簡易檢索 / 詳目顯示

研究生: 羅士庭
Lo, Shih-Ting
論文名稱: 添加奈米二氧化矽於四行程機車機油中綜合性能與廢氣排放影響之研究
The study on four-stroke motorcycle engine performance and exhaust emissions using engine oil with nano silica additive
指導教授: 呂有豐
Lue, Yeou-Feng
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 83
中文關鍵詞: 奈米二氧化矽磨潤試驗燃料消耗率機車性能廢氣汙染排放粒狀汙染物
英文關鍵詞: nano silica, Tribology Experiment, Fuel consμmption, engine performance, Exhaust emissions, Particulate matter pollution
DOI URL: http://doi.org/10.6345/THE.NTNU.DIE.008.2018.E01
論文種類: 學術論文
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對四行程機車,添加奈米二氧化矽於原廠指定使用的機油中,研究機車在運行時的定油門車速(km/h)、燃料消耗率(km/L)、廢氣污染排放以及粒狀汙染物(PM)值做為實驗成果的效益評估。本研究總共試驗了0.5、1.5、2.5、3.5、4.5 wt.%的奈米二氧化矽機油,最後選定磨潤試驗表現較佳的3.5 wt.% 奈米二氧化矽機油。在磨潤試驗中,添加3.5 wt.% 的奈米二氧化矽粉體機油相較無添加奈米二氧化矽的機油,平均降低42.43 % 的磨耗量。在ECE-40行車型態的燃料消耗率(km/L)、爬坡度、定速測試,添加3.5 wt.%奈米二氧化矽的機油,在ECE-40行車型態的燃料消耗率測試平均增加了15.22 %的燃油效耗率,定油門開度測試平均車速增加了10.30 %,爬坡度測試平均車速增加了15.78 %,PM值測試0.3 μm顆粒平均增加了142.48 %、CO平均減少了16.9 %、HC平均減少8.36 %。奈米二氧化矽機油可以提供較佳的潤滑效果,在未來將可以測試複合奈米材料,測試其對於機車燃料消耗率、引擎溫度以及廢氣汙染排放的影響效益。

    In this study, nano silica (nano SiO2) was added in to the original named engine oil. It also be experimented on the four-stroke motorcycle. The characteristics of driving-experiment, which includes speed performance, specific fuel consμmption, and the exhaust emissions, such as HC, CO and PM, were estimated as experimental results for the further benefit evaluation. Nano SiO2-engine oil with 0.5, 1.5, 2.5, 3.5 and 4.5 wt.% included have been conducted. It came out that the best tribology experimental came to the engine oil with 3.5 wt.% nano SiO2 added. During the tribology experimental of nano SiO2-engine oil, the engine oil with 3.5 wt.% nano SiO2 added decreased an average of 42.42 % abrasion loss. The fuel consμmption (km/L), climbing capacity, constant velocity testing. The engine oil with 3.5wt.% nano SiO2 added increased the fuel consμmption, speed of fixed throttle testing, climbing capacity and 0.3μm particle with 15.22 %, 10.3 %, 15.78 % and 142.48 %, respectively. Besides, it also decreased the CO and HC with 16.9 % and 8.36 %, respectively. Overall, the engine oil with 3.5 wt.% nano SiO2 added improved the effect of lubricating. In the future, the examination of nano material includes motorcycle fuel consμmption, engine temperature and exhaust emissions would be conducted.

    摘 要 i Abstract ii 圖次 vi 表次 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究方法 4 1.5 論文架構 6 1.6 文獻回顧 6 第二章 相關理論與分析 9 2.1 磨潤發展 9 2.2 摩擦型態 10 2.2.1 摩擦古典定律 10 2.2.2 摩擦理論 10 2.2.3 黏著理論 11 2.2.4 摩擦現象 11 2.3 奈米流體基礎特性研究 21 2.4 內燃機潤滑油功用 22 2.5 油耗測試與量測方式 24 第三章 實驗裝置與方法 25 3.1 奈米粉體外觀檢測 27 3.2 奈米二氧化矽(SiO2)機油製備與基礎性質量測 29 3.2.1 奈米二氧化矽機油實驗樣本製備 29 3.2.2 沉降實驗 34 3.2.3 黏度量測實驗 34 3.2.4 比熱量測實驗 38 3.3 奈米機油磨潤實驗 42 3.4 奈米機油實車測試 47 3.4.1 燃料消耗量測試 49 3.4.2 綜合性能測試 51 3.4.3 廢氣排放HC與CO測試 52 3.4.4 廢氣PM值測試 53 第四章 實驗結果與討論 57 4.1 奈米二氧化矽外觀檢測結果 57 4.2 奈米二氧化矽機油備置結果 58 4.3 奈米二氧化矽機油沉降實驗 59 4.4 奈米二氧化矽機油基礎性質實驗結果 59 4.4.1 黏度實驗結果 60 4.4.2 比熱實驗結果 61 4.5 奈米二氧化矽機油磨潤實驗結果 62 4.5.1 試片磨耗重量結果 62 4.5.2 試片光學顯微鏡觀察結果 64 4.6 使用奈米二氧化矽機油與原廠機油的機車實車測試結果 66 4.6.1 ECE-40行車型態測試結果 66 4.6.2 油耗量測試結果 67 4.6.3 綜合性能測試結果 68 4.6.4 平路性能測試結果 70 4.6.5 爬坡性能測試結果 71 4.6.6 廢氣排放HC與CO結果比較 72 4.6.7 廢氣PM結果比較 75 第五章 結論與後續研究 77 5.1 結論 77 5.2 後續研究與建議 78 參考文獻 79

    [1] 105車輛油耗指南,經濟部,2016。
    [2] 曼格,德雷澤爾,潤滑劑與潤滑,617,趙旭濤,王建明,化學工業出版社,2003年6月。
    [3] Mohammad Hemmat Esfe, Masoud Afrand, Wei-Mon Yan, Hooman Yarmand, Davood Toghraie, Mahidzal Dahari. (2016). Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2(20–80)-SAE40 hybrid nano-lubricant. International Communications in Heat and Mass Transfer, 76, 133-138.
    [4] Xiangyu Ge, Yanqiu Xia, Zhengfeng Cao. (2015). Tribological properties and insulation effect of nanometer TiO2 and nanometer SiO2 as additives in grease. Tribology International ,92, 454–461.
    [5] Ting Luo, Xiaowei Wein, Xiong Huang, Ling Huang, Fan Yang. (2014). Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceramics International, 40, 143-149.
    [6] Xiangyu Ge , Yanqiu Xia , Zhengfeng Cao. (2015). Tribological properties and insulation effect of nanometer TiO2 and nanometer SiO2 as additives in grease. Tribology International, 92, 454–461.
    [7] Meena Laad , Vijay Kμmar S. Jatti. (2016). Titaniμm oxide nanoparticles as additives in engine Oil. Journal of King Saud University – Engineering Sciences, 13, January.
    [8] Hao-Jie Song, Zhao-Zhu Zhang, Xue-Hu Men. (2008). The tribological behaviors of the polyurethane coating filled with nano-SiO2 under different lubrication conditions. ScienceDirect Part A, 39, 188–194.

    [9] Ting Luo, Xiaowei Wein, Xiong Huang, Ling Huang, Fan Yang. (2014). Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceramics International, 40, 7143–7149.
    [10] Anuj Kμmar Sharmaa, Arun Kμmar Tiwari, Amit Rai Dixita. (2016). Characterization of TiO2, Al2O3 and SiO2 Nanoparticle based Cutting Fluids. ScienceDirect Proceedings, 3, 1890–1898.
    [11] Yuanliang Zhao, Xiaowen Qi, Yu Dong, Jian Ma, Qinglong Zhang, Laizhou Song, Yulin Yang, Qingxiang Yang. (2016). Mechanical, thermal and tribological properties of polyimide/nano-SiO2 composites synthesized using an in-situ polymerization. Tribology International, 103, 599–608.
    [12] Sheida Shahnazar, Samira Bagheri, Sharifah Bee Abd Hamid. (2016). Enhancing lubricant properties by nanoparticle. International journal of hydrogen energy, 41,3153-3170.
    [13] Hongmei Xie, Bin Jiang, Junjie He, Xiangsheng Xia, Fusheng Pan. (2016). Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesiμm alloy-steel contacts. Tribology International 93 63–70
    [14] 周仲榮,摩擦學發展前沿,316,科學出版社,2006年4月。
    [15] 李冠宗,潤滑學,370,高立圖書有限公司,1990年7月。
    [16] 溫詩濤,黃平,摩擦學原理,517,清華大學出版社,2003年11月。
    [17] 張嗣偉,基礎摩擦學,206,石油大學出版社,2001年4月
    [18] K. Lee, Y. Hwang, S. Cheong, L. Kwon, S. Kim, and J. Lee. (2010). Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Current Applied Physics, Vol.9, 128–131.
    [19] Ebrahim Dardan, Masoud Afrand, A.H. Meghdadi Isfahani. (2016). Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pμmping power. Applied Thermal Engineering, 109, 524–534.
    [20] J. L. Ma, K. Lee. (2009). Nano particles fluid as ultimate coolant. Journal of Power Sources, Vol.354, 242-248,
    [21] G. Ding, H. Peng, W. Jiang, and Y. Gao. (2008). The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant–oil mixture. International Journal of Refrigeration, Vol.32, 114–123.
    [22] C.U, Y. F. (2011). Experimental and thermal studies of nanofluid thermal conductivity a review nanoscale research letters. Journal of Power Apply, Vol.6, 229.
    [23] Jun-Jie Yang ,Yue-Kui Zhai. (2008). High-Power Engine Lubricants during the Past 30 Years. Transactions of CSICE, Vol.26, 26-100.
    [24] Hi as-Castillo and H. A. Spikes. (2010). Mechanism of Action of oildal Solid Dispersions. Journal of Tribology, Vol.185, 502-517.
    [25] Caijin Zhou, Yujun Wang, Le Du, Hongbao Yao. (2017). Preparation of highly dispersed SiO2 nanoparticles using continuous gas-based impinging streams. Chemical Engineering Journal, Volμme 327, 734-742.
    [26] ASTM G99-95a, (2000). Standard test method for wear testing with a pin-on-disk apparatus.
    [27] J. Zhou, J. Yang, Z. Zhang, W. Liu, and Q. Xue. (2009). Study on the structure and tribological properties ofsurface-modified Cu nanoparticles. Mater. Res. Bull,Vol.34, 1361-1367.

    [28] M. Babu, P. Sasikala, D. Elμmalai, P.K. Kaleena. (2017). Synthesis and characterization of SiO2 core -shell nanoparticles for bio-medical applications. Science Direct Physics Procedia, Volμme 30, 115-134.
    [29] Narendara, A.V.S.S Kμmara,Swami Gupta, A.Krishnaiaha, M.G.V.Satyanarayanac. (2017). Experimental investigation on the preparation and applications of Nano fluids. Proceedings, Volμme 4, Issue 2, Part A, Pages 3926-3931.
    [30] Dhinesh Kμmar, A.Valan Arasu. (2017). A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renewable and Sustainable Energy Reviews, Vol.9, 128–131.
    [31] U. Peng, G. Ding, R. Jiang, H. Hu, and Y. Gao. (2010). Heat transfer characteristics of nanofluid flow boiling inside a horizontal smooth tube. International Journal of Refrigeration, Vol.32, 1259-1270.
    [32] Z.S. Hu, R. Lai, F. Lou, L.G. Wang, Z.L. Chen, G.X. Chen, and J.X. Dong. (2006). Preparation and tribological properties of nanometer magnesiμm borate as lubricating oil additive. Wear, Vol.252, 370–374.
    [33] G. Liu, X. Li, B. Qin, D. Xing, Y. Guo, and R. Fan. (2009). Investigation of the Mending Effect and Mechanism of Copper Nano-Particles on a Tribologically Stressed Surface. Tribology Letters, Vol.17, 961-966.
    [34] L. Rapoport, V. Leshchinsky, M. Lvovsky, O. Nepomnyashchy, Y. Volovik, and R. Tenne. (2010). Mechanism of friction of fullerenes. Industrial Lubrication and Tribology, Vol.54, 171-176.
    [35] H. Chang, Z. Y. Li, M. J. Kao, K. D. Huang, and H. M Wu. (2009). Tribological property of Al2O3 nano lubricant on piston and cylinder surfaces. Journal of Alloys and Compounds, Vol.495, 481-484.
    [36] L. Rapoport, V. Leshchinsky, I. Lapsker, Y. Volovik, O. Nepomnyashchy, M. Lvovsky, R. Popovitz-Biro, Y. Feldman, and R. Tenne. (2009). Tribological properties of WS2 nanoparticles under mixed lubrication. Wear, Vol.255, 785-793.
    [37] Mohammad Sharif Zarei, Reza Kolahchi, Mohammad Hadi Hajmohammad, Mostafa Maleki (2017). Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles and fiber reinforced polymer (FRP) layer. Soil Dynamics and Earthquake Engineering, Volμme 103, 76 – 85.
    [38] S. Gi, K. Guo, Z. Liu, and Y. Wu. (2010). Performance of a domestic Nanoparticles as working fluid. EnergyConversion and Management, Vol.52, 733–737.

    無法下載圖示 本全文未授權公開
    QR CODE