簡易檢索 / 詳目顯示

研究生: 詹仕凡
Chan, Shih-Fan
論文名稱: 行為如何影響變動熱環境下的種間關係
How does behavior modulate species interactions in changing thermal environments
指導教授: 沈聖峰
Shen, Sheng-Feng
口試委員: 王慧瑜
Wang, Hui-Yu
陳一菁
Chen, I-Ching
謝志豪
Hsieh, Chih-Hao
洪志銘
Hung, Chih-Ming
沈聖峰
Shen, Sheng-Feng
口試日期: 2023/03/17
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 150
中文關鍵詞: 氣候變遷土地利用改變協同效應種間競爭日溫差時間生態棲位溫度生態棲位阿利效應埋葬蟲麗蠅
英文關鍵詞: climate, land-use change, synergistic effect, interspecific competition, DTR, temporal niche, thermal niche, Allee effect, burying beetle, blowfly
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300424
論文種類: 學術論文
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 預測人為的氣候變遷和土地利用改變所導致的熱環境變化將如何影響物種間的交互作用,對於預測物種在面臨全球環境變遷下族群的可持續性至關重要。在本研究中,我們透過建立數學模型,並對共同競爭資源的尼泊爾埋葬蟲(Nicrophorus nepalensis)和麗蠅(Calliphoridae spp.)進行實驗來回答這個問題。我們發現,土地利用的變化(即森林砍伐)導致日溫差的增加,在原本適合埋葬蟲的高海拔山區,加劇了來自麗蠅蛆的種間競爭壓力,導致夜間活動的埋葬蟲的競爭劣勢。此外,我們還透過理論模式說明,開採型競爭對於調節具有不同時間生態棲位的物種間的關係尤其重要,且日溫差會加劇此競爭對夜行性物種的負面影響。另一方面,我們發現森林減少會透過降低尼泊爾埋葬蟲的族群密度,使行合作繁殖的尼泊爾埋葬蟲無法足成大的合作群體,進而降低了它們在溫暖環境下麗蠅競爭的抵抗能力。綜合上述的研究結果顯示,在變動的熱環境中,有兩類不同的行為機制可以調節物種間的交互作用: (1)決定生物體所經歷的熱環境的行為,例如時間的生態棲位;(2)改變生物體的熱生態棲位的的行為,例如合作。我們的研究結果也凸顯了同時從行為和生理兩個角度來預測全球環境變遷下物種交互作用的重要性。

    Predicting how species interact under changing thermal environments due to anthropogenic environmental changes (e.g., climate & land-use changes) is crucial for forecasting future population sustainability. Here, we used mathematical models and field experiments on burying beetles (Nicrophorus nepalensis) and blowflies (Calliphoridae spp.) that compete for resources in common to tackle the questions. We found that land-use changes (i.e., deforestation) increase temperature variability and exacerbate the competitive disadvantage of nocturnal burying beetles. Furthermore, we also show that exploitative competition is critical in modulating competition between the above two species with distinct temporal niches. On the other hand, we found that declines in the population density of the cooperative burying beetles also reduce their resistance to blowfly competition in warmer low elevations in deforested landscapes. The above results show two distinct categories of behavioral mechanisms modulating species interactions in changing thermal environments: (1) behaviors that determine the thermal environment experienced by the organisms and (2) behaviors that modify the thermal niche of the organisms. The results also highlight the importance of incorporating behavior and physiology to predict species interactions in the ongoing global environmental changes.

    Acknowledgement i 摘要 iii English Abstract iv Table of Contents v List of Tables ix List of Figures xi CHAPTER 1 GENERAL INTRODUCTION 1 CHAPTER 2 HIGHER TEMPERATURE VARIABILITY IN DEFORESTED MOUNTAIN REGIONS IMPACTS THE COMPETITIVE ADVANTAGE OF NOCTURNAL SPECIES 4 Abstract 4 2.1 Introduction 6 2.2 Materials and Methods 9 2.2.1 Predicting the impact of deforestation on DTR worldwide 9 2.2.2 TPC for burying beetles and blowfly maggots 11 2.2.3 Effect of deforestation on the mean and variability of temperature at a regional scale 14 2.2.4 Predicting realized beetle performance with TPCs, daily activity patterns, and environmental temperature profiles 16 2.2.5 Field experiments of competition between burying beetles and blowflies 17 2.2.6 Identifying the primary time of the day that burying beetles search for carcasses 18 2.2.7 Laboratory experiments on maggot performance at different DTRs 19 2.2.8 Field experiments preventing blowflies’ competition 20 2.2.9 Data analysis 20 2.3 Results 22 2.3.1 The potential effect of deforestation on DTR worldwide 22 2.3.2 TPC for burying beetles and blowfly maggots 22 2.3.3 Effect of deforestation on the mean and variability of temperature at a regional scale 23 2.3.4 Predicting realized beetle performance with TPCs, daily activity patterns, and environmental temperature profiles 24 2.3.5 Effects of deforestation on interspecific competition between species with different daily activity patterns 26 2.3.6 Behavioral mechanisms of how DTR affects competition between burying beetles and blowflies 27 2.3.7 Field experiments preventing blowflies’ competition 28 2.4 Discussion 29 2.5 Figures 34 2.6 Tables 47 CHAPTER 3 HOW DOES DAILY TEMPORAL NICHE MODULATE SPECIES INTERACTIONS IN THERMALLY FLUCTUATED ENVIRONMENTS 55 Abstract 55 3.1 Introduction 56 3.2 Theoretical model 59 3.2.1 Using thermal performance curve to estimate fitness under fluctuating environments 60 3.2.2 Modeling competition between diurnal and nocturnal species 65 3.2.3 Modeling the effects of temporal niche shifts on species interactions 67 3.3 Empirical studies 69 3.3.1 Daily temporal niche and species interactions under various biodiversity stressors 69 3.3.2 Exploitative competition 70 3.3.3 Daily temporal niche shift and interference competition 74 3.4 Conclusion 75 3.5 Figures 78 CHAPTER 4 LAND-USE CHANGES ALTER POPULATION DEMOGRAPHICS AND SHAPE THERMAL PERFORMANCE IN SOCIAL INSECTS 80 Abstract 80 4.1 Introduction 82 4.2 Materials and methods 86 4.2.1 Individual-based model 86 4.2.2 Field surveys to estimate beetle population densities 90 4.2.3 Field breeding experiments 90 4.2.4 Breeding experiments to examine the influence of local population density 92 4.2.5 Forest cover 94 4.2.6 Environmental temperature monitoring 94 4.2.7 Data analysis 95 4.3 Results 97 4.3.1 Individual-based model 97 4.3.2 Empirical results 101 4.4 Discussion 105 4.5 Figures 109 4.6 Tables 119 CHAPTER 5 GENERAL CONCLUSIONS 132 References 135

    Alkama, R., and A. Cescatti. 2016. Biophysical climate impacts of recent changes in global forest cover. Science 351:600.
    Allee, W. C. 1927. Animal aggregations. Q. Rev. Biol. 2:367-398.
    Allee, W. C. 1931. Animal Aggregations. A Study in General Sociology. The University of Chicago Press, Chicago.
    Alroy, J. 2017. Effects of habitat disturbance on tropical forest biodiversity. Proc. Natl Acad. Sci. USA 114:6056-6061.
    Angulo, E., G. M. Luque, S. D. Gregory, J. W. Wenzel, C. Bessa-Gomes, L. Berec, and F. Courchamp. 2018. Review: Allee effects in social species. J. Anim. Ecol. 87:47-58.
    Angulo, E., G. W. Roemer, L. Berec, G. Joanna, and F. Courchamp. 2007. Double Allee effects and extinction in the island fox. Conserv. Biol. 21:1082-1091.
    Barton, K. 2020. MuMIn: multi-model inference. R Package Version 1.43.17.
    Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67:1-48.
    Bennie, J. J., J. P. Duffy, R. Inger, and K. J. Gaston. 2014. Biogeography of time partitioning in mammals. Proc. Natl Acad. Sci. USA 111:13727-13732.
    Blüthgen, N., M. Staab, R. Achury, and W. W. Weisser. 2022. Unravelling insect declines: can space replace time? Biology Letters 18:20210666.
    Bonan, G. 2015. Ecological climatology: concepts and applications.
    Bonebrake, T. C., E. L. Rezende, and F. Bozinovic. 2020. Climate change and thermoregulatory consequences of activity time in mammals. Am. Nat. 196:45-56.
    Bozinovic, F., D. A. Bastías, F. Boher, S. Clavijo-Baquet, S. A. Estay, and M. J. A. Jr. 2011. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol. Biochem. Zool. 84:543-552.
    Brandon, P. 1967. Temperature features of enzymes affecting crassulacean acid metabolism. Plant Physiology 42:977-984.
    Brook, B. W., N. S. Sodhi, and C. J. A. Bradshaw. 2008. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23:453-460.
    Buchanan, B. W. 1993. Effects of enhanced lighting on the behaviour of nocturnal frogs. Anim. Behav. 45:893-899.
    Carrington, L. B., S. N. Seifert, N. H. Willits, L. Lambrechts, and T. W. Scott. 2013. Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits. J. Med. Entomol. 50:43-51.
    Cavieres, G., J. M. Bogdanovich, P. Toledo, and F. Bozinovic. 2018. Fluctuating thermal environments and time-dependent effects on fruit fly egg-hatching performance. Ecol. Evol. 8:7014-7021.
    Chan, S.-F., W.-K. Shih, A.-Y. Chang, S.-F. Shen, and I. C. Chen. 2019. Contrasting forms of competition set elevational range limits of species. Ecol. Lett. 22:1668-1679.
    Chen, B.-F., M. Liu, D. R. Rubenstein, S.-J. Sun, J.-N. Liu, Y.-H. Lin, and S.-F. Shen. 2020. A chemically triggered transition from conflict to cooperation in burying beetles. Ecol. Lett. 23:467-475.
    Chen, I. C., J. K. Hill, R. Ohlemüller, D. B. Roy, and C. D. Thomas. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024.
    Chen, J. 2016. National Detection of the Illegal Use of Forest Land in Taiwan by Using Multi-Temporal FORMOSAT-2 Satellite Images. J Earth Sci Clim Change 7:2.
    Chen, J., J. F. Franklin, and T. A. Spies. 1993. Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agric. For. Meteorol. 63:219-237.
    Cheng, K.-S., Y.-F. Su, F.-T. Kuo, W.-C. Hung, and J.-L. Chiang. 2008. Assessing the effect of landcover changes on air temperatu×re using remote sensing images—A pilot study in northern Taiwan. Landscape and Urban Planning 85:85-96.
    Chiou, C.-R., C.-F. Hsieh, J.-C. Wang, M.-Y. Chen, H.-Y. Liu, C.-L. Yeh, S.-Z. Yang, T.-Y. Chen, Y.-J. Hsia, and G.-Z. M. Song. 2009. The first national vegetation inventory in Taiwan. Taiwan Journal of Forest Science 24:295-302.
    Christensen, R. H. B. 2019. ordinal - Regression Models for Ordinal Data. R package version 2019.12-10.
    Clarke, D. N., and P. A. Zani. 2012. Effects of night-time warming on temperate ectotherm reproduction: potential fitness benefits of climate change for side-blotched lizards. J. Exp. Biol. 215:1117-1127.
    Clusella-Trullas, S., T. M. Blackburn, and S. L. Chown. 2011. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177:738-751.
    Clusella-Trullas, S., R. A. Garcia, J. S. Terblanche, and A. A. Hoffmann. 2021. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36:1000-1010.
    Cole, N. C., and S. Harris. 2011. Environmentally-induced shifts in behavior intensify indirect competition by an invasive gecko in Mauritius. Biol. Invasions 13:2063-2075.
    Colinet, H., L. Lalouette, and D. Renault. 2011. A model for the time–temperature–mortality relationship in the chill-susceptible beetle, Alphitobius diaperinus, exposed to fluctuating thermal regimes. J. Therm. Biol. 36:403-408.
    Colwell Robert, K., and F. Rangel Thiago. 2009. Hutchinson's duality: The once and future niche. Proc. Natl. Acad. Sci. U.S.A. 106:19651-19658.
    Constable, J. V. H., and W. A. Retzlaff. 2000. Asymmetric day/night temperature elevation: growth implications for Yellow-Poplar and Loblolly Pine using simulation modeling. For. Sci. 46:248-257.
    Courchamp, F., T. Clutton-Brock, and B. Grenfell. 1999. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14:405-410.
    Davies, C., M. Coetzee, and C. L. Lyons. 2016. Effect of stable and fluctuating temperatures on the life history traits of Anopheles arabiensis and An. quadriannulatus under conditions of inter- and intra-specific competition. Parasites Vectors 9:342.
    Davison, C. W., C. Rahbek, and N. Morueta-Holme. 2021. Land-use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature. Global Change Biology 27:5414-5429.
    Davy, R., I. Esau, A. Chernokulsky, S. Outten, and S. Zilitinkevich. 2017. Diurnal asymmetry to the observed global warming. Int. J. Climatol. 37:79-93.
    Dawson, T. E. 1998. Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117:476-485.
    Dayananda, B., R. A. Jeffree, and J. K. Webb. 2020. Body temperature and time of day both affect nocturnal lizard performance: An experimental investigation. J. Therm. Biol. 93:102728.
    De Frenne, P., F. Zellweger, F. Rodríguez-Sánchez, B. R. Scheffers, K. Hylander, M. Luoto, M. Vellend, K. Verheyen, and J. Lenoir. 2019. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3:744-749.
    De Palma, A., K. Sanchez-Ortiz, P. A. Martin, A. Chadwick, G. Gilbert, A. E. Bates, L. Börger, S. Contu, S. L. L. Hill, and A. Purvis. 2018. Challenges With Inferring How Land-Use Affects Terrestrial Biodiversity: Study Design, Time, Space and Synthesis. Pages 163-199 in D. A. Bohan, A. J. Dumbrell, G. Woodward, and M. Jackson, editors. Advances in Ecological Research. Academic Press.
    Desouhant, E., E. Gomes, N. Mondy, and I. Amat. 2019. Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective. Entomol. Exp. Appl. 167:37-58.
    Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak, and P. R. Martin. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105:6668-6672.
    Easterling, D. R., B. Horton, D. Jones Philip, C. Peterson Thomas, R. Karl Thomas, E. Parker David, M. J. Salinger, V. Razuvayev, N. Plummer, P. Jamason, and K. Folland Christopher. 1997. Maximum and Minimum Temperature Trends for the Globe. Science 277:364-367.
    Ellenberg, H. 1981. Ursachen des Vorkommens und Fehlens von Sukkulenten in den Trockengebieten der Erde. Flora 171:114-169.
    Elsen, P. R., W. B. Monahan, and A. M. Merenlender. 2020. Topography and human pressure in mountain ranges alter expected species responses to climate change. Nat. Commun. 11:1974.
    Fagan, W. F., and E. E. Holmes. 2006. Quantifying the extinction vortex. Ecol. Lett. 9:51-60.
    Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Alsdorf. 2007. The shuttle radar topography mission. Rev. Geophys. 45.
    Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37:4302-4315.
    Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty, and P. K. Snyder. 2005. Global consequences of land use. Science 309:570.
    Fox, J., and S. Weisberg. 2011. An R Companion to Applied Regression. 2 edition. Sage, Thousand Oaks CA.
    Frank, A. 2014. Diagnosing Collinearity in Mixed Models from lme4, vif. mer Function. URl: https://github.com/aufrank/R-hacks/blob/master/mer-utils.R.
    Frazer, G. W., C. Canham, and K. Lertzman. 1999. Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation.
    Frishkoff, L. O., E. A. Hadly, and G. C. Daily. 2015. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Change Biol. 21:3901-3916.
    Gallo, K. P., D. R. Easterling, and T. C. Peterson. 1996. The Influence of land use/land cover on climatological values of the diurnal temperature range. J. Clim. 9:2941-2944.
    Garcia-Robledo, C., H. Chuquillanqui, E. K. Kuprewicz, and F. Escobar-Sarria. 2018. Lower thermal tolerance in nocturnal than in diurnal ants: a challenge for nocturnal ectotherms facing global warming. Ecological Entomology 43:162-167.
    Gaston, K. J., T. W. Davies, S. L. Nedelec, and L. A. Holt. 2017. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48:49-68.
    Gaston, K. J., Z. G. Davies, and J. L. Edmondson. 2010. Urban environments and ecosystem functions. Pages 35-52 in K. J. Gaston, editor. Urban ecology. Cambridge University Press, Cambridge.
    Gaston, K. J., M. E. Visser, and F. Hölker. 2015. The biological impacts of artificial light at night: the research challenge. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:20140133.
    Geiger, R., R. H. Aron, and P. Todhunter. 2009. The climate near the ground. Rowman & Littlefield.
    Gibson, L., T. M. Lee, L. P. Koh, B. W. Brook, T. A. Gardner, J. Barlow, C. A. Peres, C. J. Bradshaw, W. F. Laurance, and T. E. Lovejoy. 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378-381.
    Gotcha, N., H. Machekano, R. N. Cuthbert, and C. Nyamukondiwa. 2021. Heat tolerance may determine activity time in coprophagic beetle species (Coleoptera: Scarabaeidae). Insect Science 28:1076-1086.
    Grünbaum, D., and R. R. Veit. 2003. Black‐browed albatrosses foraging on antarctic krill: density‐dependence through local enhancement? Ecology 84:3265-3275.
    Guo, F., J. Lenoir, and T. C. Bonebrake. 2018. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9:1315.
    Haag-Kerwer, A., A. C. Franco, and U. Luttge. 1992. The Effect of Temperature and Light on Gas Exchange and Acid Accumulation in the C3-CAM Plant Clusia minor L. Journal of Experimental Botany 43:345-352.
    Haddad, N. M., L. A. Brudvig, J. Clobert, K. F. Davies, A. Gonzalez, R. D. Holt, T. E. Lovejoy, J. O. Sexton, M. P. Austin, C. D. Collins, W. M. Cook, E. I. Damschen, R. M. Ewers, B. L. Foster, C. N. Jenkins, A. J. King, W. F. Laurance, D. J. Levey, C. R. Margules, B. A. Melbourne, A. O. Nicholls, J. L. Orrock, D.-X. Song, and J. R. Townshend. 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1:e1500052.
    Hall, J., N. D. Burgess, J. Lovett, B. Mbilinyi, and R. E. Gereau. 2009. Conservation implications of deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania. Biol. Conserv. 142:2510-2521.
    Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. High-resolution global maps of 21st-century forest cover change. Science 342:850-853.
    Harmer, S. L. 2009. The circadian system in higher plants. Annu. Rev. Plant Biol. 60:357-377.
    Herzog, B., S. Hoffmann, W. Hartung, and U. Lüttge. 1999. Comparison of Photosynthetic Responses of the Sympatric Tropical C3 Species Clusia multiflora H. B. K. and the C3-CAM Intermediate Species Clusia minor L. to Irradiance and Drought Stress in a Phytotron1. Plant Biology 1:460-470.
    Hof, C., I. Levinsky, M. B. AraÚJo, and C. Rahbek. 2011. Rethinking species' ability to cope with rapid climate change. Glob. Chang. Biol. 17:2987-2990.
    Holt, R. D. 2009. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106:19659-19665.
    Huang, H., K. Yu, and P. D’Odorico. 2020. CAM plant expansion favored indirectly by asymmetric climate warming and increased rainfall variability. Oecologia 193:1-13.
    Huey, R. B. 1991. Physiological Consequences of Habitat Selection. Am. Nat. 137:S91-S115.
    Huey, R. B., and E. R. Pianka. 1983. Temporal separation of activity and interspecific dietary overlap. Pages 281-296 in P. E. Huey R, Schoener T, editor. Lizard ecology: studies of a model organism. Cambridge, MA: Harvard University Press.
    Huey, R. B., and M. Slatkin. 1976. Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 51:363-384.
    Huey, R. B., and R. D. Stevenson. 1979. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am. Zool. 19:357-366.
    Hut, R. A., N. Kronfeld-Schor, V. van der Vinne, and H. De la Iglesia. 2012. Chapter 17 - In search of a temporal niche: Environmental factors. Pages 281-304 in A. Kalsbeek, M. Merrow, T. Roenneberg, and R. G. Foster, editors. Progress in Brain Research. Elsevier.
    Hutchinson, G. E. 1957. Concluding remarks. Pages 415-427 in Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press.
    Jang, Y.-S., S.-F. Shen, J.-Y. Juang, C.-Y. Huang, and M.-H. Lo. 2022. Discontinuity of diurnal temperature range along elevated regions. Geophys. Res. Lett. 49:e2021GL097551.
    Jarraud, M. 2008. Guide to meteorological instruments and methods of observation (WMO-No. 8). World Meteorological Organisation: Geneva, Switzerland 29.
    Kearney, M., and W. P. Porter. 2004. Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85:3119-3131.
    Kearney, M., R. Shine, and P. Porter Warren. 2009. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc. Natl. Acad. Sci. U.S.A. 106:3835-3840.
    Kearney, M. R. 2013. Activity restriction and the mechanistic basis for extinctions under climate warming. Ecol. Lett. 16:1470-1479.
    Kearney, M. R., A. P. Isaac, and W. P. Porter. 2014. microclim: Global estimates of hourly microclimate based on long-term monthly climate averages. Sci. Data 1:140006.
    Kearney, M. R., and W. P. Porter. 2017. NicheMapR – an R package for biophysical modelling: the microclimate model. Ecography 40:664-674.
    Kingsolver, J. G., and H. A. Woods. 2016. Beyond thermal performance curves: Modeling time-dependent effects of thermal stress on ectotherm growth rates. Am. Nat. 187:283-294.
    Knop, E., L. Zoller, R. Ryser, C. Gerpe, M. Hörler, and C. Fontaine. 2017. Artificial light at night as a new threat to pollination. Nature 548:206-209.
    Koffel, T., T. Daufresne, and C. A. Klausmeier. 2021. From competition to facilitation and mutualism: a general theory of the niche. Ecol. Monogr. 91:e01458.
    Kronfeld-Schor, N., M. E. Visser, L. Salis, and J. A. van Gils. 2017. Chronobiology of interspecific interactions in a changing world. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372:20160248.
    Lambrechts, L., P. Paaijmans Krijn, T. Fansiri, B. Carrington Lauren, D. Kramer Laura, B. Thomas Matthew, and W. Scott Thomas. 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl. Acad. Sci. U.S.A. 108:7460-7465.
    Larsen, T. H. 2012. Upslope range shifts of Andean dung beetles in response to deforestation: compounding and confounding effects of microclimatic change. Biotropica 44:82-89.
    Laurance, W. F., M. A. Cochrane, S. Bergen, P. M. Fearnside, P. Delamônica, C. Barber, S. Angelo, and T. Fernandes. 2001. The future of the Brazilian Amazon. Science 291:438.
    Lefcheck, J. S. 2016. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7:573-579.
    Lembrechts, J. J., and I. Nijs. 2020. Microclimate shifts in a dynamic world. Science 368:711.
    Lenoir, J., T. Hattab, and G. Pierre. 2017. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography 40:253-266.
    Lenth, R., H. Singmann, J. Love, P. Buerkner, and M. Herve. 2018. Emmeans: Estimated marginal means, aka least-squares means. R package version 1:3.
    Levy, O., T. Dayan, W. P. Porter, and N. Kronfeld-Schor. 2019. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89:e01334.
    Liu, M., S.-F. Chan, D. R. Rubenstein, S.-J. Sun, B.-F. Chen, and S.-F. Shen. 2020. Ecological transitions in grouping benefits explain the paradox of environmental quality and sociality. Am. Nat. 195:818-832.
    Liu, M., D. R. Rubenstein, S. A. Cheong, and S.-F. Shen. 2021. Antagonistic effects of long- and short-term environmental variation on species coexistence. Proc. Royal Soc. B 288:20211491.
    Lu, R., Y. Du, H. Sun, X. Xu, L. Yan, and J. Xia. 2021. Nocturnal warming accelerates drought-induced seedling mortality of two evergreen tree species. Tree Physiol.
    Luo, B., R. Xu, Y. Li, W. Zhou, W. Wang, H. Gao, Z. Wang, Y. Deng, Y. Liu, and J. Feng. 2021. Artificial light reduces foraging opportunities in wild least horseshoe bats. Environ. Pollut. 288:117765.
    Lüttge, U. 2004. Ecophysiology of crassulacean acid metabolism (CAM). Annals of Botany 93:629-652.
    Macgregor, C. J., M. J. O. Pocock, R. Fox, and D. M. Evans. 2015. Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review. Ecol. Entomol. 40:187-198.
    Maclean, I. M. D., J. R. Mosedale, and J. J. Bennie. 2019. Microclima: An r package for modelling meso- and microclimate. Methods Ecol. Evol. 10:280-290.
    Makowski, K., M. Wild, and A. Ohmura. 2008. Diurnal temperature range over Europe between 1950 and 2005. Atmos. Chem. Phys. 8:6483-6498.
    Martin, Tara L., and Raymond B. Huey. 2008. Why “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am. Nat. 171:E102-E118.
    Menard, S. 2004. Six approaches to calculating standardized logistic regression coefficients. Am. Stat. 58:218-223.
    Miyazaki, Y., S. G. Goto, K. Tanaka, O. Saito, and Y. Watari. 2011. Thermoperiodic regulation of the circadian eclosion rhythm in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 57:1249-1258.
    Mohan, M., and A. Kandya. 2015. Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Sci. Total Environ. 506-507:453-465.
    Morecroft, M. D., M. E. Taylor, and H. R. Oliver. 1998. Air and soil microclimates of deciduous woodland compared to an open site. Agricultural and Forest Meteorology 90:141-156.
    Nakagawa, S., and H. Schielzeth. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4:133-142.
    Namkhan, M., G. A. Gale, T. Savini, and N. Tantipisanuh. 2021. Loss and vulnerability of lowland forests in mainland Southeast Asia. Conserv. Biol. 35:206-215.
    Nancy, L. A., E. H. Thomas, C. Brad, P. Gad, B. W. Joseph, and L. Jeff. 2005. Thermoregulation in a nocturnal, tropical, arboreal snake. J. Herpetol. 39:82-90.
    Narendra, A., B. Greiner, W. A. Ribi, and J. Zeil. 2016. Light and dark adaptation mechanisms in the compound eyes of Myrmecia ants that occupy discrete temporal niches. J. Exp. Biol. 219:2435-2442.
    Newbold, T., L. N. Hudson, S. L. L. Hill, S. Contu, I. Lysenko, R. A. Senior, L. Börger, D. J. Bennett, A. Choimes, B. Collen, J. Day, A. De Palma, S. Díaz, S. Echeverria-Londoño, M. J. Edgar, A. Feldman, M. Garon, M. L. K. Harrison, T. Alhusseini, D. J. Ingram, Y. Itescu, J. Kattge, V. Kemp, L. Kirkpatrick, M. Kleyer, D. L. P. Correia, C. D. Martin, S. Meiri, M. Novosolov, Y. Pan, H. R. P. Phillips, D. W. Purves, A. Robinson, J. Simpson, S. L. Tuck, E. Weiher, H. J. White, R. M. Ewers, G. M. Mace, J. P. W. Scharlemann, and A. Purvis. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520:45-50.
    Niederegger, S., J. Pastuschek, and G. Mall. 2010. Preliminary studies of the influence of fluctuating temperatures on the development of various forensically relevant flies. Forensic Sci. Int. 199:72-78.
    Nogués-Bravo, D., M. B. Araújo, T. Romdal, and C. Rahbek. 2008. Scale effects and human impact on the elevational species richness gradients. Nature 453:216-219.
    Nordberg, E. J., and L. Schwarzkopf. 2019. Heat seekers: A tropical nocturnal lizard uses behavioral thermoregulation to exploit rare microclimates at night. J. Therm. Biol. 82:107-114.
    Oke, T. R. 1982. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108:1-24.
    Oliver, T. H., H. H. Marshall, M. D. Morecroft, T. Brereton, C. Prudhomme, and C. Huntingford. 2015. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Chang. 5:941-945.
    Oliver, T. H., and M. D. Morecroft. 2014. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change 5:317-335.
    Paaijmans, K. P., R. L. Heinig, R. A. Seliga, J. I. Blanford, S. Blanford, C. C. Murdock, and M. B. Thomas. 2013. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19:2373-2380.
    Paaijmans Krijn, P., S. Blanford, S. Bell Andrew, I. Blanford Justine, F. Read Andrew, and B. Thomas Matthew. 2010. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl Acad. Sci. USA 107:15135-15139.
    Palmeirim, J. M., D. L. Gorchoy, and S. Stoleson. 1989. Trophic structure of a neotropical frugivore community: is there competition between birds and bats? Oecologia 79:403-411.
    Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37:637-669.
    Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37-42.
    Paterson, J. E., and G. Blouin-Demers. 2017. Do ectotherms partition thermal resources? We still do not know. Oecologia 183:337-345.
    Payne, J. A. 1965. A summary carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592-602.
    Pecl, G. T., M. B. Araújo, J. D. Bell, J. Blanchard, T. C. Bonebrake, I. C. Chen, T. D. Clark, R. K. Colwell, F. Danielsen, B. Evengård, L. Falconi, S. Ferrier, S. Frusher, R. A. Garcia, R. B. Griffis, A. J. Hobday, C. Janion-Scheepers, M. A. Jarzyna, S. Jennings, J. Lenoir, H. I. Linnetved, V. Y. Martin, P. C. McCormack, J. McDonald, N. J. Mitchell, T. Mustonen, J. M. Pandolfi, N. Pettorelli, E. Popova, S. A. Robinson, B. R. Scheffers, J. D. Shaw, C. J. B. Sorte, J. M. Strugnell, J. M. Sunday, M.-N. Tuanmu, A. Vergés, C. Villanueva, T. Wernberg, E. Wapstra, and S. E. Williams. 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355:eaai9214.
    Peters, M. K., A. Hemp, T. Appelhans, J. N. Becker, C. Behler, A. Classen, F. Detsch, A. Ensslin, S. W. Ferger, S. B. Frederiksen, F. Gebert, F. Gerschlauer, A. Gütlein, M. Helbig-Bonitz, C. Hemp, W. J. Kindeketa, A. Kühnel, A. V. Mayr, E. Mwangomo, C. Ngereza, H. K. Njovu, I. Otte, H. Pabst, M. Renner, J. Röder, G. Rutten, D. Schellenberger Costa, N. Sierra-Cornejo, M. G. R. Vollstädt, H. I. Dulle, C. D. Eardley, K. M. Howell, A. Keller, R. S. Peters, A. Ssymank, V. Kakengi, J. Zhang, C. Bogner, K. Böhning-Gaese, R. Brandl, D. Hertel, B. Huwe, R. Kiese, M. Kleyer, Y. Kuzyakov, T. Nauss, M. Schleuning, M. Tschapka, M. Fischer, and I. Steffan-Dewenter. 2019. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568:88-92.
    Platts, P. J., S. C. Mason, G. Palmer, J. K. Hill, T. H. Oliver, G. D. Powney, R. Fox, and C. D. Thomas. 2019. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9:15039.
    R Development Core Team. 2016. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna), R Version 3.3. 1.
    Régnière, J., J. Delisle, D. S. Pureswaran, and R. Trudel. 2013. Mate-finding allee effect in spruce budworm population dynamics. Entomol. Exp. Appl. 146:112-122.
    Rohr, J. R., D. J. Civitello, J. M. Cohen, E. A. Roznik, B. Sinervo, and A. I. Dell. 2018. The complex drivers of thermal acclimation and breadth in ectotherms. Ecol. Lett. 21:1425-1439.
    Ruel, J. J., and M. P. Ayres. 1999. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 14:361-366.
    Salachan, P. V., and J. G. Sørensen. 2017. Critical thermal limits affected differently by developmental and adult thermal fluctuations. J. Exp. Biol. 220:4471-4478.
    Schoener, T. W. 1974. Resource partitioning in ecological communities. Science 185:27-39.
    Schulte to Bühne, H., J. A. Tobias, S. M. Durant, and N. Pettorelli. 2021. Improving predictions of climate change–land use change interactions. Trends Ecol. Evol. 36:29-38.
    Schultz, N. M., P. J. Lawrence, and X. Lee. 2017. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. Biogeosci. 122:903-917.
    Scott, M. P. 1994. Competition with flies promotes communal breeding in the burying beetle, Nicrophorus tomentosus. Behav. Ecol. Sociobiol. 34:367-373.
    Scott, M. P. 1998. The ecology and behavior of burying beetles. Annu. Rev. Entomol. 43:595-618.
    Senior, R. A., J. K. Hill, and D. P. Edwards. 2019. Global loss of climate connectivity in tropical forests. Nat. Clim. Chang. 9:623-626.
    Sheehan, Z. B. V., J. F. Kamhi, M. A. Seid, and A. Narendra. 2019. Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants. J. Comp. Neurol. 527:1261-1277.
    Shipley, B. 2009. Confirmatory path analysis in a generalized multilevel context. Ecology 90:363-368.
    Sinclair, B. J., K. E. Marshall, M. A. Sewell, D. L. Levesque, C. S. Willett, S. Slotsbo, Y. Dong, C. D. G. Harley, D. J. Marshall, B. S. Helmuth, and R. B. Huey. 2016. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19:1372-1385.
    Sinervo, B., F. Méndez-de-la-Cruz, B. Miles Donald, B. Heulin, E. Bastiaans, M. Villagrán-Santa Cruz, R. Lara-Resendiz, N. Martínez-Méndez, L. Calderón-Espinosa Martha, N. Meza-Lázaro Rubi, H. Gadsden, J. Avila Luciano, M. Morando, J. De la Riva Ignacio, V. Sepulveda Pedro, D. Rocha Carlos Frederico, N. Ibargüengoytía, A. Puntriano César, M. Massot, V. Lepetz, A. Oksanen Tuula, G. Chapple David, M. Bauer Aaron, R. Branch William, J. Clobert, and W. Sites Jack. 2010. Erosion of Lizard Diversity by Climate Change and Altered Thermal Niches. Science 328:894-899.
    Smallwood, P. D. 1996. An introduction to risk sensitivity: The use of Jensen's inequality to clarify evolutionary arguments of adaptation and constraint. Am. Zool. 36:392-401.
    Soule, M. E. 1986. Conservation biology—The science of scarcity and diversity. Sunderland, MA. USA: Sinauer Associates.
    Speights, C. J., J. P. Harmon, and B. T. Barton. 2017. Contrasting the potential effects of daytime versus nighttime warming on insects. Curr. Opin. Insect. Sci. 23:1-6.
    Stephens, P. A., and W. J. Sutherland. 1999. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14:401-405.
    Stevenson, R. D. 1985. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat. 126:362-386.
    Stoks, R., J. Verheyen, M. Van Dievel, and N. Tüzün. 2017. Daily temperature variation and extreme high temperatures drive performance and biotic interactions in a warming world. Curr. Opin. Insect. Sci. 23:35-42.
    Sun, S.-J., D. R. Rubenstein, B.-F. Chen, S.-F. Chan, J.-N. Liu, M. Liu, W. Hwang, P.-S. Yang, and S.-F. Shen. 2014. Climate-mediated cooperation promotes niche expansion in burying beetles. eLife 3:e02440.
    Sunday, J. M., A. E. Bates, M. R. Kearney, R. K. Colwell, N. K. Dulvy, J. T. Longino, and B. Huey Raymond. 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. U.S.A. 111:5610-5615.
    Terblanche, J. S., C. Nyamukondiwa, and E. Kleynhans. 2010. Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomol. Exp. Appl. 137:304-315.
    Travis, J. M. J. 2003. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc. R. Soc. Lond. B 270:467-473.
    Tsai, H.-Y., D. R. Rubenstein, B.-F. Chen, M. Liu, S.-F. Chan, D.-P. Chen, S.-J. Sun, T.-N. Yuan, and S.-F. Shen. 2020a. Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance. eLife 9:e57022.
    Tsai, H.-Y., D. R. Rubenstein, Y.-M. Fan, T.-N. Yuan, B.-F. Chen, Y. Tang, I. C. Chen, and S.-F. Shen. 2020b. Locally-adapted reproductive photoperiodism determines population vulnerability to climate change in burying beetles. Nat. Commun. 11:1398.
    Tuanmu, M.-N., and W. Jetz. 2014. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Global Ecology and Biogeography 23:1031-1045.
    Tucker, M. A., K. Böhning-Gaese, W. F. Fagan, J. M. Fryxell, B. Van Moorter, S. C. Alberts, A. H. Ali, A. M. Allen, N. Attias, T. Avgar, H. Bartlam-Brooks, B. Bayarbaatar, J. L. Belant, A. Bertassoni, D. Beyer, L. Bidner, F. M. van Beest, S. Blake, N. Blaum, C. Bracis, D. Brown, P. J. N. de Bruyn, F. Cagnacci, J. M. Calabrese, C. Camilo-Alves, S. Chamaillé-Jammes, A. Chiaradia, S. C. Davidson, T. Dennis, S. DeStefano, D. Diefenbach, I. Douglas-Hamilton, J. Fennessy, C. Fichtel, W. Fiedler, C. Fischer, I. Fischhoff, C. H. Fleming, A. T. Ford, S. A. Fritz, B. Gehr, J. R. Goheen, E. Gurarie, M. Hebblewhite, M. Heurich, A. J. M. Hewison, C. Hof, E. Hurme, L. A. Isbell, R. Janssen, F. Jeltsch, P. Kaczensky, A. Kane, P. M. Kappeler, M. Kauffman, R. Kays, D. Kimuyu, F. Koch, B. Kranstauber, S. LaPoint, P. Leimgruber, J. D. C. Linnell, P. López-López, A. C. Markham, J. Mattisson, E. P. Medici, U. Mellone, E. Merrill, G. de Miranda Mourão, R. G. Morato, N. Morellet, T. A. Morrison, S. L. Díaz-Muñoz, A. Mysterud, D. Nandintsetseg, R. Nathan, A. Niamir, J. Odden, R. B. O’Hara, L. G. R. Oliveira-Santos, K. A. Olson, B. D. Patterson, R. Cunha de Paula, L. Pedrotti, B. Reineking, M. Rimmler, T. L. Rogers, C. M. Rolandsen, C. S. Rosenberry, D. I. Rubenstein, K. Safi, S. Saïd, N. Sapir, H. Sawyer, N. M. Schmidt, N. Selva, A. Sergiel, E. Shiilegdamba, J. P. Silva, N. Singh, E. J. Solberg, O. Spiegel, O. Strand, S. Sundaresan, W. Ullmann, U. Voigt, J. Wall, D. Wattles, M. Wikelski, C. C. Wilmers, J. W. Wilson, G. Wittemyer, F. Zięba, T. Zwijacz-Kozica, and T. Mueller. 2018. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359:466.
    Tuff, K. T., T. Tuff, and K. F. Davies. 2016. A framework for integrating thermal biology into fragmentation research. Ecol. Lett. 19:361-374.
    Tylianakis, J. M., R. K. Didham, J. Bascompte, and D. A. Wardle. 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11:1351-1363.
    Vangansbeke, D., D. T. Nguyen, J. Audenaert, R. Verhoeven, B. Gobin, L. Tirry, and P. De Clercq. 2015. Prey consumption by phytoseiid spider mite predators as affected by diurnal temperature variations. BioControl 60:595-603.
    Vasseur, D. A., J. P. DeLong, B. Gilbert, H. S. Greig, C. D. Harley, K. S. McCann, V. Savage, T. D. Tunney, and M. I. O'Connor. 2014. Increased temperature variation poses a greater risk to species than climate warming. Proc. Royal Soc. B 281:20132612.
    Verheyen, J., and R. Stoks. 2019. Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs. J. Anim. Ecol. 88:624-636.
    Vidan, E., U. Roll, A. Bauer, L. Grismer, P. Guo, E. Maza, M. Novosolov, R. Sindaco, P. Wagner, J. Belmaker, and S. Meiri. 2017. The Eurasian hot nightlife: Environmental forces associated with nocturnality in lizards. Glob. Ecol. Biogeogr. 26:1316-1325.
    Wang, J.-S., M.-N. Tuanmu, and C.-M. Hung. 2021a. Effects of artificial light at night on the nest-site selection, reproductive success and behavior of a synanthropic bird. Environ. Pollut. 288:117805.
    Wang, Y.-J., A. Sentis, N. Tüzün, and R. Stoks. 2021b. Thermal evolution ameliorates the long-term plastic effects of warming, temperature fluctuations and heat waves on predator–prey interaction strength. Funct. Ecol. 35:1538-1549.
    Wells, H., E. G. Strauss, M. A. Rutter, and P. H. Wells. 1998. Mate location, population growth and species extinction. Biol. Conserv. 86:317-324.
    Whitney-Johnson, A., M. Thompson, and E. Hon. 2005. Responses to predicted global warming in Pieris rapae L. (Lepidoptera): Consequences of nocturnal versus diurnal temperature change on fitness components. Environ. Entomol. 34:535-540.
    Wilson, E. O. 1975. Sociobiology: The New Synthesis. Harvard University Press, Cambridge, MA.
    Yang, S. T., and S. F. Shiao. 2014. Temperature adaptation in Chrysomya megacephala and Chrysomya pinguis, two blow fly species of forensic significance. Entomol. Exp. Appl. 152:100-107.
    Yerushalmi, S., and R. M. Green. 2009. Evidence for the adaptive significance of circadian rhythms. Ecol. Lett. 12:970-981.
    Zellweger, F., P. De Frenne, J. Lenoir, P. Vangansbeke, K. Verheyen, M. Bernhardt-Römermann, L. Baeten, R. Hédl, I. Berki, J. Brunet, H. Van Calster, M. Chudomelová, G. Decocq, T. Dirnböck, T. Durak, T. Heinken, B. Jaroszewicz, M. Kopecký, F. Máliš, M. Macek, M. Malicki, T. Naaf, T. A. Nagel, A. Ortmann-Ajkai, P. Petřík, R. Pielech, K. Reczyńska, W. Schmidt, T. Standovár, K. Świerkosz, B. Teleki, O. Vild, M. Wulf, and D. Coomes. 2020. Forest microclimate dynamics drive plant responses to warming. Science 368:772.
    Zhao, F., W. Zhang, A. A. Hoffmann, and C.-S. Ma. 2014. Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod. J. Anim. Ecol. 83:769-778.

    無法下載圖示 電子全文延後公開
    2024/05/31
    QR CODE