簡易檢索 / 詳目顯示

研究生: 蔡閎丞
Tsai, Hung-Cheng
論文名稱: 使用皮秒雷射雕刻玻璃導光板之微結構
Use Pico-Laser to Engrave Glass Light Guide Plate with Microstructures
指導教授: 鄧敦建
Teng, Tun-Chien
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 91
中文關鍵詞: 雷射燒蝕雷射雕刻微結構玻璃導光板皮秒雷射
英文關鍵詞: laser ablation, laser engraving, mircostructure glass light guide plate, pico-laser
DOI URL: http://doi.org/10.6345/THE.NTNU.DME.013.2018.E08
論文種類: 學術論文
相關次數: 點閱:78下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來,大尺寸的超薄液晶顯示器(Liquid Crystal Display, LCD)已成為主流。為了降低厚度,除了採用更薄的導光板外,側入式背光模組中的其他支撐部件也都被移除或簡化以進一步降低整體厚度;這將導致由PMMA製成的導光板(Light Guide Plate, LGP)材料強度不足以支撐背光。相比之下,由玻璃製成的導光板比PMMA導光板具有更高的材料強度,因此被視為潛在的解決方案。然而,目前除了網版印刷之外,很難直接在玻璃LGP上形成微結構;然而網版印刷的使用在玻璃材料上仍有其限制。另一方面,由於皮秒雷射(Picosecond Laser, Pico-Laser)具有非線性光子吸收特性和低熱影響區而適用於加工玻璃材料,所以我們試圖用皮秒雷射來製造微結構玻璃導光板,並且研究雷射加工參數對微結構玻璃導光板出光行為的影響。在本研究中,我們使用532 nm的皮秒雷射直接在康寧玻璃基板(Iris glass)表面雕刻出凹面微結構,以評估實際製造微結構玻璃導光板的可行性,包括皮秒雷射製程參數(包括焦點位置,功率,掃描速度和填滿間距)對雕刻表面形貌以及出光行為的影響。此外,在製程的後處理部分採用熱回流(Thermal reflow)和HF化學濕蝕刻兩種不同製程來平滑樣品的微結構輪廓,減少因表面粗糙造成的雜散光,進而改善出光特性。最後,我們展示了6英吋的微結構玻璃導光板樣品。實驗結果顯示:在最佳製程條件下,經過微結構圖案密度分布最佳化所設計製作的樣品,其出光平均輝度與均齊度可分別達到1.03 x 103 cd/m2與0.793。

    Recently, the large-sized, ultra-slim Liquid-Crystal Display(LCD) has become the mainstream. Therefore, the light guide plate (LGP) is becoming thinner, and the supporting components in the edge-lit backlight are removed to further reduce the entire thickness, which led the LGP made of PMMA too weak to support the backlight. In contrast, the LGP made of glass has much higher stiffness than that of PMMA and thus has become a potential solution. However, it is difficult to form microstructures directly on the glass LGP except screen-printing, but screen-printing has the limit for glass material. Because the Picosecond Laser (pico-laser) has the characteristics of nonlinear photon absorption and low heat affected zone suitable to machine the glass material, we tried to use the laser to fabricate a sample of the microstructure glass LGP and investigate the effects of the process parameters of the laser on the optical behaviors of the LGP. In this study, we tried to use a pico-laser of 532 nm to engrave a glass substrate (Iris glass, Corning) with concave microstructures to evaluate the feasibility of practically fabricating a LGP, and investigated the effects of laser processing parameters, including focus position, power, scanning speed, and scanning pitch on the morphology of engraving surface. In addition, we adopted two kinds of post-processing, thermal reflow and HF chemical wet etching, to smooth the microstructure of the sample and reduce stray light caused by surface roughness, thereby improving the light-emitting characteristics. Finally, we demonstrated a sample of the 6-inch glass LGP and verified the feasibility of fabricating a microstructure glass LGP using ablation by the pico-laser. With the optimal process parameters and distribution of pattern density, the average luminance and uniformity of the LGP sample is 1.03 x 103 cd/m2 and 0.793.

    摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 液晶顯示器介紹 1 1.2.1 直下式背光模組 2 1.2.2 側光式背光模組 2 1.3 背光模組元件及光學膜片介紹 3 1.4 研究動機與目的 5 1.5 論文架構 5 第二章 雷射理論及文獻回顧 6 2.1 雷射簡介 6 2.2 雷射原理 6 2.2.1 輻射與物質的交互作用 7 2.2.2 居量反轉(Population inversion) 8 2.2.3 泵浦源(Pumping source) 9 2.2.4 增益介質(Gain medium) 9 2.2.5 共振腔(Optical cativy/Optical resonator) 9 2.3 雷射光特性 9 2.3.1 雷射模態 9 2.3.2 指向性(Directionality) 10 2.3.3 單色性(Monochromaticity) 10 2.3.4 雷射功率輸出的時間形式(Temporal Behavior of Laser Output) 10 2.3.5 雷射光的聚焦性質 11 2.3.6 雷射的亮度與功率 11 2.4 雷射種類 11 2.4.1 氣體雷射 11 2.4.2 固體雷射 13 2.4.3 液體雷射 13 2.4.4 半導體雷射 13 2.5 超短脈衝雷射概述 14 2.5.1 超短脈衝雷射加工的多光子吸收 15 2.5.2超短脈衝雷射表面加工機制 16 2.6 文獻回顧 16 2.6.1 玻璃導光板應用與趨勢之文獻回顧 16 2.6.2 超短脈衝加工文獻回顧 18 2.6.3 改善玻璃導光板微結構之相關文獻 21 第三章 實驗設備與方法 30 3.1 實驗與量測設備 30 3.2 實驗流程與方法 33 3.2.1 實驗流程 33 3.2.2 實驗方法 35 3.3 熱回流(Thermal reflow)製程 43 3.3.1 動機與實驗方法 43 3.3.2 實驗小結 46 3.4 HF化學濕蝕刻製程 47 3.4.1動機與實驗方法 47 3.4.2 LSCM量測結果 47 3.4.3 SEM拍攝結果 54 第四章 量測結果與討論 63 4.1 實驗樣品與模組光學特性量測 63 4.1.1 雷射製程的樣品之光學特性量測 65 4.1.2 經HF蝕刻後的樣品之光學特性量測 71 4.1.3 雷射製程的樣品之出光輝度量測 77 4.1.4 經HF蝕刻後的樣品之出光輝度量測 77 4.2 模擬軟體優化微結構分佈 80 4.2.1 雷射加工BPO的樣品之出光輝度量測 81 4.2.2 BPO的修改與加工 83 第五章 結論與未來展望 86 5.1 結論 86 5.2 未來展望 87 參考文獻 88 附錄A 91

    [1] 液晶顯示器,https://zh.wikipedia.org/wiki/液晶显示器
    [2] 張國順,鄭壽昌,“現代雷射製造技術”,初版,新文京開發出版股份有限公司,台灣,2008/1。
    [3] Y. Kondo, M. Inoue, K. Ishikawa, K. Mori, “ Glass light guide plate for ultrathin large-sized television,” SID 2016 DIGEST, Japan, 1094-1097 (2016).
    [4] S. Burdette, D. Joshi, A. Tremper, H. Vepakomma, “Mechanics of Ultra-slim Television Sets with Glass Light Guide Plate,” SID 2017 DIGEST, Japan, 1209-1212 (2017).
    [5] Y. Arai, M. Inoue, K. Ishikawa, T. Yokote, Y. Kondo, K. Mori, “Evolution of the glass light guide plate and its peripheral technologies for large size TV application,” SID 2017 DIGEST, Japan, 1663-1666 (2017).
    [6] K. Hsiao, R. Chang Chien, J.-Yu Chang, D.-Hua Li, X.-Jie Xu, “3.9-mm ultra-slim curved TV having a glass light-guide plate,” SID 2017 DIGEST, Japan, 1205-1207 (2017).
    [7] B.N. Chicbkov, C. Momma, S. Nolte, F. yon Alvensleben, A. Tiinnermann, “ Femtosecond, Picosecond and Nanosecond Laser Ablation of Solids,” Appl. Phys. A, 63, 109–115 (1996).
    [8] M. Sun, U. Eppelt, C. Hartmann, W. Schulz, J. Zhu, Z. Lin, “Damage morphology and mechanism in ablation cutting of thin glass sheets with picosecond pulsed lasers,” Optics & Laser Technology, 80, 227–236 (2016).
    [9] Y. Chen, A. Y Yi, D. Yao, F. Klocke, G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” Journal of micrimechanics and microengineering, 18, 055022(8p.p.) (2008).
    [10] F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond –laser -enhanced local wet etching method,” Optics Express, 18, 20334-200343 (2010).
    [11] S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Optics Express, 22, 29283-29291 (2014).
    [12] H.-Kool Choi, Md. Shamim Ahsan, D. Yoo, I.-Bu Sohn, Y.-Chul Noh, J.Tae Kim, D. Jung, J.- Hyeok Kim, H.-Min Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Optics & Laser Technology, 75, 63-70 (2015).
    [13] T. Delgado, D. Nieto, María Teresa Flores-Arias, “Soda-lime glass microlens arrays fabricated by laser: Comparison between a nanosecond and a femtosecond IR pulsed laser,” Optics and Lasers in Engineering, 86, 29-37 (2016).
    [14] A. N. Samant, N. B. Dahotre, “Laser machining of structural ceramics,” Journal of the European Ceramic Societ, 29, 969–993 (2009).
    [15] K. L. Wlodarczyk, A. Brunton, P. Rumsby, D. P. Hand, “Picosecond laser cutting and drilling of thin flex glass,” Optics and Lasers in Engineering, 78, 64–74 (2016).
    [16] S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Zheng, H. Qiu, D. Low,“Precision glass machining, drilling and profile cutting by short pulse lasers,” Thin Solid Films, 477, 216– 221 (2005).
    [17] 林三寶,“雷射原理與應用”,第三版,全華圖書股份有限公司,台灣2016/3。
    [18] 丁勝懋,“雷射工程導論”,第四版,中央圖書出版社,台灣,2000/9。
    [19] 黃錦賢,“雷射加工能力本位訓練教材-認識雷射種類”,中華民國職業訓練研究發展中心,2001/12。
    [20] 背光模組結構分析,https://kknews.cc/zh-tw/digital/9oy3mj.html
    [21] 雷射介紹,https://en.wikipedia.org/wiki/Laser

    下載圖示
    QR CODE