簡易檢索 / 詳目顯示

研究生: 耿翊
Ken, I
論文名稱: 利用衛星影像評估莫蘭蒂颱風對金門本島地景變遷 及森林恢復之影響
The Impact of Typhoon Meranti on Landscape Change and Forest Recovery in Kinmen with Satellite Images
指導教授: 陳建璋
Chen, Jan-Chang
魏浚紘
Wei, Chun-Hung
學位類別: 碩士
Master
系所名稱: 農學院 - 森林系所
Department of Forestry
畢業學年度: 107
語文別: 中文
論文頁數: 92
中文關鍵詞: 地上生物量森林恢復地景指標常態化差異植生指標
外文關鍵詞: Above Ground Biomass, Forest Recovery, Landscape Metrics, Normalized Difference Vegetation Index
DOI URL: http://doi.org/10.6346/NPUST201900091
相關次數: 點閱:25下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 臺灣位於颱風常經路徑上,於夏季時,颱風挾帶之強風及大量降水引起臺灣各類型之災害,金門地區因有臺灣地形屏障雖受颱風之影響較小,但於2016年莫蘭蒂颱風造成金門地區嚴重災情,產生劇烈地景變化,特別是森林生態系深受颱風影響嚴重。隨著遙測(Remote Sensing, RS)技術精進,配合地景生態學(Landscape Ecology)概念的發展,使地景生態監測更加容易執行,且可針對長時間尺度或大範圍之地景進行研究。本研究利用Sentinel 2衛星影像進行影像分類,監測金門地區於莫蘭蒂颱風前後森林及地景變化,並分析森林面積、常態化差異植生指標(Normalized Difference Vegetation Index, NDVI)、地上生物量(Above Ground Biomass, AGB)、土地利用類型及地景指標之變遷與變化,以了解莫蘭蒂颱風對金門地區之衝擊。研究結果顯示,影像分類總體準確度為89%,kappa值為0.87,森林範圍因受颱風影響而受損後減少了約16%,於隔年再減少15%,於颱風後2年部分受損森林逐漸恢復;NDVI於颱風過後年明顯下降,於颱風後1年因林木之重新生長而迅速恢復;AGB估量中以NDVI作為依據,並建立金門地區適用之迴歸式,發現AGB於颱風當年下降約82%,於颱風後兩年即恢復至颱風前之狀態;地景指標中藉由Shannon 地景多樣性(Shannon`s Diversity Index, SHDI)之t-檢定顯示颱風確實造成金門地景多樣性提升(p < 0.01),因金門本島之森林面積最大,SHDI之上升代表森林面積相對縮減,導致其與其他土地利用面積比例更為接近,因此就森林恢復情形而言,SHDI下降可能代表森林有所恢復。研究結果可供為森林災害監測研究之參考。

    Taiwan is located on a frequent pathway of typhoon and is more likely to be affected by strong wind and heavy rainfalls in the summer. Though, typhoon is less likely to have an impact on Kinmen due to the topographic effects of Taiwan; however, in 2016, a catastrophic typhoon Meranti struck Kinmen and has made an major impact to the landscape of Kinmen, and which forests of Kinmen is believed to be affected. With the developing and advancing techniques of remote sensing and its integration with landscape ecology, the execution of landscape monitoring has been enhanced, including monitoring in larger spatial scale or longer time scale available. Sentinel 2 satellite imagery was applied and classified for monitoring Kinmen landscape and land use changes before and after typhoon Mernati. Forest area, NDVI, AGB, landscape metrics and land use transformation matrix were applied in this study. The overall accuracy of classification was 89.89% (kappa = 0.87). Results showed the forest was damaged by typhoon Meranti and leads to a decrease in area by 16% after typhoon Meranti, and 15% more afterwards, but started to recover in 2018. A significant fall in NDVI was discovered during the year of typhoon Meranti occurred, and due to forest regrowth, NDVI returned to pre-typhoon status. AGB estimation was calculated by a regression model developed within this study, and results showed an 82% decrease in 2016, but recovered to pre-typhoon status shortly in 2018. Through SHDI t-test, the landscape diversity of Kinmen raised significantly (p < 0.01). While the forest accounts for the largest land use in Kinmen, a growing SHDI trend indicates that the proportion of forest has become closer to other land use types. In terms of forest recovery, SHDI decreases might indicate that forest is recovering. The result of this study can be used as reference in monitoring studies of forest disasters.

    摘要 I
    ABSTRACT III
    圖目錄 IX
    表目錄 XI
    壹、前言 1
    一、研究動機 1
    二、研究目的 2
    貳、文獻回顧 3
    一、颱風對於小型島嶼之影響 3
    (一)颱風對於小型島嶼之影響機制 4
    (二)金門本島之颱風災害 6
    二、地景生態學之基本理論 7
    三、地景生態學與RS影像之結合 11
    (一)RS技術於地景生態學之應用 11
    (二)多時期影像於森林地景變遷之應用 12
    參、材料與方法 16
    一、研究材料 16
    (一)金門地區環境概述 16
    (二)莫蘭蒂颱風路徑 19
    (三)衛星影像分類材料 20
    (四)現地資料 20
    二、研究方法 21
    (一)地景變遷圖層建立及準確度評估 21
    (二)金門本島於莫蘭蒂颱風前後之地景變遷分析 23
    三、研究流程 29
    肆、結果與討論 30
    一、影像分類準確度評估及土地利用類型變遷 30
    (一)影像分類準確度評估 30
    (二)土地利用類型變遷分析 35
    二、金門本島於莫蘭蒂颱風前後地景變遷及森林變化 40
    (一)森林面積於各時期變化 40
    (二)生物量估算及變化分析 45
    (三)地景指標變遷分析 50
    三、金門本島之森林恢復探討 60
    伍、結論 63
    陸、參考文獻 65

    中央氣象局 (1974) 民國六十二年颱風調查報告(第一號侵臺颱風魏達),第1-5頁。民國六十二年颱風調查報告。中央氣象局。39頁。
    內政部 (2017) 莫蘭蒂颱風影響臺灣與颱風警報發佈解除時間,第2頁。莫蘭蒂颱風中央災害應變中心總結報告。內政部。175頁。
    王素芬、陳永寬、鄭祈全 (1999) 地理資訊系統和碎形維度於森林地景空間變化上之應用。航測及遙測學刊 4(2): 33-53.
    吳坤真、何莞薇、陳建璋、陳朝圳 (2013) 墾丁國家公園地景變遷與銀合歡入侵之關係。國家公園學報 23(4): 32-41.
    林士強 (2013) 金門島嶼型災害特性及規模設定方法之探討。地理學報 69: 1-24。
    邱祈榮、黃愷茹、葉媚媚、潘孝隆、葉名容 (2007) 金門地區森林經營計畫目標及策略制訂之研究。中華林學季刊 40(3): 357-375。
    邱祈榮、潘孝隆、葉媚媚、黃愷茹 (2007) 金門地區防風保安林劃設之研究。中華林學季刊 40(2): 229-240。
    金門縣林務所 (2014) 金門第五期森林經營計畫檢訂調查期末報告書。金門縣林務所。99頁。
    金門縣林務所 (2016) 金門地區莫蘭蒂颱風森林災損評估案期末報告書。 金門縣林務所委託計畫。92頁。
    康若蘭、林登秋、詹進發、黃正良 (2005) 2000年碧利斯颱風干擾前後福山試驗林NDVI變動之研究。臺灣林業科學 20(1): 73-87。
    張國楨、田應平、龍孝謙 (2012) 以多時期與PCA+NDVI法改善地物分類之正確性與完整性。地理研究 57: 49-60。
    莊睦雄、林文苑、李佳翰、陳首騎 (2017) 協力機構協助地方政府颱風應變情資研判—以銘傳大學協助宜蘭與金門縣為例。災害防救科技與管理學刊 6(2): 59-76。
    連美綺、吳治達、莊永忠、廖學誠 (2013) 桃園海岸防風林時空變遷之研究。工程環境學刊 30: 21-34。
    郭城孟、陳尊賢 (2002) 金門國家公園土壤調查分析及植生適應性研究。內政部營建署金門國家公園管理處委託研究報告。
    郭耀綸、尤國霖、楊月玲、王相華(2007) 颱風擾動對台灣南部墾丁森林林下光量及六種樹苗生長的影響。臺灣林業科學22(4): 367-80。
    陳正改 (2016) 參與「建設金門和馬祖氣象站」的心路歷程。中華防災學刊 8(1):79-96。
    陳國彥 (1985) 金門的氣候。國立臺灣師範大學地理研究報告 11: 187-195。
    陳淑慈、許中立、郭子銘、吳俊昇、許正崴、翁主怡、江泓詮 (2011) 南瑪都颱風期間來義鄉之防災應變作為檢討。坡地防災學報10(2): 37-48。
    陳添水 (2003) 應用遙測於濁水溪口海岸地區土地覆蓋變遷分析。 特有生物研究 5(2): 61-72。
    陳朝圳、陳正華、吳守從 (2001) 人為干擾對南仁山生態保護區地景之影響。林業研究季刊 23(2): 25-34。
    曾國欣、彭新雅、廖文弘、陳繼藩、郭重言 (2018) 利用衛星影像劃設金門海岸潮間帶與監測時序變化。國土測繪與空間資訊6(1): 31-48。
    黃志成、馮豐隆 (1998) 淺論地景生態學。臺灣林業 24(4): 37-49。
    黃雅莉、陳朝圳 (2018)以地景指數探討高屏溪流域崩塌地之時序變遷。林業研究季刊 40(1): 13-30。
    楊婉如 (2007) 金門島地景變遷監測與分析-1995、2000、2001年。國立臺灣大學地理環境資源研究所碩士論文。
    葉媚媚 (2005) 金門地區林相改良成果探討。國立臺灣大學森林環境暨資源學系碩士論文。
    鄔建國 (2003) 景觀生態學-格局、過程、尺度與等級。五南圖書出版,初版一刷。364頁。
    劉宣甫 (2015) 以地景生態探討林後四林森林園區土地利用型態之變遷及其對生物多樣應的影響。國立屏東科技大學森林系碩士學位論文。
    蔣為民 (2002) 民國八十八年颱風調查報告-丹恩颱風,第23-46頁。民國八十八年颱風調查報告。中央氣象局。64頁。
    鄭祈全 (1999) 森林地景變遷之監測研究。臺灣林業科學 14(4): 493-507。
    鄭祈全、許立達、賴玉菁 (2001) 應用地理資訊系統監測森林地景變遷之研究。 臺灣林業科學 16(1): 1-9。
    鄭祈全、詹進發、許立達 (1999)應用碎形維度監測森林地景結構與變遷之研究。 臺灣林業科學 14(4): 397-407。
    鄭遠昌 (2016) 金門海岸的特殊地景。地景保育工作 42: 29-33。
    鍾玉龍、呂明倫(2005)利用衛星RS影像探討保安林地景結構之研究。航測及遙測學刊 10(4): 315-326。
    Allen T.F.H., and T.B. Starr (1982) Hierarchy: Perspectives for Ecological Complexity. University of Chicago Press: 1427 E. 60th Street Chicago, IL 60637 USA. 352pp.
    Almeida D.R.A., E.N. Broadbent, A.M.A. Zambrano, B.E. Wilkinson, M.E. Ferreira, R. Chazdon, P. Meli, E.B. Gorgens, C.A. Silva, S.C. Stark, R. Valbuena, D.A. Papa,P.H.S. Brancalion (2019) Monitoring the structure of forest restoration plantations with a drone-lidar system. International Journal of Applied Earth Observation and Geoinformation 79: 192-198.
    Almeida D.R.A., S.C. Stark, R. Chazdon, B.W. Nelson, R.G. Cesar, P. Meli, E.B. Gorgens, M.M. Duarte, R. Valbuena, V.S. Moreno, A.F. Mendes, N. Amazonas, N.B. Gonçalves, C.A. Silva, J. Schietti, P.H.S. Brancalion (2019) The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management 438: 34-43.
    Antrop M. (1998) Landscape change: plan or chaos? Landscape and Urban Planning 41: 155-161.
    Briguglio L. (1995) Small island developing states and their economic vulnerabilities. World Development 23(9): 1615-1632.
    Chave J., M. Réjou-Méchain, A. Búrquez, E. Chidumayo, M.S. Colgan, W.B. Delitti, A. Duque, T. Eid, P.M. Fearnside, R.C. Goodman, M. Henry, A. Martínez-Yrízar, W.A. Mugasha, H.C. Muller-Landau, M. Mencuccini, B.W. Nelson, A. Ngomanda, E.M. Nougueira, E. Ortiz-Malavassi, R. Pélissier, P. Ploton, C.M. Ryan, J.G. Saldarriaga, and G. Vieilledent (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20(10): 3177-3190.
    Chen B., Z. Chen, W. Stephenson, and B. Finlayson (2011) Morphodynamics of a boulder beach, Putuo Island, SE China coast: The role of storms and typhoon. Marine Geology 283: 106-115.
    Chen L., Y. Liu, Y. Lü, X. Feng, and B. Fu (2008) Pattern analysis in landscape ecology: progress challenges and outlook. Acta Ecologica Sinica 28(11): 5521-5531.
    Chiang S.H., and K.T. Chang (2011) The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010-2099. Geomorphology 133: 143-151.
    Chu H. (2014) Spatiotemporal analysis of vegetation index after typhoons in the mountainous watershed. International Journal of Applied Earth Observation and Geoinformation 28: 20-27.
    Dong T., J. Liu, J. Shang, B. Qian, B. Ma, J.M. Kovacs, D. Walters, X. Jiao, X. Geng, and Y. Shi (2019) Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sensing of Environment 222: 133-143.
    Dunning J.B., B.J. Danielson, and H.R. Pulliam (1992) Ecological processes that affect populations in complex landscapes. Oikos 65(1): 169-175.
    Fern R.R., E.A. Foxley, A.Bruno, and M.L. Morrison (2018) Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland. Ecological Indicators 94: 16-21.
    Fischer A. P. (2018) Forest landscapes as social-ecological systems and implications for management. Landscape and Urban Planning 177: 138-147.
    Forman R.T.T. (1995) Some general principles of landscape and regional ecology. Landscape Ecology 10(3): 133-142.
    Forman R.T.T., and M. Godron (1986) Landscape Ecology. Wiley, New York, USA. 640pp.
    Gall S.C., and R.C. Thompson (2015) The impact of debris on marine life. Marine Pollution Bulletin 92: 170-179.
    Gasparri N.I., M.G. Parmuchi, J. Bono, H. Karszenbaum, and C.L. Montenegro (2010) Assessing multi-temporal Landsat 7 ETMþ images for estimating above-ground biomass in subtropical dry forests of Argentina. Journal of Arid Environments 74: 1262-1270.
    Gergel S.E., and M.G. Turner (2017) Learning Landscape Ecology. ED.2 Springer-Verlag, New York. 350pp.
    Graves S.J., T.T. Caughlin, G.P. Asner, and S.A. Bohlman (2018) A tree-based approach to biomass estimation from remote sensing data in a tropical agricultural landscape. Remote Sensing of Environment 218: 32-43.
    Goto K., K. Okada, and F. Imamura (2009) Characteristics and hydrodynamics of boulders transported by storm waves at Kudaka Island, Japan. Marine Geology 262: 14-24.
    Haila Y., I.K. Hanski, and S. Raivio (1987) Breeding bird distribution in fragmented coniferous taiga in Southern Finland. Ornis Fennica 64: 90-106.
    Hobbs R. (1997) Future landscapes and the future of landscape ecology. Landscape and Urban Planning 37: 1-9.
    Hutcheson K. (1970) A test for comparing diversities based on the Shannon formula. Journal of Theoretical Biology 29(1): 151-154.
    IPCC (2003) LUCF SECTOR GOOD PRACTICE GUIDANCE. 3.13-3.15. In: Good Practice Guidance for Land Use, Land-Use Change and Forestry. IPCC National Greenhouse Gas Inventories Programme. Edited by Penman J., M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, and F. Wagner. Published by the Institute for Global Environmental Strategies (IGES) for the IPCC. Japan. 590pp.
    Ishihara T., A. Yamaguchi, K. Takahara, T. Mekaru, and S. Matsuura (2005) An Analysis of Damaged Wind Turbines by Typhoon Maemi in 2003. p. 1413-1428. In: Proceeding of The sixth Asia-Pacific Conference on Wind Engineering(APCWE-VI). September 12-14, 2005. Seoul, Korea. Published by Yuseong, Daejeon, Korea : Techno-Press, Korea.
    Jang Y.C., S. Hong, J. Lee, M.J. Lee, and W.J. Shim (2014) Estimation of lost tourism revenue in Geoje Island from the 2011 marine debris pollution event in South Korea. Marine Pollution Bulletin 81: 49-54.
    Jeon M., K. Lee, and Y. Choung (2015) Gap formation and susceptible Abies trees to windthrow in the forests of Odaesan National Park. Journal of Ecology and Environment 38(2): 175-183.
    Kabisch N., P. Selsam, T. Kirsten, A. Lausch, and J.Bumberger (2019) A multi-sensor and multi-temporal remote sensing approach to detect land cover change dynamics in heterogeneous urban landscapes. Ecological Indicators 99: 273-282.
    Kelman I., and J.J. West (2009) Climate change and small island developing states: a critical review. Ecological and Environmental Anthropology 5: No.1.
    Khazai B., F. Mahdavian, and S. Platt (2018) Tourism Recovery Scorecard (TOURS) – Benchmarking and monitoring progress on disaster recovery in tourism destinations. International Journal of Disaster Risk Reduction 27: 75-84.
    Kim J.S., S. Jain, H.Y. Kang, Y.I. Moon, and J.H. Lee (2019) Inflow into Korea`s Soyang Dam: hydrologic variability and links to typhoon impacts. Journal of Hydro-environment Research 22: 50-56.
    Knipling E.B. (1970) Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment 1(3): 155 - 159.
    Kolasa J., and C.D. Rollo (1991) Introduction: The Heterogeneity of Heterogeneity: A Glossary. In: Kolasa J., Pickett S.T.A. (eds) Ecological Heterogeneity. Ecological Studies (Analysis and Synthesis), Vol 86. Springer, New York, NY.
    Latifi H., F.E. Fassnacht, F. Hartig, C. Berger, J. Hernández, P. Corvalán, and B. Koch (2015) Stratified aboveground forest biomass estimation by remote sensing data. International Journal of Applied Earth Observation and Geoinformation 38: 229-241.
    Lausch A., and F. Herzog (2002) Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecological Indicators 2: 3-15.
    Lausch A., T. Blaschke, D. Haase, F. Herzog, R. Syrbe, L. Tischendorf, and U. Walz (2015) Understanding and quantifying landscape structure - a review on relevant process characteristics, data models and landscape metrics. Ecological Modelling 295: 31-41.
    Lee J.T., K.Y. Ko, D.I. Lee, C.H. You, and Y.C. Liou (2018) Enhancement of orographic precipitation in Jeju Island during the passage on Typhoon Khanun (2012). Atmospheric Research 201: 58-71.
    Lee M., T. Lin, M.A. Vadeboncoeur, and J. Hwong (2008) Remote sensing assessment of forest damage in relation to the 1996 strong typhoon Herb at Lienhuachi Experimental Forest, Taiwan. Forest Ecology and Management 255: 3297-3306.
    Le Marie G., C. Marsden, Y. Nouvellon, C. Grinand, R. Hakamada, J. Stape, and J. Laclau (2011) MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass. Remote Sensing of Environment 115: 5613-2625.
    Li Y., X. Xu, and B. Zheng (2018) Satellite views of cross-strait sediment transport in the Taiwan Strait driven by Typhoon Morakat (2009). Continental Shelf Research 166: 54-64.
    Mascaro J., I. Perfecto, O. Barros, D. H. Boucher, I. G. De La Cerda, J. Ruiz, and J. Vandermeer (2005) Aboveground biomass accumulation in a tropical wet forest in Nicaragua following a catastrophic hurricane disturbance. Biotropica 37(4): 600-608.
    Matson P.A., and S.L. Ustin (1991) Special feature: the future of remote sensing in ecological studies. Ecology 72: 1917 - 1945.
    McGarigal K.; Marks, Barbara J. 1995. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. Portland OR.: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 122 pp.
    Mongus D., and B. Žalik (2018) Segmentation schema for enhancing land cover identification: A case study using Sentinel 2 data. International Journal of Applied Earth Observation and Geoinformation 66: 56-68.
    Naveh Z., and A.S. Lieberman (1994) Landscape Ecology :Theory and Application. Springer-Verlag, New York, USA. 360pp.
    Pandit S., S. Tsuyuki, and T. Dube (2018) Estimating above-Ground biomass in sub-tropical buffer zone community forests, Nepal, Using Sentinel 2 Data. Remote Sensing 10, 601.
    Pflugmacher D., W.B. Cohen, R.E. Kennedy, and Z. Yang (2014) Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics. Remote Sensing of Environment 151: 124-137.
    Quattrochi D.A., and R.E. Pelletier (1991) Remote Sensing for Analysis of Landscapes: An Introduction. 51-76pp. In: Turner M.G., and R.H. Godron ed. Quantative Methods in Landscape Ecology. Springer-Verlag, New York. 536pp.
    Ricklefs R.E. (1987) Community diversity: relative roles of local and regional processes. Science 235(4785): 161-171.
    Sano T., T. Hirano, N. Liang, R. Hirata, and Y. Fujinuma (2010) Carbon dioxide exchange of a larch forest after a typhoon disturbance. Forest Ecology and Management 260: 2214-2223.
    Sato T., Y. Kominami, S. Saito, K. Niiyama, H. Tanouchi, D. Nagamatsu, and H. Nomiya (2010) Temporal dynamics and resilience of fine litterfall in relation to typhoon disturbances over 14 years in an old-growth lucidophyllous forest in southwestern Japan. Plant Ecology 208: 187-198.
    Shih H. J., H. Chen, T. Y. Liang, H. S. Fu, C.H. Chang, W.B. Chen, W.R. Su, and L.Y. Lin (2018) Generating potential risk maps for typhoon-induced waves along the coast of Taiwan. Ocean Engineering 163: 1-14.
    Song C., C.E. Woodcock, K.C. Seto, M.P. Lenney, and S.A. Macomber (2001) Classification and change detection Using Landsat TM Data: when and how to correct atmospheric effects? Remote Sensing of Environment 75: 230-244.
    Tsuji Y., and S. Takatsuki (2008) Effects of a Typhoon on Foraging Behavior and Foraging Success of Macaca fuscata on Kinkazan Island, Northern Japan. International Journal of Primatology 29: 1203-1217.
    Tu H.M., and H.M. Chen (2017) Slopeland hazard and respiratory health: the example of Typhoon Morakat in Taiwan. Landscape and Urban Planning 157: 375-382.
    UNEP (2011) UNEP Year Book: Emerging Issues in our Global Environment. UNEP Division of Early Warning and Assessment, United Nations Environment Programme, Nairobi. 92pp.
    Urban D.L., R.V. O`Neill, and H.H. Shugart Jr. (1987) Landscape Ecology: a hierarchical perspective can help scientists understand spatial patterns. Bioscience 37(2): 119-127.
    Wallis C.I.B., J. Homeier, J. Peña, R. Brandl, N. Farwig, and J. Bendix (2019) Modeling tropical montane forest biomass, productivity and canopy traits with multispectral remote sensing data. Remote Sensing of Environment 225: 77-92.
    Wang Y., E. Dai, L. Yin, and L. Ma (2018) Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region, China. Ecosystem Services 34: 55-67.
    Wiens J.A. (1976) Population responses to patchy environments. Annual Review of Ecology and Systematics 7: 81-120.
    Wiens J.A. (1989) Spatial scaling in ecology. Functional Ecology 3(4): 385-397.
    Wright N. (2013) Small Island Developing States, disaster risk management, disaster risk reduction, climate change adaptation and tourism: Summary. p.1. In: Background Paper prepared for the Global Assessment Report on Disaster Risk Reduction 2013. The United Nations Office for Disaster Risk Reduction (UNISDR), Geneva, Switzerland.
    Xue J., and B. Su (2017) Significant Remote Sensing Vegetation Indices: a review of developments and applications. Journal of Sensors vol. 2017, Article ID 1353691, 17 pages.
    Yang L., Y. Dong, and D. Huang (2018) Morphological response of coastal dunes to a group of three typhoons on Pingtan Island, China. Aeolian Research 32: 210-217.
    Yap L., S. J. Davies, and R. Condit (2016) Dynamic response of a Philippine dipterocarp forest to typhoon disturbance. Journal of Vegetation Science 27: 133-143.
    Yin H., D. Pflugmacher, A. Li, Z. Li, and P. Hostert (2018) Land use and land cover change in Inner Mongolia – understanding the effects of China`s re-vegetation programs. Remote Sensing of Environment(204): 918-930.
    Yu H., X. Liu, B. Kong, R. Li, and G. Wang (2019) Landscape ecology development supported by geospatial technologies: a review. Ecological Informatics 51: 185-192.
    Yu X., W. Pan, X. Zheng, S. Zhou, and X. Tao (2017) Effects of wave-current interaction on storm surge in the Taiwan Strait: Insights from Typhoon Morakat. Continental Shelf Research 146: 47–57.
    Zhang K., C. Song, Y. Zhang, and Q. Zhanga (2017) Natural disasters and economic development drive forest dynamics and transition in China. Forest Policy and Economics 76: 56-64.
    Zhao C., and Z. Lu (2018) Remote sensing of landslides – a review. Remote Sensing 10, 279.
    Zhu X., and D. Liu (2015) Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS Journal of Photogrammetry and Remote Sensing 102: 222-231.
    Zhu Z., and C.E. Woodcock (2014) Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment 144: 152-171.
    Zong S., H. He, K. Liu, H. Du, Z. Wu, Y. Zhao, and H. Jin (2018) Typhoon diverged forest succession from natural trajectory in the treeline ecotone of the Changbai Mountains, Northeast China. Forest Ecology and Management 407: 75-83.
    中央氣象局 (2019) 颱風資料庫。 2019年4月2日,取自:http://rdc28.cwb.gov.tw/TDB/
    金門縣農業試驗所 (2019) 歷年金門氣象資料。 2019年4月2日,取自:https://ari.kinmen.gov.tw/cp.aspx?n=83F4F07CA3F83394
    金門縣農業試驗所 (2019) 作物栽培簡介。 2019年7月9日,取自: https://ari.kinmen.gov.tw/Content_List.aspx?n=00E38463D986E2E1
    McGarigal K. (2015) FRAGSTATS: Fragstats help. Computer software program produced by the authors at the University of Massachusetts, Amherst. Retrieved March, 11, 2019, from the World Wide Web: http://www.umass.edu/landeco/research/fragstats/fragstats.html
    USGS (2019) Data available from the U.S. Geological Survey. Retrieved April, 16, 2019, from the World Wide Web: https://earthexplorer.usgs.gov/

    下載圖示
    QR CODE