簡易檢索 / 詳目顯示

研究生: 陳合瑩
Chen, Ho-Ying
論文名稱: 一維結構硫化鋅奈米線生長機制及其衍生異質結構光學特性之探討
Unravelling of Growth Mechanism of 1D ZnS Nanowires and Optical Properties of ZnxCd1-xS Heterostructures
指導教授: 劉沂欣
Liu, Yi-Hsin
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 117
中文關鍵詞: 單源先驅物溶液-固體-固體法磊晶生長一維結構硫化鋅奈米線生長機制異質結構type-II半導體電荷分離
英文關鍵詞: single-source precursors, 1D semiconducting nanowires, solution-solid-solid method, epitaxial growth, type-II heterojuction, charge separations
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.068.2018.B05
論文種類: 學術論文
相關次數: 點閱:49下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇研究中,藉由本實驗室過去研究的合成方法,利用單源先驅物進行溶液-固體-固體法(SSS method)及磊晶生長(epitaxial growth),調控不同之合成溫度(120-200 °C)及合成時間,合成出筆直的一維硫化鋅半導體奈米線。並透過穿透式電子顯微鏡(TEM)及高解析穿透式電子顯微鏡(HRTEM)觀測奈米線的形貌、直徑分布及晶相組成,利用X光繞射技術(XRD)及X光近緣吸收光譜(XANES)與延伸X光吸收精細結構(EXAFS)來分析奈米線的晶粒變化與原子在空間位置上的改變,綜合各項技術來探討奈米線在不同溫度下,不同反應時間所對應之反應機制,並提出奈米線生長機制之模型,進而調控奈米線生長之形貌。
    對硫化鋅奈米線進行進一步的合成,可合成出硫化鋅-硫化鎘異質半導體奈米線,藉由引入較低能障(band gap)的硫化鎘,生成type-II半導體的奈米結構,使用穿透式電子顯微鏡及元素分布分析(EDS mapping)技術觀測其形貌與元素組成,並藉由紫外可見光吸收光譜(UV-Vis absorption)、光致螢光光譜(PL)ヽ螢光激光光譜(PLE)來分析異質奈米線的電子結構,最後與單光子計數系統(TCSPC)所得到的生命週期(lifetime)數據進行比對,進而解釋異質結構中電荷分離之分離路徑。

    In our recent studies, when single-source precursors (SSP) dissolve in oleylamine, 1D semiconducting nanowires which are synthesized at different temperature (120-200 °C) and reaction time can cause major variance in both wire morphologies and diameter distributions via simple thermal decomposition, solution-solid-solid method (SSS) and epitaxial growth. We also observe TEM and HRTEM images to recognize wire morphologies and composition of phases (wurtzite and zinc blende). X-ray absorption (XANES and EXAFS) and X-ray diffraction techniques are employed directly monitor the structural and morphological evolutions at each step of wire growth. Based on the result of each technique at different synthetic temperature and the evolutions of wire shapes and diameter distributions, we propose the ZnS nanowires growth mechanism.
    Then Ag2S, which is attached with ZnS nanowires, catalyzes the growth of CdS nanowires and further synthesizes ZnxCd1-xS type-II heterojuction nanowires. The heterostructures and compositions are characterized in TEM/STEM techniques with spatial EDS mapping. The band structures are revealed by multiple fluorescence profiles in NIR, visible and UV regimes, resulting in lifetimes for different recombination pathways. Epifluorescence from single heterostructure nanowires further confirms the ensemble emission profiles which suggest charge separations in the 1D heterostructures.

    摘要 I Abstract II 目錄 III 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 以單源先驅物合成奈米結構(Synthesis of Nanostructure via Single Source Precursor) 1 1.2 異質奈米結構之合成機制(Growth-Mechenism of Hetero-Nanostructure) 3 1.3 異質奈米結構之應用(Application of Hetero-nanostructure) 5 第二章 實驗方法 8 2.1 化學藥品 8 2.2 實驗合成方法 9 2.2.1 合成單源先驅物(Single Source Precursor, SSP) 9 2.2.2 合成銀奈米粒子(Ag Nanoparticles) 10 2.2.3 合成硫化銀奈米粒子(Ag2S Nanoparticles) 11 2.2.4 合成硫化鋅奈米線(ZnS Nanowires) 12 2.2.5 合成硫化鎘奈米線(CdS Nanowires) 14 2.2.6 合成硫化鋅-硫化鎘異質奈米線(ZnxCd1-xS Nanowires) 15 2.3 鑑定方法 16 2.3.1 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 16 2.3.2 場發射掃描穿透式球差修正電子顯微鏡(High-Resolution Transmission Electron Microscopy, HRTEM) 16 2.3.3 紫外-可見光光譜儀(UV-Visible Spectrophotometer, UV-Vis) 17 2.3.4 X光粉末繞射儀(Powder X-ray Diffraction, XRD) 17 2.3.5 螢光光譜儀(Photoluminescence Spectrophotometer, PL) 18 2.3.6 元素分析儀(Elemental Analyzer, EA) 18 2.3.7 X光近緣吸收光譜(X-ray absorption neat edge structure, XANES)與延伸X光吸收精細結構(Extended X-ray Absorption Fine Structure, EXAFS) 19 2.3.8 小角X光散射(Small angle X-ray scattering, SAXS) 19 2.3.9 螢光顯微鏡(Epifluorescence) 20 2.3.10 單光子計數系統(Time-Correlated Single Photon Counting, TCSPC) 20 第三章 結果與討論 22 3.1 單源先驅物(Single Source Precursor, SSP) 22 3.1.1 AgDDTC之純度分析 22 3.1.2 Zn(DDTC)2晶格結構與純度分析 23 3.1.3 Cd(DDTC)2晶格結構與純度分析 24 3.2 觸媒對奈米結構之影響(Effect of Catalyst) 26 3.3 硫化鋅奈米線(ZnS Nanowires) 33 3.3.1 合成溫度對Type-A硫化鋅奈米線合成之影響 33 3.3.2 合成時間對Type-A硫化鋅奈米線合成之影響 37 3.3.3 Type-A及Type-B硫化鋅奈米線之比較 51 3.3.4 硫化鋅奈米線之結構分析 56 3.3.5 硫化鋅奈米線生長機制之推測 68 3.3.6 章節結論 70 3.4 硫化鎘奈米線(CdS Nanowires) 71 3.4.1 合成溫度對硫化鎘奈米線之影響 71 3.4.2 合成時間對硫化鎘奈米線之影響 74 3.4.3 硫化鎘奈米線之光學性質分析 78 3.4.4 章節結論 80 3.5 硫化鋅-硫化鎘異質奈米線(ZnxCd1-xS Nanowires) 81 3.5.1 異質奈米線之結構分析 81 3.5.2 異質奈米線之光學性質分析 84 3.5.3 異質奈米線之生命週期分析 86 3.5.4 章節結論 91 第四章 結論 92 參考文獻 94 附件 97 附件一:Zn(DDTC)2及Cd(DDTC)2晶體結構數據 97 附件二:Zn(DDTC)2及Cd(DDTC)2之部分鍵長(Å)鍵角(deg) 98 附件三:Zn(DDTC)2 的checkcif報告 99 附件四:Cd(DDTC)2 的checkcif報告 102 附件五:EXAFS 擬合數據表 105 附件六:EXAFS 擬合結果 107 附件七:XRD 擬合數據表 113 附件八:XRD 擬合結果 116

    (1) Du, Y.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q., J. Am. Chem. Soc. 2010, 132, 1470.
    (2) Mourdikoudis, S.; Liz-Marzán, L. M., Chem. Mater. 2013, 25, 1465.
    (3) Wang, D.; Xie, T.; Peng, Q.; Li, Y., J. Am. Chem. Soc. 2008, 130, 4016.
    (4) Zhang, Y. J.; Liu, Y. S.; Li, C. Y.; Chen, X. Y.; Wang, Q. B., J. Phys. Chem. C 2014, 118, 4918.
    (5) Zhang, Y.; Xu, H.; Wang, Q., Chem. Commun. 2010, 46, 8941.
    (6) Zhu, G.; Zhang, S.; Xu, Z.; Ma, J.; Shen, X., J. Am. Chem. Soc. 2011, 133, 15605.
    (7) Zhang, Y. L.; Cai, J.; Ji, T. P.; Wu, Q.; Xu, Y. Y.; Wang, X. Z.; Sun, T.; Yang, L. J.; Hu, Z., Nano Res. 2015, 8, 584.
    (8) Jia, G.; Banin, U., J. Am. Chem. Soc. 2014, 136, 11121.
    (9) Han, W.; Gao, M., Cryst. Growth Des. 2008, 8, 1023.
    (10) Shen, S.; Zhang, Y.; Peng, L.; Xu, B.; Du, Y.; Deng, M.; Xu, H.; Wang, Q., CrystEngComm 2011, 13, 4572.
    (11) Barrelet, C. J.; Wu, Y.; Bell, D. C.; Lieber, C. M., J. Am. Chem. Soc. 2003, 125, 11498.
    (12) Zhu, G.; Xu, Z., J. Am. Chem. Soc. 2011, 133, 148.
    (13) Wang, J.; Feng, H.; Chen, K.; Fan, W.; Yang, Q., Dalton Trans. 2014, 43, 3990.
    (14) Shen, S.; Zhang, Y.; Liu, Y. H.; Peng, L.; Chen, X.; Wang, Q., Chem. Mater. 2012, 24, 2407.
    (15) Huang, F.; Zhou, J.; Xu, J.; Wang, Y., CrystEngComm 2014, 16, 9478.
    (16) Li, S.; Huang, X.; Liu, Q.; Cao, X.; Huo, F.; Zhang, H.; Gan, C. L., Nano Lett. 2012, 12, 5565.
    (17) Sun, Y.; Cui, H.; Yang, G. Z.; Huang, H.; Jiang, D.; Wang, C. X., CrystEngComm 2010, 12, 1134.
    (18) Hao, Y.; Meng, G.; Wang, Z. L.; Ye, C.; Zhang, L., Nano Lett. 2006, 6, 1650-5.
    (19) Woo, R. L.; Gao, L.; Goel, N.; Hudait, M. K.; Wang, K. L.; Kodambaka, S.; Hicks, R. F., Nano Lett. 2009, 9, 2207.
    (20) Dong, A.; Wang, F.; Daulton, T. L.; Buhro, W. E., Nano Lett. 2007, 7, 1308.
    (21) Wang, F.; Dong, A.; Sun, J.; Tang, R.; Yu, H.; Buhro, W. E., Inorg. Chem. 2006, 45, 7511.
    (22) Sun, J.; Buhro, W. E., Angew. Chem., Int. Ed. Engl. 2008, 47, 3215.
    (23) Wang, F.; Wayman, V. L.; Loomis, R. A.; Buhro, W. E., ACS Nano 2011, 5, 5188.
    (24) Wang, F.; Dong, A.; Buhro, W. E., Chem. Rev. 2016, 116, 10888.
    (25) Wang, F.; Buhro, W. E., Nano Lett. 2016, 16, 889.
    (26) Wang, F.; Buhro, W. E., ACS Nano 2017, 11, 12526.
    (27) Wang, F.; Buhro, W. E., Chem. Mater. 2018, 30, 1316.
    (28) O'Sullivan, C.; Gunning, R. D.; Sanyal, A.; Barrett, C. A.; Geaney, H.; Laffir, F. R.; Ahmed, S.; Ryan, K. M., J. Am. Chem. Soc. 2009, 131, 12250.
    (29) Zhang, Y. L.; Xu, R.; Chen, W. M.; Zhuo, O.; Wu, Q.; Cai, J.; Wang, X. Z.; Hu, Z., J. Mater. Chem. C 2017, 5, 6493.
    (30) Wang, J.; Chen, K.; Gong, M.; Xu, B.; Yang, Q., Nano Lett. 2013, 13, 3996.
    (31) McNally, P. J., Nature 2013, 496, 37.
    (32) Dong, A.; Tang, R.; Buhro, W. E., J. Am. Chem. Soc. 2007, 129, 12254.
    (33) Wang, J.; Yang, C.; Huang, Z.; Humphrey, M. G.; Jia, D.; You, T.; Chen, K.; Yang, Q.; Zhang, C., J. Mater. Chem. 2012, 22.
    (34) Lauhon, L. J.; Gudiksen, M. S.; Wang, D.; Lieber, C. M., Nature 2002, 420, 57.
    (35) Tersoff, J., Phys. Rev. B 1984, 30, 4874.
    (36) Huang, L.; Wang, X.; Yang, J.; Liu, G.; Han, J.; Li, C., J. Phys. Chem. C 2013, 117, 11584.
    (37) Kalpana, K.; Selvaraj, V., RSC Adv. 2016, 6, 4227.
    (38) Cao, H.; Ma, J.; Huang, L.; Qin, H.; Meng, R.; Li, Y.; Peng, X., J. Am. Chem. Soc. 2016, 138, 15727.
    (39) Xie, R.; Kolb, U.; Li, J.; Basche, T.; Mews, A., J. Am. Chem. Soc. 2005, 127, 7480.
    (40) Lyons, T. Y.; Williams, D. N.; Rosenzweig, Z., Langmuir 2017, 33, 3018.
    (41) Zhang, Y. J.; Shen, S. L.; Wang, Q. B., CrystEngComm 2014, 16, 9501.
    (42) Chen, M.; Feng, Y. G.; Wang, X.; Li, T. C.; Zhang, J. Y.; Qian, D. J., Langmuir 2007, 23, 5296.
    (43) 陳昱先. 藉由溶液-固體-固體法催化單源先驅物硫化鋅及硫化鎘奈米線. 國立台灣師範大學, 台北市, 台灣, 2016.
    (44) Zhang, L.; Yang, Q., Nano Lett. 2016, 16, 4008.
    (45) Lotty, O.; Hobbs, R.; O’Regan, C.; Hlina, J.; Marschner, C.; O’Dwyer, C.; Petkov, N.; Holmes, J. D., Chem. Mater. 2013, 25, 215.
    (46) Wang, J.; Fan, W.; Yang, J.; Da, Z.; Yang, X.; Chen, K.; Yu, H.; Cheng, X., Chem. Mater. 2014, 26, 5647.
    (47) Jung, Y. K.; Kim, J. I.; Lee, J. K., J. Am. Chem. Soc. 2010, 132, 178.
    (48) Peng, P.; Sadtler, B.; Alivisatos, A. P.; Saykally, R. J., J. Phys. Chem. C 2010, 114, 5879.
    (49) Madelung, O.; Rössler, U.; Schulz, M., Non-Tetrahedrally Bonded Elements and Binary Compounds I. 1998.
    (50) askIITians, Packing Efficiency. https://www.askiitians.com/iit-jee-Solid-State/packing-efficiency/.
    (51) Kuzmin, A.; Larcheri, S.; Rocca, F., J. Phys.: Conf. Ser. 2007, 93.
    (52) Gao, D.; Zhang, X.; Gao, W., ACS Appl. Mater. Interfaces 2013, 5, 9732.
    (53) Auer, S.; Frenkel, D., Nature 2001, 413, 711.
    (54) Kao, L. C.; Ye, Y. F.; Liu, Y. S.; Dong, C. L.; Guo, J. H.; Liou, S. Y. H., Journal of Materials Chemistry A 2018, 6, 10663-10673.
    (55) Yang, Y.; Scholz, R.; Fan, H. J.; Hesse, D.; Gosele, U.; Zacharias, M., ACS Nano 2009, 3, 555.
    (56) Yu, J. H.; Joo, J.; Park, H. M.; Baik, S. I.; Kim, Y. W.; Kim, S. C.; Hyeon, T., J. Am. Chem. Soc. 2005, 127, 5662.
    (57) Zheng, J.; Huang, F.; Yin, S.; Wang, Y.; Lin, Z.; Wu, X.; Zhao, Y., J. Am. Chem. Soc. 2010, 132, 9528.
    (58) Raju, M.; van Duin, A. C.; Fichthorn, K. A., Nano Lett. 2014, 14, 1836.
    (59) Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L. W.; Alivisatos, A. P., Science 2007, 317, 355.
    (60) Demchenko, D. O.; Robinson, R. D.; Sadtler, B.; Erdonmez, C. K.; Alivisatos, A. P.; Wang, L. W., ACS Nano 2008, 2, 627.
    (61) Karimipour, M.; Izadian, L.; Molaei, M., Luminescence 2018, 33, 202.
    (62) GmbH, B. H., Time-Correlated Single Photon Counting. 2002.
    (63) Lim, S. J.; Ma, L.; Schleife, A.; Smith, A. M., Coord. Chem. Rev. 2016, 320-321, 216.
    (64) Liu, D.; Lv, Y.; Zhang, M.; Liu, Y. H.; Zhu, Y.; Zong, R.; Zhu, Y., J. Mater. Chem. A 2014, 2.
    (65) Xie, J.; Li, S.; Wang, R.; Zhang, H.; Xie, Y., Chem. Sci. 2014, 5.

    下載圖示
    QR CODE