and technology 2016, 25 (5), 053002.
    (36) Mariotti, D.; Patel, J.; Švrček, V.; Maguire, P. Plasma–liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering. Plasma Processes and Polymers 2012, 9 (11‐12), 1074-1085.
    (37) Sun, D.; Tang, M.; Zhang, L.; Falzon, B. G.; Padmanaban, D. B.; Mariotti, D.; Maguire, P.; Xu, H.; Chen, M.; Sun, D. Microplasma assisted synthesis of gold nanoparticle/graphene oxide nanocomposites and their potential application in SERS sensing. Nanotechnology 2019, 30 (45), 455603.
    (38) Huang, H.-N.; Wang, S.-Y.; Chiang, W.-H. Microplasma-Engineered Ag/GONR-Based Nanocomposites for Selective and Label-Free SERS-Sensitive Detection of Dopamine. ACS Applied Nano Materials 2021, 4 (10), 10360-10369. DOI: 10.1021/acsanm.1c01867.
    (39) Wang, R.; Zuo, S.; Wu, D.; Zhang, J.; Zhu, W.; Becker, K. H.; Fang, J. Microplasma‐assisted synthesis of colloidal gold nanoparticles and their use in the detection of cardiac troponin I (cTn‐I). Plasma Processes and Polymers 2015, 12 (4), 380-391.
    (40) De Vos, C.; Baneton, J.; Witzke, M.; Dille, J.; Godet, S.; Gordon, M. J.; Sankaran, R. M.; Reniers, F. A comparative study of the reduction of silver and gold salts in water by a cathodic microplasma electrode. Journal of Physics D: Applied Physics 2017, 50 (10), 105206.
    (41) Chen, K.-J.; Lu, C.-J. A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV–vis spectrum. Talanta 2010, 81 (4-5), 1670-1675.
    (42) Moreno-Martin, G.; León-González, M. E.; Madrid, Y. Simultaneous determination of the size and concentration of AgNPs in water samples by UV–vis spectrophotometry and chemometrics tools. Talanta 2018, 188, 393-403.
    (43) Fultz, B.; Howe, J. M. Transmission electron microscopy and diffractometry of materials; Springer Science & Business Media, 2012.
    (44) Jakub, S.; Alena, Ř.; Petr, S.; Václav, Š. Noble Metal Nanoparticles Prepared by Metal Sputtering into Glycerol and their Grafting to Polymer Surface. In Nanoparticles Technology, Mahmood, A. Ed.; IntechOpen, 2015; p Ch. 5.
    (45) Bhui, D. K.; Bar, H.; Sarkar, P.; Sahoo, G. P.; De, S. P.; Misra, A. Synthesis and UV–vis spectroscopic study of silver nanoparticles in aqueous SDS solution. Journal of Molecular Liquids 2009, 145 (1), 33-37. DOI: https://doi.org/10.1016/j.molliq.2008.11.014.
    (46) Mandal, S.; Roy, D.; Chaudhari, R. V.; Sastry, M. Pt and Pd nanoparticles immobilized on amine-functionalized zeolite: excellent catalysts for hydrogenation and heck reactions. Chemistry of materials 2004, 16 (19), 3714-3724.
    (47) Goscianska, J.; Olejnik, A.; Nowak, I. APTES-functionalized mesoporous silica as a vehicle for antipyrine – adsorption and release studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 533, 187-196. DOI: https://doi.org/10.1016/j.colsurfa.2017.07.043.
    (48) Vueba, M.; Pina, M.; Veiga, F.; Sousa, J.; De Carvalho, L. B. Conformational study of ketoprofen by combined DFT calculations and Raman spectroscopy. International journal of pharmaceutics 2006, 307 (1), 56-65.
    (49) Epp, J. 4 - X-ray diffraction (XRD) techniques for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Hübschen, G., Altpeter, I., Tschuncky, R., Herrmann, H.-G. Eds.; Woodhead Publishing, 2016; pp 81-124.
    (50) Escribano, R.; Sloan, J. J.; Siddique, N.; Sze, N.; Dudev, T. Raman spectroscopy of carbon-containing particles. Vibrational Spectroscopy 2001, 26 (2), 179-186.
    (51) Brubaker, Z. E.; Langford, J.; Kapsimalis, R. J.; Niedziela, J. L. Quantitative analysis of Raman spectral parameters for carbon fibers: practical considerations and connection to mechanical properties. Journal of Materials Science 2021, 56 (27), 15087-15121.
    (52) Rebelo, S. L. H.; Guedes, A.; Szefczyk, M. E.; Pereira, A. M.; Araújo, J. P.; Freire, C. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: unraveling disorder in graphitic materials. Physical Chemistry Chemical Physics 2016, 18 (18), 12784-12796.
    (53) Hong, G.; Chen, Y.; Li, P.; Zhang, J. Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts. Carbon 2012, 50 (6), 2067-2082. DOI: https://doi.org/10.1016/j.carbon.2012.01.035.
    (54) Takagi, D.; Homma, Y.; Hibino, H.; Suzuki, S.; Kobayashi, Y. Single-Walled Carbon Nanotube Growth from Highly Activated Metal Nanoparticles. Nano Letters 2006, 6 (12), 2642-2645. DOI: 10.1021/nl061797g.
    (55) Yuan, D.; Ding, L.; Chu, H.; Feng, Y.; McNicholas, T. P.; Liu, J. Horizontally Aligned Single-Walled Carbon Nanotube on Quartz from a Large Variety of Metal Catalysts. Nano Letters 2008, 8 (8), 2576-2579. DOI: 10.1021/nl801007r.
    (56) Wang, C.; Li, D.; Lu, Z.; Song, M.; Xia, W. Synthesis of carbon nanoparticles in a non-thermal plasma process. Chemical Engineering Science 2020, 227, 115921. DOI: https://doi.org/10.1016/j.ces.2020.115921.
    (57) Moreno-Couranjou, M.; Monthioux, M.; Gonzalez-Aguilar, J.; Fulcheri, L. A non-thermal plasma process for the gas phase synthesis of carbon nanoparticles. Carbon 2009, 47 (10), 2310-2321. DOI: https://doi.org/10.1016/j.carbon.2009.04.003.
    (58) Sun, D. L.; Hong, R. Y.; Liu, J. Y.; Wang, F.; Wang, Y. F. Preparation of carbon nanomaterials using two-group arc discharge plasma. Chemical Engineering Journal 2016, 303, 217-230. DOI: https://doi.org/10.1016/j.cej.2016.05.098.
    (59) Tsen, C.-M.; Yu, C.-W.; Chen, S.-Y.; Lin, C.-L.; Chuang, C.-Y. Application of surface-enhanced Raman scattering in rapid detection of dithiocarbamate pesticide residues in foods. Applied Surface Science 2021, 558, 149740. DOI: https://doi.org/10.1016/j.apsusc.2021.149740.
    (60) Tuschel, D. Selecting an excitation wavelength for Raman spectroscopy. Spectroscopy 2016, 31 (3), 14–23-14–23.
    (61) Saikin, S. K.; Chu, Y.; Rappoport, D.; Crozier, K. B.; Aspuru-Guzik, A. Separation of Electromagnetic and Chemical Contributions to Surface-Enhanced Raman Spectra on Nanoengineered Plasmonic Substrates. The Journal of Physical Chemistry Letters 2010, 1 (18), 2740-2746. DOI: 10.1021/jz1008714.
    (62) Samal, A. K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzán, L. M.; Pérez-Juste, J.; Pastoriza-Santos, I. Size Tunable Au@Ag Core–Shell Nanoparticles: Synthesis and Surface-Enhanced Raman Scattering Properties. Langmuir 2013, 29 (48), 15076-15082. DOI: 10.1021/la403707j.

    下載圖示
    QR CODE