簡易檢索 / 詳目顯示

研究生: 施惟馨
Shih, Wei-Hsin
論文名稱: 微流體紙基晶片系統結合銀奈米粒子應用於食品中重金屬汞離子檢測
Microfluidic Paper-Based System with Silver-Nanoparticles for Mercury(ii) Detection in Food
指導教授: 李佳言
Lee, Chia-Yen
傅龍明
Fu, Lung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料工程研究所
Graduate Institute of Materials Engineering
畢業學年度: 107
語文別: 中文
論文頁數: 89
中文關鍵詞: 汞離子檢測銀奈米粒子微流體紙基晶片RGB值分析
外文關鍵詞: mercury ion detection, silver nanoparticles, microfluidic paper-based chip, RGB values
DOI URL: http://doi.org/10.6346/NPUST201900151
相關次數: 點閱:29下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 因現今工、商及科技業發展快速,導致環境汙染問題日益嚴重,由於廢氣及廢汙水會直接或間接使食品受到重金屬汙染,且重金屬具富集性,易於生物中累積,將會對食物鏈造成相當大的影響,若長期接觸有致癌可能性,甚至引起器官衰竭,為了避免消費者於不知情狀況下攝入過多含重金屬之食品,我們更應該重視並提前預防。
    本研究針對食品中重金屬汞汙染,使用微流體紙基晶片結合銀奈米粒子達快速檢測汞離子之目的,免去傳統昂貴的設備成本,將銀奈米粒子滴入紙基晶片之蠟印檢測範圍中,待乾燥後加入需檢測之樣品,使銀奈米粒子與汞離子結合形成汞齊合金,促使紙基晶片顏色改變,並搭配紙基檢測系統及手機CMOS鏡頭拍攝,透過APP軟體將圖像結果轉換成RGB值,近一步與樣品濃度進行分析;根據紙基晶片及檢測系統於600秒時,對汞離子濃度1-25ppb以R+G+B方式建立標準曲線,得到之R2值為0.9976,並根據線性迴歸方程式進行濃度換算,於紙基檢測系統中檢測出去離子水、食用油脂及鹽巴之回收率分別為88 %、89 %及67 %,符合食藥署規定之回收率須為60-125 %;根據上述檢測結果,可透過此檢測平台為檢測汞離子提供低成本及簡單快速之方式。

    Today, environmental pollution is getting serious. Heavy metal pollution in the food chain may be directly or indirectly affected by exhaust gases and industrial wastewater. Because mercury can accumulate or bioaccumulate in living organisms. It can affect all animals and humans because the most important pathway for mercury bioaccumulation is through the food chain. If mercury can be detected quickly, people can prevent it immediately.
    In the proposed method, a small strip of filter paper is coated with silver nanoparticles and reagent indicator. The mercury ion sample is then injected into the reservoir of the chip; prompting a reaction with the silver nanoparticles and indicator. The chip is transferred to the detection system, where the reaction-induced color change is captured by a CMOS camera. The resulting color variation is analyzed through a high-resolution camera and the reacted image is processed by a RGB (red, green and blue) analytical app installed on a smartphone. Results show that the known mercury ion concentrations ranging from 1-25 ppb indicate that the high linear relationship (R2 = 0.9976) between the (R (red) + G (green) + B (blue)) value and mercury ion concentration. The recoveries of external addition based on paper-based system results were 67-89%. The conformances when compared with results from an accredited laboratory via standard method (by TFDA) ranged 60-125%. In conclusion, the results provide further evidence that the simple, convenient and low-cost of the detection system.

    目錄
    摘要I
    AbstractII
    謝誌III
    目錄IV
    表目錄VII
    圖目錄VIII
    簡寫說明X
    符號索引XII
    第1章 緒論1
    1.1前言1
    1.2重金屬汙染1
    1.3食品中的重金屬2
    1.4微機電系統4
    1.5微流體技術5
    1.6銀奈米粒子5
    1.7研究目的6
    第2章 文獻回顧7
    2.1重金屬汞的簡介7
    2.1.1汞的特性7
    2.1.2汞對人體的危害8
    2.1.3汞的檢測方式9
    2.2奈米粒子11
    2.2.1奈米粒子的介紹11
    2.2.2奈米粒子的形狀及粒徑11
    2.2.3奈米粒子的合成12
    2.2.3.1銀奈米粒子合成13
    2.3汞離子與銀奈米粒子的絡合反應14
    2.4紙基晶片15
    2.4.1紙基晶片歷史15
    2.4.2紙基晶片製作方式17
    2.4.2.1紙基晶片基材17
    2.4.2.2紙基晶片疏水/親水區製作18
    2.4.2.3二維紙基晶片18
    2.4.2.4三維紙基晶片23
    2.5影像判讀系統24
    2.5.1 RGB色度系統24
    2.5.2 RGB顏色判讀26
    第3章 材料與實驗方法28
    3.1 材料與設備28
    3.1.1紙基晶片基材選擇28
    3.1.2實驗使用之藥品29
    3.1.3實驗使用之儀器30
    3.2實驗架構規劃31
    3.3紙基檢測系統介紹31
    3.3.1機台介紹31
    3.3.1.1檢測盒介紹34
    3.3.2 App軟體介紹35
    3.3.3檢測步驟37
    3.4實驗流程37
    3.4.1溶液配製37
    3.4.2紙基晶片製作38
    3.4.3紙基檢測步驟39
    3.4.4紙基檢測系統之汞離子標準曲線40
    3.4.5實際樣品檢測41
    3.5傳統分光光度法檢測41
    3.5.1溶液配置41
    3.5.2分光光度法檢測流程41
    3.5.3分光光度法之汞離子標準曲線42
    3.5.4分光光度法之汞離子實際樣品檢測42
    第4章 結果與討論44
    4.1蠟印疏水區大小及紙基基材選擇44
    4.1.1蠟印檢測區大小選擇44
    4.1.2紙基基材選擇46
    4.1.2.1蠟印滲透情形46
    4.1.2.2濾紙選擇49
    4.2汞離子檢測時間56
    4.3紙基檢測之標準曲線58
    4.4傳統分光光度法59
    4.4.1分光光度法全波長掃描59
    4.4.2反應時間60
    4.4.3專一性之探討60
    4.4.3.1其他金屬離子與呈色液之專一性比較60
    4.4.3.2共伴呈色反應62
    4.4.4傳統分光光度法標準曲線63
    4.5實際樣品檢測64
    4.5.1紙基檢測系統64
    4.5.2分光光度法65
    第5章 結論與未來展望67
    5.1結論67
    5.2未來展望68
    參考文獻69
    附錄81
    作者簡介89

    [1] 韓柏檉,1989,冰山一角綠牡蠣事件,科學月刊,237期,第7篇。
    [2] 林盈茹、范致豪、張郁麟、何逸峯、謝勝信、黃文達,2017,重金屬鎘對水稻幼苗生長及反射光譜之影響,中華民國雜草會刊,第38卷,第二期,第99-118頁。
    [3] 行政院環境保護署,1974,水汙染防治法,法規,行政院環境保護署,台灣。
    [4] 衛生福利部食品藥物管理署,2013,食用菇類重金屬限量標準法,法規,衛生福利部食品藥物管理署,台灣。
    [5] 衛生福利部食品藥物管理署,2013,牛羊豬及家禽可食性內臟重金屬限量標準法,法規,衛生福利部食品藥物管理署,台灣。
    [6] 衛生福利部食品藥物管理署,2013,食米重金屬限量標準法,法規,衛生福利部食品藥物管理署,台灣。
    [7] 衛生福利部食品藥物管理署,2013,包裝飲用水及盛裝飲用水衛生標準法規,衛生福利部食品藥物管理署,台灣。
    [8] 衛生福利部食品藥物管理署,2016,蔬果植物類重金屬限量標準法,法規,衛生福利部食品藥物管理署,台灣。
    [9] 衛生福利部食品藥物管理署,2013,蛋類衛生標準法,法規,衛生福利部食品藥物管理署,台灣。
    [10] 衛生福利部食品藥物管理署,2013,食鹽衛生標準法,法規,衛生福利部食品藥物管理署,台灣。
    [11] 衛生福利部食品藥物管理署,2013,藻類食品衛生標準法,法規,衛生福利部食品藥物管理署,台灣。
    [12] 衛生福利部食品藥物管理署,2013,冰類衛生標準法,法規,衛生福利部食品藥物管理署,台灣。
    [13] 衛生福利部食品藥物管理署,2013,食用油脂類衛生標準法,法規,衛生福利部食品藥物管理署,台灣。
    [14] 衛生福利部食品藥物管理署,2013,水產動物類衛生標準法,法規,衛生福利部食品藥物管理署,台灣。侯勝茂,2007,綠牡蠣不敢苟銅,藥物食品安全週報,第七十七期,第2-3頁。
    [15] World Health Organization (WHO), 1996, Trace Elements in Human Nutrition and Health, World Health Organization (WHO), Geneva.
    [16] Zhenli, L. H., Xiaoe, E. Y. and Peter, J. S., 2005, “Trace elements in agroecosystems and impacts on the environment,” Journal of Trace Elements in Medicine and Biology, Vol. 19, pp. 125-140.
    [17] Arruti, A., Fernández-Olmo, I. and Irabien, A., 2010, “Evaluation of the contribution of local sources to trace metals levels in urban PM2. 5 and PM10 in the Cantabria region (Northern Spain),” Journal of Environmental Monitoring, Vol. 12, No. 7, pp. 1451-1458.
    [18] Ercilla-Montserrat, M., Muñoz, P., Montero, J. I., Gabarrell, X. and Rieradevall, J., 2018, “A study on air quality and heavy metals content of urban food produced in a Mediterranean city (Barcelona), ” Journal of Cleaner Production, Vol. 195, pp. 385-395.
    [19] Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B. and Beeregowda, K. N., 2014, “Toxicity, mechanism and health effects of some heavy metals,” Interdisciplinary toxicology, Vol. 7, No.2, pp. 60-72.
    [20] Khlifi, R. and Hamza-Chaffai, A., 2010, “Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: a review,” Toxicology and applied pharmacology, Vol. 248, No.2, pp. 71-88.
    [21] Feynman, R. P., 1992, “There’s Plenty of Room at the Bottom,” Journal of Microelectromechanical systems, Vol. 1, No.1, pp. 60-66.
    [22] Feynman, R., 1993, “Infinitesimal Machinery,” Journal of Microelectromechanical systems, Vol. 2, No.1, pp. 4-14.
    [23] Abgrall, P. and Gue, A-M., 2007, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” Journal of Micromechanics and Microengineering, Vol. 17, No.5, pp. R15-R49.
    [24] Duffy, D. C., McDonald, J. C., Schueller, O. J. A. and Whitesides, G. M., 1998, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), ” Analytical Chemistry, Vol. 70, No.23, pp. 4974-4984.
    [25] Martinez, A. W., Phillips, S. T. and Whitesides, G. M., 2008, “Three-dimensional microfluidic devices fabricated in layered paper and tape,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 105, No.50, pp. 19606-19611.
    [26] Carrilho, E., Martinez, A. W. and Whitesides, G. M., 2009, “Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics,” Analytical. Chemistry, Vol. 81, No.16, pp. 7091-7095.
    [27] Martinez, A. W., Phillips, S. T., Butte, M. J. and Whitesides, G. M., 2007, “Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays,” Angewandte Chemie-International Edition, Vol. 46, No.8, pp. 1318-1320.
    [28] Lee, J. S., Han, M. S., and Mirkin, C. A., 2007, “Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA‐functionalized gold nanoparticles,” Angewandte Chemie-International Edition, Vol. 46, No.22, pp. 4093-4096.
    [29] Lierop, D.V., Krpetić, Ž., Guerrini, L., Larmour, I. A., Dougan, J. A., Faulds, K., and Graham, D., 2012, “Positively charged silver nanoparticles and their effect on surface-enhanced Raman scattering of dye-labelled oligonucleotides,”Chemical Communications, Vol. 48, No.66, pp. 8192-8194.
    [30] Li, S., Wei, T., Tang, M., Chai, F., Qu, F., and Wang, C., 2018, “Facile synthesis of bimetallic Ag-Cu nanoparticles for colorimetric detection of mercury ion and catalysis,” Sensors and Actuators B: Chemical, Vol. 255, pp. 471-1481.
    [31] McConnell, W. P., Novak, J. P., Brousseau, L. C., Fuierer, R. R., Tenent, R. C., and Feldheim, D. L., 2000, “Electronic and optical properties of chemically modified metal nanoparticles and molecularly bridged nanoparticle arrays,” The Journal of Physical Chemistry B, Vol. 104, No.38, pp. 8925–8930.
    [32] Benelmekki, M., 2015, An introduction to nanoparticles and nanotechnology. In Designing Hybrid Nanoparticles, Morgan & Claypool Publishers, New York.
    [33] Rice, K. M., Walker Jr, E. M., Wu, M., Gillette, C. and Blough, E. R., 2014, “Environmental mercury and its toxic effects,” Journal of Preventive Medicine and Public Health, Vol. 47, No.2, pp. 74-83.
    [34] Bernhoft, R. A., 2012, “Mercury toxicity and treatment: a review of the literature,” Journal of Environmental and Public Health, Vol. 2012, No.2012, pp.1-11.
    [35] Kolker, A., Senior, C. L. and Quick, J. C., 2006, “Mercury in coal and the impact of coal quality on mercury emissions from combustion systems,” Applied geochemistry, Vol. 21, No.11, pp. 1821-1836.
    [36] Mashyanov, N. R., Pogarev, S. E., Panova, E. G., Panichev, N. and Ryzhov, V., 2017, “Determination of mercury thermospecies in coal,” Fuel, Vol. 203, pp. 973-980.
    [37] Lee, S. S. and Wilcox, J., 2017, “Behavior of mercury emitted from the combustion of coal and dried sewage sludge: The effect of unburned carbon, Cl, Cu and Fe,” Fuel, Vol. 203, pp.749-756.
    [38] Bourtsalas, A. T. and Themelis, N. J., 2019, “Major sources of mercury emissions to the atmosphere: The US case,” Waste Management, Vol. 85, pp.90-94.
    [39] Lin, C. C., Yee, N., and Barkay, T., 2012, “Microbial transformations in the mercury cycle,” Environmental Chemistry and Toxicology of Mercury, pp.155-191.
    [40] Magos, L., and Clarkson, T. W., 2006, “Overview of the clinical toxicity of mercury,” Annals of Clinical Biochemistry, Vol. 43, No.4, pp.257-268.
    [41] Guzzi, G., and La Porta, C. A., 2008, “Molecular mechanisms triggered by mercury,” Toxicology, Vol.244, No.1, pp.1-12.
    [42] Malm, O., 1998, “Gold mining as a source of mercury exposure in the Brazilian Amazon,”Environmental research, Vol.77, No.2, pp.73-78.
    [43] Vroom, F. Q., and Green, M., 1972, “Mercury vapour intoxication,”Brain, Vol.95, No.2, pp.305-318.
    [44] Weldon, M. M., Smolinski, M. S., Maroufi, A., Hasty, B. W., Gilliss, D. L., Boulanger, L. L., and Dutton, R. J, 2000,“Mercury poisoning associated with a Mexican beauty cream,”Western Journal of Medicine, Vol.173, No.1, pp.15.
    [45] Clarkson, T. W., 1993, “Mercury: major issues in environmental health,”Environmental Health Perspectives, Vol.100, pp.31-38.
    [46] Malqui, H., Anarghou, H., Ouardi, F. Z., Ouasmi, N., Najimi, M., and Chigr, F, 2018, “Continuous Exposure to Inorganic Mercury Affects Neurobehavioral and Physiological Parameters in Mice,” Journal of Molecular Neuroscience, Vol.66, No.2, pp.291-305.
    [47] 行政院環境保護署,2008,水中汞檢測方法,法規,行政院環境保護署,台灣。
    [48] 衛生福利部食品藥物管理署,2011,重金屬檢驗方法總則,法規,衛生福利部食品藥物管理署,台灣。
    [49] Zhang, P., Lyu, Z., Viktorova, J., Offenhäusser, A., Feng, L., and Mayer, D., 2018, “Nanoparticle stripe sensor for highly sensitive and selective detection of mercury ions,” Biosensors and Bioelectronics, Vol.117, pp.450-456.
    [50] Liu, J., Wu, D., Yan, X., and Guan, Y., 2013, “Naked-eye sensor for rapid determination of mercury ion,” Talanta, Vol.116, pp.563-568.
    [51] Yogesh, P., Samantha, M., and James, L., 2015, “Sample Preparation Method for Mercury Analysis in Reagent Chemicals by ICP-OES,” Spectroscopy, Vol.31, No.11, pp.8-17.
    [52] Caroli, S., Forte, G., Iamiceli, A. L., and Galoppi, B., 1999, “Determination of essential and potentially toxic trace elements in honey by inductively coupled plasma-based techniques,” Talanta, Vol.50, No.2, pp.327-336.
    [53] 行政院環境保護署,2012,固體與液體樣品中總汞檢測方法—熱分解汞齊原子吸收光譜法,法規,行政院環境保護署,台灣。
    [54] Moores, A., and Goettmann, F., 2006, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New Journal of Chemistry, Vol.30, No.8, pp.1121-1132.
    [55] Talapin, D. V., and Shevchenko, E. V., 2016, “Introduction: nanoparticle chemistry,” Chem. Rev, Vol.116, No.18, pp.10343–10345.
    [56] Benelmekki, M., 2015, Designing Hybrid Nanoparticles, Morgan & Claypool Publishers, California.
    [57] Nikam, A. V., Prasad, B. L. V., and Kulkarni, A. A., 2018, “Wet chemical synthesis of metal oxide nanoparticles: a review,” CrystEngComm, Vol.20, No.35, pp.5091-5107.
    [58] Jain, P. K., Lee, K. S., El-Sayed, I. H., and El-Sayed, M. A., 2006, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” The Journal of Physical Chemistry B, Vol.110, No.14, pp.7238-7248.
    [59] Wu, Z., Yang, S., and Wu, W., 2016, “Shape control of inorganic nanoparticles from solution,” Nanoscale, Vol.8, No.3, pp.1237-1259.
    [60] Zhang, X. F., Liu, Z. G., Shen, W., and Gurunathan, S., 2016, “Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches,” International Journal of Molecular Sciences, Vol.17, No.9, pp.1534.
    [61] Horikoshi, S., and Serpone, N, 2013, Microwaves in nanoparticle synthesis: fundamentals and applications, John Wiley & Sons, Hoboken.
    [62] Tien, D. C., Liao, C. Y., Huang, J. C., Tseng, K. H., Lung, J. K., Tsung, T. T., and Lin, H. M., 2008, “Novel technique for preparing a nano-silver water suspension by the arc-discharge method,” Reviews on Advanced Materials Science, Vol.18, pp.750-756.
    [63] Mulfinger, L., Solomon, S. D., Bahadory, M., Jeyarajasingam, A. V., Rutkowsky, S. A., and Boritz, C., 2007, “Synthesis and study of silver nanoparticles,” Journal of Chemical Education, Vol.84, No.2, pp.322.
    [64] Henglein, A., and Giersig, M., 1999, “Formation of colloidal silver nanoparticles: capping action of citrate,” The Journal of Physical Chemistry B, Vol.103, No.44, pp.9533-9539.
    [65] Ganaie, S. U., Abbasi, T., and Abbasi, S. A., 2015, “Green synthesis of silver nanoparticles using an otherwise worthless weed Mimosa (Mimosa Pudica): Feasibility and process development toward shape/size control,” Particulate Science and Technology, Vol.33, No.6, pp.638-644.
    [66] Chouhan, N., 2018, “Silver Nanoparticles: Synthesis, Characterization and Applications,” IntechOpen, pp.22-57
    [67] Sadrolhosseini, A. R., Noor, A. S. M., and Moksin, M. M., 2012, “Application of surface plasmon resonance based on a metal nanoparticle,” IntechOpen, pp.253-282
    [68] Krajczewski, J., Kołątaj, K., and Kudelski, A., 2017, “Plasmonic nanoparticles in chemical analysis,” RSC Advances, Vol.7, No.28, pp.17559-17576.
    [69] Willets, K. A., and Van Duyne, R. P., 2007, “Localized surface plasmon resonance spectroscopy and sensing,” Annual Review of Physical Chemistry, Vol.58, pp.267-297.
    [70] Firdaus, M. L., Fitriani, I., Wyantuti, S., Hartati, Y. W., Khaydarov, R., McAlister, J. A., and Gamo, T., 2017, “Colorimetric detection of mercury (II) ion in aqueous solution using silver nanoparticles,” Analytical Sciences, Vol.33, No.7, pp.831-837.
    [71] Katok, K. V., Whitby, R. L., Fukuda, T., Maekawa, T., Bezverkhyy, I., Mikhalovsky, S. V., and Cundy, A. B., 2012, “Hyperstoichiometric interaction between silver and mercury at the nanoscale,” Angewandte Chemie-International Edition, Vol.51, No.11, pp.2632-2635.
    [72] Zhan, L., Yang, T., Zhen, S. J., and Huang, C. Z., 2017, “Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric determination of mercury (II) and chromium (III),” Microchimica Acta, Vol.184, No.9, pp.3171-3178.
    [73] Nain, A., Barman, S. R., Jain, S., Mukherjee, A., and Satija, J., 2017, “Dual mechanism-based sensing of mercury using unmodified, heteroepitaxially synthesized silver nanoparticles,” Applied Nanoscience, Vol.7, No.6, pp.299-307.
    [74] Fan, Y., Liu, Z., and Zhan, J., 2009, “Synthesis of starch-stabilized Ag nanoparticles and Hg 2+ recognition in aqueous media,” Nanoscale Research Letters, Vol.4, No.10, pp.1230.
    [75] Vasileva, P., Alexandrova, T., and Karadjova, I., 2017, “Application of starch-stabilized silver nanoparticles as a colorimetric sensor for mercury (II) in 0.005 mol/L nitric acid,” Journal of Chemistry, Vol.2017, Article ID 6897960.
    [76] Nery, E. W., and Kubota, L. T., 2013, “Sensing approaches on paper-based devices: a review,” Analytical and Bioanalytical Chemistry, Vol.405, No.24, pp.7573-7595.
    [77] Müller, R. H., and Clegg, D. L., 1949, “Automatic paper chromatography,” Analytical Chemistry, Vol.21, No.9, pp.1123-1125.
    [78] Comer, J. P., 1956, “Semiquantitative specific test paper for glucose in urine,” Analytical Chemistry, Vol.28, No.11, pp.1748-1750.
    [79] Cheng, C. M., Martinez, A. W., Gong, J., Mace, C. R., Phillips, S. T., Carrilho, E., and Whitesides, G. M., 2010, “Paper‐based ELISA,” Angewandte Chemie-International Edition, Vol.49, No.28, pp.4771-4774.
    [80] Tang, Y., Xu, X., Liu, X., Huang, X., Chen, Y., Wang, W., and Xiang, J., 2011, “Development of a lateral flow immunoassay (LFA) strip for the rapid detection of 1‐aminohydantoin in meat samples,” Journal of Food Science, Vol.76, No.6, pp.T138-T143.
    [81] Martinez, A. W., Phillips, S. T., Whitesides, G. M., and Carrilho, E., 2009, “Diagnostics for the developing world: microfluidic paper-based analytical devices,” Alaytical Chemistry, Vol.82, No.1, pp.3-10.
    [82] Apilux, A., Dungchai, W., Siangproh, W., Praphairaksit, N., Henry, C. S., and Chailapakul, O., 2010, “Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron,” Analytical Chemistry, Vol.82, No.5, pp.1727-1732.
    [83] Liana, D. D., Raguse, B., Gooding, J. J., and Chow, E., 2012, “Recent advances in paper-based sensors,” Sensors, Vol.12, No.9, pp.11505-11526.
    [84] Li, X., Tian, J., Garnier, G., and Shen, W., 2010, “Fabrication of paper-based microfluidic sensors by printing,” Colloids and surfaces B: Biointerfaces, Vol.76, No.2, pp.564-570.
    [85] Lu, Y., Shi, W., Qin, J., and Lin, B., 2009, “Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing,” Analytical Chemistry, Vol.82, No.1, pp.329-335.
    [86] Li, X., Ballerini, D. R., and Shen, W., 2012, “A perspective on paper-based microfluidics: Current status and future trends,” Biomicrofluidics, Vol.6, No.1, pp.011301.
    [87] Bruzewicz, D. A., Reches, M., and Whitesides, G. M., 2008, “Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper,” Analytical Chemistry, Vol.80, No.9, pp.3387-3392.
    [88] Chitnis, G., Ding, Z., Chang, C. L., Savran, C. A., and Ziaie, B, 201, “Laser-treated hydrophobic paper: an inexpensive microfluidic platform,” Lab on a Chip, Vol.11, No.6, pp.1161-1165.
    [89] Abe, K., Suzuki, K., and Citterio, D., 2008, “Inkjet-printed microfluidic multianalyte chemical sensing paper,” Analytical Chemistry, Vol.80, No.18, pp.6928-6934.
    [90] Olkkonen, J., Lehtinen, K., and Erho, T., 2010, “Flexographically printed fluidic structures in paper,” Analytical Chemistry, Vol.82, No.24, pp.10246-10250.
    [91] Dungchai, W., Chailapakul, O., and Henry, C. S., 2011, “A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing,” Analyst, Vol.136, No.1, pp.77-82.
    [92] Kao, P. K., and Hsu, C. C., 2014, “One-step rapid fabrication of paper-based microfluidic devices using fluorocarbon plasma polymerization,” Microfluidics and Nanofluidics, Vol.16, No.5, pp.811-818.
    [93] Li, X., Tian, J., Nguyen, T., and Shen, W., 2008, “Paper-Based microfluidic devices by plasma treatment,” Analytical Chemistry, Vol.80, No.23, pp.9131-9134.
    [94] Koo, C. K., He, F., and Nugen, S. R., 2013, “An inkjet-printed electrowetting valve for paper-fluidic sensors,” Analyst, Vol.138, No.17, pp.4998-5004.
    [95] Martinez, A. W., Phillips, S. T., Wiley, B. J., Gupta, M., and Whitesides, G. M., 2008, “FLASH: a rapid method for prototyping paper-based microfluidic devices,” Lab on a Chip, Vol.8, No.12, pp.2146-2150.
    [96] Sones, C. L., Katis, I. N., He, P. J. W., Mills, B., Namiq, M. F., Shardlow, P., and Eason, R. W., 2014, “Laser-induced photo-polymerisation for creation of paper-based fluidic devices,” Lab on a Chip, Vol.14, No.23, pp.4567-4574.
    [97] Nie, J., Liang, Y., Zhang, Y., Le, S., Li, D., and Zhang, S., 2013, “One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices,” Analyst, Vol.138, No.2, pp.671-676.
    [98] Songjaroen, T., Dungchai, W., Chailapakul, O., and Laiwattanapaisal, W., 2011, Novel, “Novel simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping,” Talanta, Vol.85, No.5, pp.2587-2593.
    [99] Cheung, S. F., Cheng, S. K., and Kamei, D. T., 2015, “Paper-Based Systems for Point-of-Care Biosensing,” Journal of Laboratory Automation, Vol.20, No.4, pp.316-333.
    [100] Ge, L., Wang, S., Song, X., Ge, S., and Yu, J., 2012, “3D origami-based multifunction-integrated immunodevice: Low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device,” Lab on a Chip, Vol.12, No.17, pp.3150-3158.
    [101] Liu, H., and Crooks, R. M., 2011, “Three-dimensional paper microfluidic devices assembled using the principles of origami,” Journal of the American Chemical Society, Vol.133, No.44, pp.17564-17566.
    [102] Schanda, J., 2007, Colorimetry: understanding the CIE system, John Wiley & Sons, Hoboken.
    [103] Setchell Jr, J. S., 2012, “Colour description and communication,” In Colour Design, pp. 219-253.
    [104] Pascale, D., 2003, “A review of rgb color spaces... from xyy to r’g’b’,” Babel Color, Vol.18, pp.136-152.
    [105] Süsstrunk, S., Buckley, R., and Swen, S., 1999, “Standard RGB color spaces,” Color and Imaging Conference, Vol. 1999, No. 1, pp.127-134.
    [106] Meelapsom, R., Jarujamrus, P., Amatatongchai, M., Chairam, S., Kulsing, C., and Shen, W, 2016, “Chromatic analysis by monitoring unmodified silver nanoparticles reduction on double layer microfluidic paper-based analytical devices for selective and sensitive determination of mercury (II),” Talanta, Vol.155, pp.193-201.
    [107] Berns, R. S., 2019, Billmeyer and Saltzman's principles of color technology, Wiley, ‎Hoboken.
    [108] Shen, L., Hagen, J. A., and Papautsky, I., 2012, “Point-of-care colorimetric detection with a smartphone,” Lab on a Chip, Vol.12, No.21, pp.4240-4243.
    [109] Morbioli, G. G., Mazzu-Nascimento, T., Stockton, A. M., and Carrilho, E., 2017, “Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs)-A review,” Analytica Chimica Acta, Vol.970, pp.1-22.
    [110] Capitan-Vallvey, L. F., Lopez-Ruiz, N., Martinez-Olmos, A., Erenas, M. M., and Palma, A. J., 2015, “Recent developments in computer vision-based analytical chemistry: A tutorial review,” Analytica Chimica Acta, Vol.899, pp.23-56.
    [111] 徐夢苹,2017,紙基晶片應用於全血/血清中肌酐酸、白蛋白與尿液中肌酐酸之檢測,碩士論文,國立屏東科技大學,生物機電工程研究所,屏東。
    [112] 柯建亘,2018,快速微流體紙基晶片系統應用於食品添加物中二氧化硫之檢測,碩士論文,國立屏東科技大學,材料工程研究所,屏東。
    [113] Sumesh, E., Bootharaju, M. S., and Pradeep, T., 2011, “A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water,” Journal of Hazardous Materials, Vol.189, pp.450-457.
    [114] Manivannan, S., and Ramaraj, R., 2013, “Silver nanoparticles embedded in cyclodextrin–silicate composite and their applications in Hg (II) ion and nitrobenzene sensing,” Analyst, Vol.138, No.6, pp.1733-1739.

    無法下載圖示 校外公開
    2024/07/17
    QR CODE